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Figure 1. Our proposed method, MACE, can erase a large number of concepts from text-to-image diffusion models. This can safeguard

celebrity portrait rights, respect copyrights on artworks, and prevent explicit content creation. (a) MACE demonstrates good efficacy and

generality by preventing the generation of images reflecting the target concept and its synonyms. (b) MACE maintains excellent specificity,

ensuring that the unintended concepts remain intact, even when they share common terms with the target concept. (c) MACE exhibits

a significantly enhanced ability to erase 100 concepts, outperforming previous methods. The overall score indicates the comprehensive

erasing capability, as detailed in Section 4.3.

Abstract
The rapid expansion of large-scale text-to-image diffu-

sion models has raised growing concerns regarding their
potential misuse in creating harmful or misleading content.
In this paper, we introduce MACE, a finetuning framework
for the task of MAss Concept Erasure. This task aims to pre-
vent models from generating images that embody unwanted
concepts when prompted. Existing concept erasure meth-
ods are typically restricted to handling fewer than five con-
cepts simultaneously and struggle to find a balance between
erasing concept synonyms (generality) and maintaining un-
related concepts (specificity). In contrast, MACE differs by
successfully scaling the erasure scope up to 100 concepts
and by achieving an effective balance between generality
and specificity. This is achieved by leveraging closed-form
cross-attention refinement along with LoRA finetuning, col-
lectively eliminating the information of undesirable con-
cepts. Furthermore, MACE integrates multiple LoRAs with-
out mutual interference. We conduct extensive evaluations
of MACE against prior methods across four different tasks:
object erasure, celebrity erasure, explicit content erasure,
and artistic style erasure. Our results reveal that MACE sur-
passes prior methods in all evaluated tasks. Code is avail-
able at https://github.com/Shilin-LU/MACE.

1. Introduction

In large-scale text-to-image (T2I) models [9, 14, 34, 40, 49,

54, 57, 73, 74, 76, 77], the task of concept erasure aims

to remove concepts that may be harmful, copyrighted, or

offensive. This ensures that when a model is prompted with

any phrase related to deleted concepts, it will not generate

images reflecting those concepts.

The drive behind concept erasure is rooted in the sig-

nificant risks posed by T2I models. These models can gen-

erate inappropriate content, such as copyrighted artworks

[23, 24, 55, 61], explicit content [22, 59, 72], and deepfakes

[38, 70]. These issues are largely caused by the unfiltered,

web-scraped training data [60]. While researchers have put

efforts to mitigate these risks through refining datasets and

retraining models, these methods are not only costly but

also can lead to unforeseen outcomes [7, 44]. For example,

despite being trained on a sanitized dataset, Stable Diffu-

sion (SD) v2.0 [52] still produces explicit content. More-

over, it exhibits a diminished generative quality for regular

content when compared to its earlier versions [44]. Alterna-

tive methods, such as post-generation filtering [41, 50] and

inference guiding [3, 59], are effective when models are ac-

cessed only via APIs. Yet, these safeguards can be easily
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bypassed if users have access to the source code [63].

To mitigate the vulnerability of these safeguards, sev-

eral finetuning-based methods have been proposed [16, 17,

19, 25, 30, 71]. Nonetheless, the challenge of concept era-

sure lies in balancing the dual requirements of generality

and specificity. Generality requires that a concept should be

consistently removed, regardless of its expression and the

context in which it appears. On the other hand, specificity

requires that unrelated concepts remain intact. Our analy-

sis reveals that there is substantial room for enhancing these

methods with respect to both generality and specificity.

We pinpoint three primary issues that hinder the effec-

tiveness of prior works. Firstly, the information of a phrase

is concealed within other words in the prompt through the

attention mechanism [69]. This is sufficient to evoke the

concept from T2I models (see Figure 2), leading to re-

stricted generality and incomplete elimination when remov-

ing concepts. Secondly, finetuning the diffusion model’s

prediction on early denoising steps (t > t0) can result in

degraded specificity of concept erasure. Typically, diffu-

sion models generate a general context in the early stage

[12, 31, 51]. For instance, when generating a portrait of

Paul Walker or Paul Wesley, the initial sampling trajectory

gravitates towards the face manifold. It begins by form-

ing a vague outline that could resemble any person. Af-

ter a turning point, a.k.a. spontaneous symmetry breaking

(SSB) [51], the identity becomes clear with the details pro-

gressively filled in. If our goal is to only prevent the model

from generating images of Paul Walker, it should not impact

other celebrities named ‘Paul’ (See Figure 1). However,

if we alter the predictions made in the early stages, other

‘Pauls’ can inadvertently be affected. Lastly, when fineturn-

ing methods are applied to erase a large number of concept

(e.g., 100), a noticeable decline in performance is observed.

This decline is due to either sequential or parallel finetun-

ing of the models. The former is prone to catastrophic for-

getting and the latter results in interference among different

concepts being finetuned.

In light of these challenges, we propose a framework,

dubbed MAss Concept Erasure (MACE), to erase a large

number of concepts from T2I diffusion models. MACE not

only achieves a superior balance between generality and

specificity, but also adeptly handles the erasure of 100 con-

cepts. It requires neither concept synonyms nor the original

training data to perform concept erasure. To remove multi-

ple concepts, MACE starts by refining the cross-attention

layers of the pretrained model using a closed-form solu-

tion. This design encourages the model to refrain from em-

bedding residual information of the target phrase into other

words, thereby erasing traces of the concept in the prompt.

Secondly, it employs a unique LoRA module [21] for each

individual concept to remove its intrinsic information. To

maintain specificity, MACE exploits concept-focal impor-

[EOS]

Figure 2. A concept can be generated solely via residual infor-
mation: (a) Average cross-attention map for each word presents

that a concept’s information is embedded within other words. (b)

A puppy can be generated solely using residual information by re-

placing the text embedding of ‘puppy’ with that of the final [EOS]
token. Additional examples are available in Appendix G.

tance sampling during LoRA training, mitigating the impact

on unintended concepts. Finally, we develop a loss function

for MACE to harmoniously integrate multiple LoRA mod-

ules without interfering with one another, while prevent-

ing catastrophic forgetting. This integration loss can also

be swiftly solved using a closed-form solution. We conduct

extensive evaluations on four distinct tasks, including object

erasure, celebrity erasure, explicit content erasure, and artis-

tic style erasure. MACE demonstrates superior performance

on mass concept erasure and strikes an effective balance

between specificity and generality, compared with state-of-

the-art (SOTA) methods. This achievement paves the way

for safer and more regulated T2I applications.

2. Related Work
Concept erasure. Existing research on preventing un-

wanted outputs from T2I models can be broadly grouped

into four categories: post-image filtering [41, 50], infer-

ence guidance [3, 59], retraining with the curated dataset

[40, 52], and model finetuning [16, 17, 19, 25, 30, 39, 71].

The first two methods are post-hoc solutions and do not ad-

dress the inherent propensity of the models to generate in-

appropriate content [63]. Although retraining with curated

datasets may offer a solution, it demands significant compu-

tational effort and time (e.g., over 150,000 A100 GPU hours

for retraining Stable Diffusion) [53]. Finetuning pretrained

T2I models is a more viable approach. However, most meth-

ods either overlook the residual information of the target

phrase embedded within co-existing words, focusing solely

on the target phrase [16, 17, 71], or they finetune uniformly

across timesteps [16, 25, 30, 71]. Modifications to diffusion

models conditioned on timesteps before SSB [51] can nega-

tively affect the generation of retained concepts. In contrast,

the proposed MACE addresses these challenges effectively.

Image cloaking. An alternative method for safeguarding

images against imitation or memorization [8, 65] by T2I
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models involves an additional step of applying adversar-

ial perturbations to photographs or artworks before they are

posted online. This technique, often referred to as cloaking,

enables individuals to effectively conceal their images from

models during the training phase but remain accessible and

discernible to human viewers [58, 62, 75]. Nevertheless, it

is crucial to note that this strategy is applicable only to con-

tent not yet posted online. To safeguard the vast amount of

content already on the web, concept erasure can serve as a

viable strategy for large model providers as they prepare to

release more advanced models in subsequent evolutions.

3. Method
We aim to develop a framework to erase a large number of

concepts from pretrained T2I diffusion models. This frame-

work takes two inputs: a pretrained model and a set of target

phrases that expresses the concepts to be removed. It returns

a finetuned model that is incapable of generating images de-

picting the concepts targeted for erasing. An effective era-

sure framework should fulfill the following criteria:

• Efficacy (block target phrases): If the finetuned model

is conditioned on prompts with those target phrases, its

outputs should have limited semantic alignment with the

prompts. Yet, the outputs should still appear natural, ei-

ther aligning with a generic category (e.g., sky), or de-

faulting to the super-category of the concept, if one exists.

• Generality (block synonyms): The model should also

prevent the generation of images semantically related to

any synonyms of the targeted phrases, ensuring that the

erasure is not limited to the exact wording of the prompts.

• Specificity (preserve unrelated concepts): If the fine-

tuned model is conditioned on prompts that are semanti-

cally unrelated to the erased concepts, its output distribu-

tion should closely align with that of the original model.

To this end, we introduce MACE, a MAss Concept Era-

sure framework. The information of a phrase is embedded

not only within the phrase itself but also within the words

it co-exists with. To effectively erase the targeted concepts,

our framework first removes the residual information from

the co-existing words (Section 3.1). Subsequently, distinct

LoRA modules are trained to eliminate the intrinsic infor-

mation specific to each target concept (Section 3.2). Lastly,

our framework integrates multiple LoRA modules without

mutual interference, leading to a final model that effectively

forgets a wide array of concepts (Section 3.3). Figure 3

presents an overview of our framework.

3.1. Closed-Form Cross-Attention Refinement

In this section, we suggest a closed-form cross-attention re-

finement to encourage the model to refrain from embed-

ding residual information of the target phrase into other

words. Such residual information is adequate to evoke the

Figure 3. Overview of MACE: (a) Our framework focuses on tun-

ing the prompts-related projection matrices, Wk and Wv , within

cross-attention (CA) blocks. (b) (Section 3.1 & Figure 4) The pre-

trained U-Net’s CA blocks are refined using a closed-form so-

lution, discouraging the model from embedding the residual in-

formation of the target phrase into surrounding words. (c) (Sec-

tion 3.2 & Figure 5) For each concept targeted for removal, a

distinct LoRA module is learned to eliminate its intrinsic infor-

mation. (d) (Section 3.3) A closed-form solution is introduced to

integrate multiple LoRA modules without interfering with one an-

other while averting catastrophic forgetting.

unwanted concept from T2I models. The root of this issue

lies in the attention mechanism [69], where the text embed-

ding of a token encapsulates information from other tokens.

This results in its ‘Key’ and ‘Value’ vectors absorbing and

reflecting information from other tokens.

To tackle this, we focus on refining the cross-attention

modules, which play a pivotal role in processing text

prompts. For example, when altering the projection matrix

Wk, we modify it such that the ‘Keys’ of the words that co-

exist with the target phrase in the prompt are mapped to the

‘Keys’ of those same words in another prompt, where the

target phrase is replaced with either its super-category or

a generic concept. Notably, the ‘Keys’ of the target phrase

itself remain unchanged to avoid impacting on other unin-

tended concepts associated with that phrase. Figure 4 illus-

trates this process using the projection matrix Wk, and the

same principle is applicable to Wv .

Drawing upon methods that view matrices as linear as-

sociative memories [1, 28], often used to edit knowledge

embedded within neural networks [2, 4, 5, 17, 36, 37, 43],

we formulate our objective function as follows:

min
W′

k

n∑
i=1

∥∥∥W′
k · efi −Wk · egi

∥∥∥2
2

+ λ1

n+m∑
i=n+1

‖W′
k · epi −Wk · epi ‖22 ,

(1)

where λ1 ∈ R
+ is a hyperparameter, efi is the embedding

of a word co-existing with the target phrase, egi is the em-
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Figure 4. Closed-Form Cross-Attention Refinement: The W′
k

is tuned such that the ‘Keys’ of words co-existing with the target

phrase ‘airplane’ are mapped to the ‘Keys’ of those same words

when the target phrase is replaced with a generic concept ‘sky’.

bedding of that word when the target phrase is replaced with

its super-category or a generic one, epi is the embedding for

preserving the prior, Wk is the pretrained weights, and n,m
are the number of embeddings for mapping and preserving,

respectively. As derived in Appendix B, this optimization

problem has a closed-form solution:

W′
k =

(
n∑

i=1

Wk · egi · (efi )T + λ1

n+m∑
i=n+1

Wk · epi · (epi )T
)

·
(

n∑
i=1

efi · (efi )T + λ1

n+m∑
i=n+1

epi · (epi )T
)−1

, (2)

where
∑n+m

i=n+1 Wke
p
i (e

p
i )

T and
∑n+m

i=n+1 e
p
i (e

p
i )

T are pre-

cached constants for preserving prior. These constants are

capable of encapsulating both general and domain-specific

knowledge, as detailed in Appendix B. The general knowl-

edge is estimated on the MS-COCO dataset [32] by default.

3.2. Target Concept Erasure with LoRA

After applying the closed-form refinement to eliminate the

traces of the target concepts from co-existing words (Sec-

tion 3.1), our focus shifts to erasing the intrinsic information

within the target phrase itself.

Loss function. Intuitively, if a concept is to appear in gener-

ated images, it should exert significant influence on several

patches of those images [10, 46]. This implies that the atten-

tion maps corresponding to the tokens of the concept should

display high activation values in certain regions. We adapt

this principle in an inverse manner to eliminate the infor-

mation within the target phrase itself. The loss function is

designed to suppress the activation in certain regions of the

attention maps that correspond to the target phrase tokens.

These specific regions are identified by segmenting the in-

put image with Grounded-SAM [27, 33]. Figure 5 depicts

the training process. The loss function is defined as:

min
∑
i∈S

∑
l

∥∥Ai
t,l �M

∥∥2
F
, (3)

where S is the set of indices corresponding to the tokens of

the target phrase, Ai
t,l is the attention map of token i at layer

Closed-Form 
Refined U-Net

‘photo of airplane’ LoRA
Gradient

Grounded-SAM

:

Figure 5. Training with LoRA to Erase Intrinsic Information:
Eight images are generated for each target concept as a training

set via SD v1.4. To obtain the attention maps, the images undergo

forward diffusion to timestep t and then are fed into the closed-

form refined model for predicting noise at timestep t. The LoRA

modules are trained to reduce the activation in the masked atten-

tion maps that correspond to the target phrase.

l and timestep t, M is the segmentation mask, and ‖·‖F is

the Frobenius norm.

Parameter subset to finetune. To minimize the loss func-

tion (Eq. (3)), we tune the closed-form refined projection

matrices, W′
k and W′

v , by identifying a set of weight mod-

ulations, ΔWk and ΔWv . Determining high-dimensional

modulation matrices in large-scale models is non-trivial.

However, weight modulations usually have a low intrinsic

rank when they are adapted for specific downstream tasks

[21]. Hence, we decompose the modulation matrices us-

ing LoRA [21]. Specifically, for each target concept and

each projection matrix (e.g., W′
k ∈ R

din×dout ), we learn

two matrices, B ∈ R
din×r and D ∈ R

r×dout , where r �
min(din, dout) is the decomposition rank. The new modu-

lated matrices are:

Ŵk = W′
k +ΔWk = W′

k +B×D. (4)

Concept-focal importance sampling (CFIS). If the atten-

tion loss (Eq. (3)) is computed based on attention maps that

are obtained at uniformly sampled timesteps, the predicted

score function at various noise levels will be affected. Con-

sequently, it will influence the entire sampling trajectory,

undermining the specificity of concept erasure. This issue

is especially problematic when erasing phrases that contain

polysemous words or common surnames and given names.

The reason lies in the nature of the diffusion trajectory.

The sample initially gravitates towards the data manifold

and possesses the potential to converge to various concept

modes associated with the conditional phrase [11, 51]. Af-

ter the turning point (a.k.a., SSB [51]), the specific mode

to be fully denoised is determined [51]. Our goal is to in-

fluence only the path leading to a particular mode, such as

‘Bill Clinton’, rather than affecting paths leading to every

celebrity named ‘Clinton’ or ‘Bill’. Thus, it is crucial that

the early sampling trajectory remains largely unaffected.
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To this end, we opt not to sample the timestep t from a

uniform distribution when training LoRA. Instead, we intro-

duce a sampling distribution that assigns greater probability

to smaller values of t. The probability density function for

sampling t is defined as (A graph of this function is pro-

vided in Appendix E):

ξ(t) =
1

Z
(σ (γ(t− t1))− σ (γ(t− t2))) , (5)

where Z is a normalizer, σ(x) is the sigmoid function

1/(1 + e−x), with t1 and t2 as the bounds of a high prob-

ability sampling interval (t1 < t2), and γ as a temperature

hyperparameter. We empirically set t1 = 200, t2 = 400,

and γ = 0.05 throughout our experiments. In addition to

increasing the specificity, this design enhances the training

by making it more focused and efficient.

3.3. Fusion of Multi-LoRA Modules

In this section, we present a scheme to fuse multiple LoRA

modules. Each LoRA module acts as a conceptual suppres-

sor for the pretrained model, inducing a state of amnesia

wherein the model loses their grasp on a specific concept.

When working collaboratively, these modules should col-

lectively enable the model to forget all the concepts targeted

for erasure. A naı̈ve solution for integrating LoRA modules

is to utilize a weighted sum [56]:

Ŵk = W′
k +

q∑
i=1

ωiΔWk,i, s.t.

q∑
i=1

ωi = 1, (6)

where W′
k is the closed-form refined weight, ΔWk,i is the

LoRA module associated with the ith concept, ωi is the nor-

malized weighting factor, and q is the number of the target

concepts. This naı̈ve fusion method leads to interference

among the modules, thereby diminishing the erasure per-

formance, as evidenced in the ablation study (Section 4.6).

To preserve the capability of LoRA modules, we intro-

duce a novel fusion technique illustrated in Figure 3 (d). We

input the text embeddings of the target phrases into the re-

spective LoRA module. The resulting outputs serve as the

ground truth for optimizing the projection matrices. The ob-

jective function is defined by:

min
W∗

k

q∑
i=1

p∑
j=1

∥∥∥W∗
k · efj − (W′

k +ΔWk,i) · efj
∥∥∥2
2

+ λ2

p+m∑
j=p+1

∥∥W∗
k · epj −Wk · epj

∥∥2
2
,

(7)

where Wk is the original weight, W′
k is the closed-form

refined weight, efi is the embedding of a word co-existing

with the target phrase, epj is the embedding for prior pre-

serving, λ2 ∈ R
+ is a hyperparameter, q is the number of

erased concepts, and p,m are the number of embeddings for

mapping and preserving. Similar to Eq. (2), this optimiza-

tion problem has a closed-form solution as well.

Compared with sequential or parallel finetuning of a pre-

trained model for erasing multiple concepts, employing sep-

arate LoRA modules for each concept and then integrating

them offers better prevention against catastrophic forgetting

and provides more flexibility.

4. Experiments
In this section, we conduct a comprehensive evaluation

of our proposed method, benchmarking it against SOTA

baselines across four tasks. The baselines comprise ESD-

u [16], ESD-x [16], FMN [71], SLD-M [59], UCE [17],

and AC [30]. The four tasks are: object erasure (Sec-

tion 4.2), celebrity erasure (Section 4.3), explicit content

erasure (Section 4.4), and artistic style erasure (Section 4.5).

Our evaluation not only measures efficacy but also ex-

plores the generality and specificity of the erasure methods.

The generality assessment is primarily conducted in the ob-

ject erasure, since synonyms for a particular object tend to

be precise and universally acknowledged compared to those

for celebrities and artists. Evaluating specificity is more

straightforward and is therefore applied across all tasks. We

also focus on the effectiveness of these methods in handling

multi-concept erasure, using the celebrity erasure as a key

benchmark. We then highlight the superior performance of

our proposed method in erasing explicit content and artistic

styles. Lastly, we conduct ablation studies (Section 4.6) to

understand the impact of the key components.

4.1. Implementation Details

We finetune all models on SD v1.4 and generate images

with DDIM sampler [66] over 50 steps. We follow [30] to

augment the input target concept using prompts generated

by the GPT-4 [42]. The prompt augmentation varies de-

pending on the target concept type (e.g., objects or styles).

Each LoRA module is trained for 50 gradient update steps.

We implement baselines as per the configurations recom-

mended in their original settings. Further details are pro-

vided in Appendix C.

4.2. Object Erasure

Evaluation setup. For each erasure method, we finetune

ten models, with each model designed to erase one object

class of the CIFAR-10 dataset [29]. To assess erasure effi-

cacy, we use each finetuned model to generate 200 images

of the intended erased object class, prompted by ‘a photo of
the {erased class name}’. These images are classified us-

ing CLIP [47], and the criterion for successful erasure is

a low classification accuracy. To assess specificity, we use

each finetuned model to generate 200 images for each of the

nine remaining, unmodified object classes with prompts ‘a
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Table 1. Evaluation of Erasing the CIFAR-10 Classes: Results for the first four individual classes, along with the average results across 10

classes, are presented. CLIP classification accuracies are reported for each erased class in three sets: the erased class itself (Acce, efficacy),

the nine remaining unaffected classes (Accs, specificity), and three synonyms of the erased class (Accg, generality). The harmonic means

Ho reflect the comprehensive erasure capability. All presented values are denoted in percentage (%). Results pertaining to the latter six

classes are available in Appendix D. The classification accuracies of images generated by the original SD v1.4 are presented for reference.

Method
Airplane Erased Automobile Erased Bird Erased Cat Erased Average across 10 Classes

Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑ Acce ↓ Accs ↑ Accg ↓ Ho ↑
FMN [71] 96.76 98.32 94.15 6.13 95.08 96.86 79.45 11.44 99.46 98.13 96.75 1.38 94.89 97.97 95.71 6.83 96.96 96.73 82.56 6.13

AC [30] 96.24 98.55 93.35 6.11 94.41 98.47 73.92 13.19 99.55 98.53 94.57 1.24 98.94 98.63 99.10 1.45 98.34 98.56 83.38 3.63

UCE [17] 40.32 98.79 49.83 64.09 4.73 99.02 37.25 82.12 10.71 98.35 15.97 90.18 2.35 98.02 2.58 97.70 13.54 98.45 23.18 85.48

SLD-M [59] 91.37 98.86 89.26 13.69 84.89 98.86 66.15 28.34 80.72 98.39 85.00 23.31 88.56 98.43 92.17 13.31 84.14 98.54 67.35 26.32

ESD-x [16] 33.11 97.15 32.28 74.98 59.68 98.39 58.83 50.62 18.57 97.24 40.55 76.17 12.51 97.52 21.91 86.98 26.93 97.32 31.61 76.91

ESD-u [16] 7.38 85.48 5.92 90.57 30.29 91.02 32.12 74.88 13.17 86.17 20.65 83.98 11.77 91.45 13.50 88.68 18.27 86.76 16.26 83.69

Ours 9.06 95.39 10.03 92.03 6.97 95.18 14.22 91.15 9.88 97.45 15.48 90.39 2.22 98.85 3.91 97.56 8.49 97.35 10.53 92.61

SD v1.4 [54] 96.06 98.92 95.08 - 95.75 98.95 75.91 - 99.72 98.51 95.45 - 98.93 98.60 99.05 - 98.63 98.63 83.64 -

photo of the {unaltered class name}’. A high classification

accuracy indicates excellent erasure specificity. For assess-

ing generality, we prepare three synonyms for each object

class, listed in Table ??. Each finetuned model is used to

generate 200 images for each synonym associated with the

erased class, using the prompt ‘a photo of the {synonym
of erased class name}’. In this case, good generality is re-

flected by lower classification accuracies.

Importantly, to evaluate the overall erasure capability of

methods, we use the harmonic mean of efficacy, specificity,

and generality. It is calculated as follows:

Ho =
3

(1− Acce)
−1

+ (Accs)
−1

+ (1− Accg)
−1 , (8)

where Ho is the harmonic mean for object erasure, Acce is

the accuracy for the erased object (efficacy), Accs for the

remaining objects (specificity), and Accg for the synonyms

of the erased object (generality). A lower value of Acce and

Accg, and a higher Accs contribute to a higher harmonic

mean, indicating a superior comprehensive erasure ability.

Discussions and analysis. Table 1 presents the results of

erasing the first four object classes of the CIFAR-10 dataset,

as well as the average results across all 10 classes. The re-

sults of the latter six classes can be found in Appendix D.

Our approach attains the highest harmonic mean across

the erasure of nine object classes, with the exception of

‘cat’, where our performance nearly matches the top result.

This underscores the superior erasure capabilities of our ap-

proach, striking an effective balance between specificity and

generality. Additionally, it is noteworthy that while meth-

ods like FMN [71] and AC [30] are proficient in removing

specific features of a subject, they fall short in completely

eradicating the subject’s generation.

4.3. Celebrity Erasure

Evaluation setup. In this section, we evaluate the erasure

methods with respect to their ability to erase multiple con-

cepts. We establish a dataset consisting of 200 celebri-

ties whose portraits, generated by SD v1.4, are recogniz-

able with remarkable accuracy (> 99%) by the GIPHY

Celebrity Detector (GCD) [18]. The dataset is divided into

two groups: an erasure group with 100 celebrities whom

users aim to erase, and a retention group with 100 other

celebrities whom users intend to preserve. The complete list

of these celebrities is provided in Appendix C.

We perform a series of four experiments where SD v1.4

is finetuned to erase 1, 5, 10, and all 100 celebrities in the

erasure group. The efficacy of each erasure method is tested

by generating images of the celebrities intended for erasure.

Successful erasure is measured by a low top-1 GCD accu-

racy in correctly identifying the erased celebrities. To test

the specificity of methods on the retained celebrities, we

generate and evaluate images of the celebrities in the reten-

tion group in the same way. A high specificity is indicated

by a high top-1 GCD accuracy.

Similar to Eq. (8), we underscore the comprehensive

ability of the multi-concept erasure method by computing

the harmonic mean of efficacy and specificity:

Hc =
2

(1− Acce)
−1

+ (Accs)
−1 , (9)

where Hc is the harmonic mean for celebrity erasure, Acce

is the accuracy for the erased celebrities (efficacy), and Accs

for the retained celebrities (specificity). Furthermore, we as-

sess the specificity of methods on regular content utiliz-

ing the MS-COCO dataset [32]. We sample 30,000 cap-

tions from the validation set to generate images and evaluate

FID [45] and CLIP score [47].

Discussions and analysis. Figure 7 (c) illustrates a notable

enhancement in overall erasure performance achieved by

our method, particularly when 100 concepts are erased. This

improvement indicates a more effective balance between ef-

ficacy and specificity. FMN [71], AC [30], and SLD-M [59]

demonstrate limited effectiveness in erasing multiple con-

cepts, which inadvertently results in their high specificity.

UCE [17] proves more effective, but its specificity decreases

rapidly when more than 10 concepts are erased. Further-

more, it fails to maintain FID and CLIP score within a rea-

sonable range when erasing more than 10 celebrities while

preserving only 100. As to ESD-u [16] and ESD-x [16],

while effective, result in a lower proportion of facial images

in their outputs (i.e., limited conceptual integrity), as shown

in Figure 7 (f). This suggests that when their refined mod-

els are conditioned on erased celebrities, their outputs de-
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SD v1.4 UCE SLD-M ESD-x ESD-u Ours

Specificity: ‘A sketch of Bill Murray’

Efficacy: ‘Bill Clinton in an official photo’

Specificity: ‘A portrait of Amanda Seyfried’

Figure 6. Qualitative Comparison of Erasing 100 Celebrities from SD v1.4: Bill Clinton belongs to the erasure group for assessing

efficacy, while Bill Murray and Amanda Seyfried are in the retention group to evaluate specificity. Preserving Bill Murray’s images is

challenging, as his first name is the same as Bill Clinton’s, who is in the erasure group. Additional examples are in Appendix G.

(a) Efficacy (b) Specificity (c) Overall

(d) Image Quality (e) Semantic Alignment (f) Conceptual Integrity

Figure 7. Evaluation of Erasing Multiple Celebrity: The evalu-

ation metrics include the detection accuracy on images of erased

celebrities (Acce ↓) and those of retained celebrities (Accs ↑),

the harmonic mean (Hc ↑) which indicates overall erasure per-

formance, FID, CLIP score, and the ratio of facial images.

viate from human likenesses, often leading to unpredictable

and uncontrollable outcomes. This phenomenon is shown in

Figure 6, which presents a qualitative comparison of eras-

ing 100 celebrities. In this comparison, Bill Clinton is in the

erasure group, whereas Bill Murray and Amanda Seyfried

are in the retention group. Notably, the preservation of Bill

Murray’s image poses a challenge due to his shared first

name, ‘Bill,’ with Bill Clinton in the erasure group. Our

method effectively overcomes this issue.

4.4. Explicit Content Erasure

Evaluation setup. In this section, we attempt to mitigate the

generation of explicit content in T2I models. We adopt the

same setting used in SA [19], finetuning SD v1.4 to erase

four target phrases: ‘nudity’, ‘naked’, ‘erotic’, and ‘sexual’.

To evaluate efficacy and generality, we use each finetuned

model to generate images using all 4,703 prompts sourced

from the Inappropriate Image Prompt (I2P) dataset [59].

The NudeNet [6] is employed to identify explicit content

in these images, using a detection threshold of 0.6. Addi-

tionally, to assess specificity on regular content, we evalu-

ate FID and CLIP score on the MS-COCO validation set,

similar to the process described in Section 4.3.

Discussions and analysis. Table 2 presents our findings.

Our refined model successfully generates the least amount

of explicit content when conditioned on 4,703 prompts.

Moreover, it showcases an impressive performance in FID,

even surpassing the original SD v1.4. We note that such

finetuning often does not have a consistent trend in improv-

ing or worsening FID and CLIP score on regular content

generation. This pattern is also observed in the celebrity

erasure, as shown in Figure 7 (d) and (e). Therefore, we

consider the performance acceptable as long as FID and

CLIP score remain within a reasonable range. It is also note-

worthy that retraining SD v2.1 from scratch using a dataset

curated to exclude explicit content yields only a minor im-

provement, compared with the original SD v1.4. Qualitative

comparisons are provided in Appendix G for reference.

4.5. Artistic Style Erasure

In this section, we evaluate our method and the baselines on

erasing multiple artistic styles from SD v1.4. We utilize the
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Table 2. Assessment of Explicit Content Removal: (Left) Quantity of explicit content detected using the NudeNet detector on the I2P

benchmark. (Right) Comparison of FID and CLIP on MS-COCO. The performance of the original SD v1.4 is presented for reference.

SD v2.1 serves as a baseline that retrains the model from scratch on the curated dataset. †: Results sourced from [19]. F: Female. M: Male.

Method
Results of NudeNet Detection on I2P (Detected Quantity) MS-COCO 30K

Armpits Belly Buttocks Feet Breasts (F) Genitalia (F) Breasts (M) Genitalia (M) Total ↓ FID ↓ CLIP ↑
FMN [71] 43 117 12 59 155 17 19 2 424 13.52 30.39

AC [30] 153 180 45 66 298 22 67 7 838 14.13 31.37
UCE [17] 29 62 7 29 35 5 11 4 182 14.07 30.85

SLD-M [59] 47 72 3 21 39 1 26 3 212 16.34 30.90

ESD-x [16] 59 73 12 39 100 6 18 8 315 14.41 30.69

ESD-u [16] 32 30 2 19 27 3 8 2 123 15.10 30.21

SA† [19] 72 77 19 25 83 16 0 0 292 - -

Ours 17 19 2 39 16 2 9 7 111 13.42 29.41

SD v1.4 [54] 148 170 29 63 266 18 42 7 743 14.04 31.34

SD v2.1 [52] 105 159 17 60 177 9 57 2 586 14.87 31.53

Table 3. Assessment of Erasing 100 Artistic Styles: Ha indicates

overall erasure performance.

Method CLIPe ↓ CLIPs ↑ Ha ↑ FID-30K ↓ CLIP-30K ↑
FMN [71] 29.63 28.90 -0.73 13.99 31.31
AC [30] 29.26 28.54 -0.72 14.08 31.29

UCE [17] 21.31 25.70 4.39 77.72 19.17

SLD-M [59] 28.49 27.89 -0.6 17.95 30.87

ESD-x [16] 20.89 21.21 0.32 15.19 29.52

ESD-u [16] 19.66 19.55 -0.11 17.07 27.76

Ours 22.59 28.58 5.99 12.71 29.51

SD v1.4 29.63 28.90 - 14.04 31.34

Image Synthesis Style Studies Database [23], which com-

piles a list of artists whose styles can be replicated by SD

v1.4. From this database, we sample 200 artists and split

them into two groups: an erasure group of 100 artists and

a retention group with 100 other artists. To assess efficacy

and specificity, we apply prompts like ‘Image in the style of
{artist name}’ to both the erased and retained artists. We

evaluate the erasure methods using two metrics: CLIPe and

CLIPs. The CLIPe, which tests efficacy, is calculated be-

tween the prompts of the erased artists and the generated

images. A lower CLIPe indicates better efficacy. Similarly,

the CLIPs, which assesses specificity, is calculated between

the prompts of the retained artists and the generated images.

A higher CLIPs signifies better specificity. We calculate the

overall erasing capability by Ha = CLIPs − CLIPe. As re-

ported in Table 3, our method also shows the superior ability

to erase artistic styles on a large scale.

4.6. Ablation Study

To study the impact of our key components, we conduct ab-

lation studies on the challenging task of erasing 100 celebri-

ties from SD v1.4. Different variations and their results are

presented in Table 4. Variation 1 struggles to balance ef-

ficacy and specificity. When prioritizing prior preservation,

its ability to erase is compromised. Variation 2, which trains

LoRA without CFIS, restricts its specificity. Moreover, the

naı̈ve integration of LoRA exacerbates this issue, leading to

poor specificity despite the successful erasure of the target

concepts. Variation 3 fuses LoRA with closed-form fusion,

Table 4. Ablation Study on Erasing 100 Celebrities. CFR:

closed-form refinement. NLF: naı̈ve LoRA fusion. CFLF: closed-

form LoRA fusion. CFIS: concept-focal importance sampling. All

presented values are denoted in percentage (%).

Config
Components Metrics

CFR LoRA NLF CFLF CFIS Acce ↓ Accs ↑ Hc ↑
1 � × × × × 67.79 85.05 46.72

2 � � � × × 0.08 32.16 48.66

3 � � × � × 18.70 61.78 70.21

Ours � � × � � 4.31 84.56 89.78

which prevents interference from different LoRA modules,

thereby improving specificity. However, without the CFIS,

this configuration shows reduced training efficiency in era-

sure and decreased specificity. Additional ablation studies

and applications are provided in Appendix F.

5. Limitations and Conclusion
Our proposed method, MACE, offers an effective solution

for erasing mass concepts from T2I diffusion models. Our

extensive experiments reveal that MACE achieves a remark-

able balance between specificity and generality, particularly

in erasing numerous concepts, surpassing the performance

of prior methods. However, a discernible decline in the har-

monic mean is observed as the number of erased concepts

increases from 10 to 100. This trend could pose a limita-

tion in erasing thousands of concepts from more advanced

models in the future. Exploring ways to further scale up

the erasure scope presents a crucial direction for future re-

search. We believe MACE can be a pivotal tool for gen-

erative model service providers, empowering them to effi-

ciently eliminate a variety of unwanted concepts. This is a

vital step in releasing the next wave of advanced models,

contributing to the creation of a safer AI community.
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