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Figure 1. PROMOTION harmoniously handle core motion tasks (i.e., optical flow and scene depth estimation), within an elegant
prototype-based framework. This adaptability further enhances its utility in enabling seamless knowledge transfer to various downstream

applications. For depth [2, 62, 64], we averagely reduce 0.13 Abs Rel; For flow [15, 31, 87], we averagely reduce 0.38 AEPE; For downstream

tasks, we averagely achieve 3.6% mAP boost in video object detection [7, 69, 99], 3.4% AP boost in video object segmentation [8, 29, 81],

and 7.3% AP3D boost in 3D object detection [6, 30, 46].

Abstract

In this work, we introduce PROMOTION, a unified proto-
typical transformer-based framework engineered to model
fundamental motion tasks. PROMOTION offers a range of
compelling attributes that set it apart from current task-
specific paradigms. � We adopt a prototypical perspective,
establishing a unified paradigm that harmonizes disparate
motion learning approaches. This novel paradigm stream-
lines the architectural design, enabling the simultaneous
assimilation of diverse motion information. � We capitalize

*Corresponding author.

on a dual mechanism involving the feature denoiser and the
prototypical learner to decipher the intricacies of motion.
This approach effectively circumvents the pitfalls of ambi-
guity in pixel-wise feature matching, significantly bolster-
ing the robustness of motion representation. � We demon-
strate a profound degree of transferability across distinct
motion patterns. This inherent versatility reverberates ro-
bustly across a comprehensive spectrum of both 2D and
3D downstream tasks. Empirical results demonstrate that
PROMOTION outperforms various well-known specialized
architectures, achieving 0.54 and 0.054 Abs Rel error on
the Sintel and KITTI depth datasets, 1.04 and 2.01 average
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Figure 2. (a) Overall pipeline of PROMOTION. (b) Each Transformer block in feature denoiser maps the input tokens into different feature

subspaces (Eq. 3) and then projects them to the orthogonal direction (Eq. 4), therby mitigating the uncertainties in motion for robustness. (c)

The prototypical learner clusters the subspace into prototypes (Eq. 6) and performs iterations to update them (Eq. 7). The learned prototype

can capture different motion patterns, enabling representation learning for various dynamic characteristics.

endpoint error on the clean and final pass of Sintel flow
benchmark, and 4.30 F1-all error on the KITTI flow bench-
mark. For its efficacy, we hope our work can catalyze a
paradigm shift in universal models in computer vision.

1. Introduction
“The eventual goal of science is to provide a single

theory that describes the whole universe.”

− Stephen Hawking [25]

The quote coined by the famous physicist Stephen Hawk-

ing reflects that, the nature of science is to quest a unified
approach to describe and understand various phenomena in

the universe. So, what about motion?
Motion learning, such as optical flow and scene depth, in

videos is one of the most fundamental problems in computer

vision, and has a wide spectrum of key applications in many

downstream tasks, e.g., 2D video segmentation and tracking

and 3D detection. Current works, somehow unexpected, are

often focused on developing a specialized architecture for

a particular aspect in motion learning, e.g., either optical

flow [15, 31, 68] or scene depth [2, 47], while neglecting

the underlying connections between different motion learn-

ers and their unification for motion representation, which

potentially could be transformative for motion learning. In

addition, existing task-specific motion learning mechanism

may lack the flexibility to generalize to broader downstream

vision tasks, e.g., being applicable to either 2D or 3D tasks,

not both. Therefore, the following question, as in the above

quote but for motion learning, naturally arises: � Is there a
manner to unify different motion learners?

Besides, for motion learning tasks, the notorious photo-

metric inconsistency (e.g., caused by the shadows and illu-

mination variations) widely exists, which introduces unex-

pected uncertainty during matching and hence compromise

the underlying motion representation learning by inaccurate

or even false pixel-wise feature matching, degrading perfor-

mance. Thus, along with question �, another question needs

to be answered for unified motion learning: � How can we
mitigate uncertainty in motion learning? or in other words,

how to learn uncertainty reduced motion representation?
In an effort to embrace these challenges, we propose Pro-

Motion, a novel Prototypical Motion architecture based on

Transformer for unified learning of the optical flow and depth

from videos. With the learned knowledge, ProMotion can

seamlessly adapt to downstream tasks with ease (Fig. 1). The

key motivation behind PROMOTION is that, motion (e.g., op-

tical flow or scene depth) essentially is to describe movement

of an object or a semantic region, which can be seen as a

prototypical learner to a set of pixel exemplars. Viewed in

this light, prototype, as a underlying connection between

different motion tasks, is leveraged for unified motion learn-

ing, answering the question �. Besides, by modeling motion

using semantic prototypical features instead of pixel features,

and optimizing them in the designed feature denoiser, we

reduce the risk of noisy as well as outlier pixels for feature

matching, which effectively alleviates the uncertainty issue,

answering the question �.
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At the core of PROMOTION lies a novel prototypi-

cal Transformer architecture. Different from existing task-

specific motion learning models [31, 47, 68] that directly

extract feature embeddings from Transformer, PROMOTION

gradually denoises the feature space to preserve the most

dominant features and then optimizes the denoised features

to subspaces in appearance, texture, and geometry along or-

thogonal direction, which enforces intra-class compactness.

Afterwards, the optimized subspaces are grouped into a set

of semantic prototypes with iterative clustering. In compari-

son with the feature embeddings from vanilla Transformer

[78], the optimized subspace features from PROMOTION

are denoised to some extent and thus are more suitable for

prototype learning. Eventually, the prototypes are fed to uni-

versal adaptation head to produce motion information such

as optical flow and depth. Fig. 2 illustrates the proposed

PROMOTION for unified motion learning.

To the best of our knowledge, PROMOTION is the first

unified motion learners with prototype learning. In compari-

son to current task-specific designs, PROMOTION enjoys a

few attractive qualities: � Unified motion learning. PRO-

MOTION, from the prototype perspective, provides a sin-

gle paradigm (see Fig. 2 (a)) for different motion learners,

which simplifies the architecture design of motion learning

and allows unified learning of various motion information.

� Uncertainty-aware motion representation. By learning

motion from feature denoiser (see Fig. 2 (b)) and prototypi-
cal learner (see Fig. 2 (c)), PROMOTION avoids noisy and

outlier pixel-wise feature matching, which mitigates the un-

certainties in motion for robustness. � Generalization to
more downstream tasks. PROMOTION learns different mo-

tion information within one single framework, which could

benefit more 2D and 3D downstream tasks.

To effectively assess our method, we present compelling

experimental results on various datasets and different set-

tings. We show experimentally in §4.1, with the task of opti-

cal flow estimation, ProMotion outperforms existing coun-

terparts, e.g., 0.16 and 0.29 lower Average End-Point Error

(AEPE) compared to Flowformer [31] and MatchFlow [15]

on the clean pass of Sintel. In §4.2, under the same paradigm,

our depth estimation outperforms competitors by significant

margins in the Abs Rel and Sq Rel metrics. For instance,

we reduce the relative loss by 0.08 for Abs Rel and 0.27 for

Sq Rel compared to recent DPT [64] on Sintel. Our algo-

rithms are extensively tested, and the efficacy of the core

components is demonstrated through ablative studies in §4.3.

We believe this work can provide insights into this field.

2. Related Work
Motion Task. Motion tasks are characterized by the in-

tricate processes of identifying, modeling, and predicting

the motion patterns of objects and scenes, making it in-

dispensable for a wide range of computer vision appli-

cations and subsequent tasks. Motion tasks play a piv-

otal role in detecting the motion of vehicles and pedestri-

ans [11, 27, 38, 49, 86] for self-driving car navigation and

perception, identifying abnormal activities in video surveil-

lance, and recognizing actions [45, 76, 98]. In addition,

motion tasks improve video compression and segmenta-

tion [21, 28, 56, 63] by predicting object and frame-level

relationships. Among the myriad of motion-related tasks,

two highly representative tasks stand out as particularly note-

worthy: optical flow and scene depth estimation.

Optical Flow and Depth. Current methods for estimat-

ing optical flow and scene depth have created specialized

architectures for each, ignoring their intrinsic relationships.

Optical flow, which involves finding 2D pixel displace-

ments between images, is a fundamental problem in com-

puter vision. FlowNet [33], as a pioneering work, first in-

troduced the promise of a CNN-based architecture for di-

rect flow regression. Building upon synthetic data for pre-

training, it achieves coarse estimation performance. This

sparked further explorations in architectures and training

strategies, including iterative refinement and pyramid re-

gression [65, 73, 75], incorporating photometric [50] and

forward-backward consistency [37], and transformer archi-

tecture [31, 55, 68, 72]. These advances have outperformed

earlier approaches by significantly reducing end-point errors.

Learning-based scene depth prediction typically takes

a single image as input and utilizes generic network ar-

chitectures such as ResNet [26] and ViT [17] to predict

scene depth. DepthNet [19] pioneered the direct depth re-

gression networks and established optimization through the

Scale-Invariant Log Loss (SIlog). Significant progress has

been driven by innovations in network architectures [42,

43, 60, 85], optimization schemes [9, 20, 42], and multi-

view fusion [23, 66]. To improve the architectures, Laina

et al. [42] developed a residual network, Xu et al. [85] pre-

sented attention-guided neural fields, and Lee et al. [43] used

a multi-scale fusion scheme to improve contextual reasoning.

For optimization, advanced loss functions, including reverse

Huber loss [42] and ordinal regression [20] provide stronger

supervision signals. Multi-view feature fusion incorporates

more geometric cues from additional perspectives [66].

However, unlike the specialized architectures that fo-

cus on improvements in architecture, optimization, etc., our

worldview cognition is more ambitious in unifying motion

tasks under one paradigm, which is a rare exploration.

Unified Vision Models. As a recent trend in scientific

research, unified theories have seen their emergence. There

have been successful attempts to train different language

modeling objectives within a single model [14, 39, 40, 54,

84]. However, the development of unified models for com-

puter vision still lags far behind language models. In the

vision regime, some of the early research efforts have fo-

cused on the development of either encoders [12, 16, 17, 52]
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or decoders [8, 44, 48, 92]. The encoders focus on the

effort to develop generic backbones that are trained on exten-

sive data, so they can be adapted for different downstream

tasks. For instance, Swin [52] and CSWin Transformer [16]

serve as a general-purpose backbone for visual tasks. In

contrast, studies on decoders [8, 44, 48, 92] are designed

to address homogeneous specific tasks (e.g., object recog-

nition [44, 100], instance segmentation [8, 44], semantic

segmentation [8, 44]) by representing visual patterns from

queries. Despite this, there has been little effort to create a

unified model for motion tasks involving optical flow and

scene depth estimation.

Prototype Learning. Prototype-based methods have

gained substantial attention in the field of machine learn-

ing due to their alignment with human cognitive processes

and intuitive appeal. Studies in psychology have demon-

strated that humans tend to rely on prototypical examples as

a basis for learning and problem-solving when confronted

with novel challenges [61, 91]. In the realm of machine

learning, prototype-based methodologies deviate from con-

ventional techniques, such as support vector machines [24]

and multilayer perceptrons [3]. They instead reason about

observations by making comparisons with representative

examples. Among the earliest prototype-based classifiers,

the nearest neighbor algorithm [10] stands out and laid the

foundation for subsequent methods like learning vector quan-

tization (LVQ) [41], generalized LVQ [67] and deep nearest

centroids [79]. Recent times have witnessed a surge of in-

terest in deep learning techniques, combined with prototype

learning, which have shown promising results across various

domains within machine learning. These include few-shot

learning [51, 71], zero-shot learning [35, 95], unsupervised

learning [83, 88], and supervised learning [59, 82, 90]. Draw-

ing from the valuable insights offered by these prior works,

we embark on an endeavor to extend prototype learning into

the motion tasks. In this context, we interpret the motion of

objects or regions as an ensemble of prototypes. This innova-

tive approach inherently encapsulates the dynamic features

of motion, resulting in an advancement in the foundational

learning of diverse motion attributes.

3. ProMotion
In this section, we present PROMOTION, a novel framework

for unified motion tasks (see Fig. 2 (a)). The model has a

serial of hierarchical transformer blocks in feature denoiser
that enables compact feature learning, followed by proto-
typical learner to capture valuable motion concepts. We

elaborate the pipeline in two stages — first feature denoiser
(§3.1) and then prototypical learner (§3.2).

3.1. Feature Denoiser

Proposition 1. Feature denoising enhances representation
learning by capturing more informative subspaces.

To suppress noises and mitigate uncertainty in motion

representation learning, we propose a novel feature denoiser
for enhancement. Specifically, considering a mapping func-

tion Φ(·) and input patch tokens X ∈ R
D×N , the goal of

feature denoiser is to learn a more compact and dominant

feature representation Z ∈ R
d×N via subspace denoising

and large-margin projection:

Φ : x ∈ R
D×N → z ∈ R

d×N , d < D (1)

For subspace denoising, we abstract the raw representa-

tion x using the expected denoised tokens z with an additive

Gaussian noise w as: x = z+ σw, where w ∼ N(0, 1). The

objective is to minimize the distance between raw represen-

tation x and clean representation z, under noise level σl as:

E[z|·] = argmin
f

Ez,w[
∥∥f(z + σlw)− z

∥∥2
2
] (2)

where f(·) is the transition function at the lth transformer

layer. If zl is the feature representation under noise level

σl, and the updated representation at the next stage is zl
′
=

E[z|zl]. Using Tweedie’s formula [18], the optimization in

Eq. 2 can be solved by computing posterior expectations as:

zl
′
= zl + (σl)2∇x log p

(
zl
)

≈
K∑

k=1

(wk ∗ Uk ∗ (UT
k ∗ zl))

(3)

where wk satisfies Softmax( 1
2×(σl)2

∗ ||UT
k zl||22). This re-

veals that the signal zl
′

can be naturally reconstructed as a

weighted sum of multiple linear projections Uk ∗ (UT
k ∗ zl),

which enables reformulation of the transformer encoder to

avoid non-linear attention blocks, much simpler yet effective.

To improve the robustness of feature embeddings to noise,

we further apply a large-margin projection to enforce inter-

class separability and intra-class clustering that maps fea-

tures in orthogonal directions. For this purpose, the Iterative

Shrinkage Thresholding Algorithm (ISTA) [1, 22, 80, 93] is

used to infer the zl+1 as:

zl+1 = ISTA(zl
′ |Ol)

= ReLU
(
zl

′
+ εOl∗

(
zl

′ −Olzl
′)) (4)

where ε > 0 is a step size and Ol is the sparsifying orthog-

onal dictionary. With this approach, the projected subspace

can be interpreted as ReLU activation function of multiple

linear transformations. The design of subspace denoising and

large-margin projection aligns with the trend of achieving

representative representation through sparsifying representa-

tion, which enjoys the following appealing characteristics:

• Underlying Data Structure: Subspace denoising maps the

input tokens to different feature subspaces and removes

irrelevant variances, allowing the most representative data
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structure to emerge clearly. The large-margin projection

further projects feature subspaces in a low-dimensional

orthogonal direction to increase inter-class separation. As

a result, Feature Denoiser reflects the most representative

or characteristic relationships.

• Uncertainty Mitigation: Aligning closely with the underly-

ing data structure, subspace denoising improves the signal-

to-noise ratio and allows for more repeatable matching

correspondences, while large-margin projection eliminates

redundant dimensions, allowing for more compact features

for matching. Feature Denoiser mitigates uncertainty after

subspace denoising and large-margin projection.

3.2. Prototypical Learner

Proposition 2. Dynamic patterns can be captured by a set
of prototypes, therefore unifying different motion tasks.

After subspace denoising in the feature denoiser, we pro-

pose to employ prototypical learning on the denoised and

compact representation for unified motion learning. The

essence of prototypical learning is that, for every token em-

bedding X , find a mapping function fc to generate K proto-

types with prototype centers C ∈ R
K×D that is initialized

from a D-dimensional image grid. For each image xi, the

expected set of prototype segments are:

fc(X ) = (ri)
N
i=1 , ri = (ri,k)

K
k=1 (5)

The initial prototypes are iteratively updated by Sinkhorn-

Knopp based clustering as an approximate solution of opti-

mal transport problem:

max
Q∈Q

Tr
(
Q�V

)
, s.t. Q1N =

1

K
1K ,Q�1K =

1

N
1N

(6)
where Q ∈ R

K×N is the soft cluster assignment matrix

and is constrained in the transportation polytope under the

equipartition constraint [13], V is the similarity matrix

where V = CX T ∈ R
K×N . Current prototypes are updated

according to Qt−1 for generating new prototypes centered

at Ct:

Ct ← Qt−1X ∈ R
K×D (7)

By modeling the intrinsic similarities of prototypes via

prototypical learning, the method refines the feature embed-

dings and improves the overall understanding of the underly-

ing context and structure. All feature representations can be

seamlessly used for various target tasks via adaptation heads

(see §3.3). Prototypical learning has the following features:

• Unified Paradigm: Prototypical learning promotes the uni-

fied paradigm to encapsulate the underlying structure and

context of data that can be leveraged across a variety of

data and visual tasks. The learned prototypes capture the

most representative and informative prototype-wise struc-

tures that are invariant across diverse data distributions and

tasks, leading to great generalizability and adaptability.

• Transferability: The prototypes generated capture the un-

derlying data structures and the essence of a category,

which can be used directly by adding task-specific heads

for downstream tasks. For complex data or tasks, the

learned prototypes can also be reused by adding new pro-

totypes or re-weighting the existing ones. This elegant

design facilitates representation learning for knowledge

transferability in accordance with the unified paradigm.

3.3. Implementation Details

The implementation details and overall framework of PRO-

MOTION are shown in Fig. 2.

• Encoder. The goal of the encoding process is to gener-

ate token prototypes from the given image I . The whole

pipeline starts with tokenization to convert the I into to-

ken embeddings. Subsequently, the tokens are passed to

feature denoiser (subspace denoising (Eq. 3) and large-

margin projection (Eq. 4)) to learn denoised and compact

subspaces. Once the denoised subspaces are learned, a set

of prototype features is inferred from the subspaces (Eq.

5), and are then updated via iterative clustering (Eq. 7).

• Universal Adaptation. For optical flow and scene depth,

the flow and depth heads upsample the features of the

token prototypes by predicting a convex mask to re-

trieve the flow map and depth. The initial predictions

(f̂0, d̂0) are updated by continuously estimating the resid-

uals (δf̂ , δd̂). The last estimate is used as the final predic-

tion as f̂n, d̂n = Δf̂ ,Δd̂+f̂n−1, d̂n−1. When transferring

to downstream tasks, the pre-trained motion features are

frozen, and only the task-specific adaptation head is fine-

tuned, leveraging the core designs of the feature denoiser
(§3.1) and prototypical learner (§3.2).

• Loss Functions. We use the SILog loss [20] and a weighted

L1 loss [75] for guiding the depth and flow learning.

4. Experiments
4.1. Experiments on Optical Flow

Training. We follow standard optical flow training steps [31,

75] to train our model on FlyingChair (C) for 80K iterations

and FlyingThings3D (T) for another 80K iterations (denoted

as ‘C+T’) with batch size of 16. Following this, we fine-tune

the model on a larger combination set of FlyingThings3D

(T), Sintel (S), KITTI (K) and HD1K (H) (‘C+T+S+K+H’).

The method is implemented on 8 NVIDIA A100 GPUs with

one-cycle learning strategy [70] and AdamW optimizer [53]

with a maximum learning rate of 3e-4.

Testing. This model is evaluated on Sintel and KITTI bench-

marks. Generalization and ablation are on the validation split

of Sintel and KITTI following [31, 75].

Metrics. Following the evaluation metrics from the Sintel

and KITTI benchmarks, we use the average end-point error

(AEPE) to measure the average pixel-wise flow error on
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Training Method
Sintel (val) KITTI-15 (val) Sintel (test) KITTI-15 (test)

Training Method
Clean Final Fl-epe Fl-all Clean Final Fl-all

C+T

PWC-Net[CVPR2018] [73] 2.55 3.93 10.35 33.7 - - -

LiteFlowNet[TPAMI2020] [32] 2.24 3.78 8.97 25.9 - - -

RAFT[ECCV2020] [75] 1.43 2.71 5.04 17.4 - - -

Separable Flow[ICCV2021] [94] 1.30 2.59 4.60 15.9 - - -

GMA[ICCV2021] [36] 1.30 2.74 4.69 17.1 - - -

AGFlow[AAAI2022] [58] 1.31 2.69 4.82 17.0 - - -

KPA-Flow[CVPR2022] [57] 1.28 2.68 4.46 15.9 - - -

DIP[CVPR2022] [97] 1.30 2.82 4.29 13.7 - - -

GMFlowNet[CVPR2022] [96] 1.14 2.71 4.24 15.4 - - -

GMFlow[CVPR2022] [87] 1.08 2.48 7.77 23.40 - - -

CRAFT[CVPR2022] [72] 1.27 2.79 4.88 17.5 - - -

FlowFormer[ECCV2022] [31] 1.01 2.40 4.09† 14.7† - - -

SKFlow[NIPS2022] [74] 1.22 2.46 4.27 15.5 - - -

MatchFlow[CVPR2023] [15] 1.14 2.61 4.19† 13.6† - - -

Ours 0.91 2.32 3.95 14.1 - - -

C+T+S+K(+H)

PWC-Net[CVPR2018] [73] - - - - 4.39 5.04 9.60

RAFT[ECCV2020] [75] (0.76) (1.22) (0.63) (1.5) 1.61 2.86 5.10

Separable Flow[ICCV2021] [94] (0.69) (1.10) (0.69) (1.60) 1.50 2.67 4.64

GMA[ICCV2021] [36] (0.62) (1.06) (0.57) (1.2) 1.39 2.47 5.15

AGFlow[AAAI2022] [58] (0.65) (1.07) (0.58) (1.2) 1.43 2.47 4.89

KPA-Flow[CVPR2022] [57] (0.60) (1.02) (0.52) (1.1) 1.35 2.36 4.60

DIP[CVPR2022] [97] - - - - 1.44 2.83 4.21
GMFlowNet[CVPR2022] [96] (0.59) (0.91) (0.64) (1.51) 1.39 2.65 4.79

GMFlow[CVPR2022] [87] - - - - 1.74 2.90 9.32

CRAFT[CVPR2022] [72] (0.60) (1.06) (0.58) (1.34) 1.45 2.42 4.79

FlowFormer[ECCV2022] [31] (0.48) (0.74) (0.53) (1.11) 1.20 2.12 4.68†

SKFlow[NIPS2022] [74] (0.52) (0.78) (0.51) (0.94) 1.28 2.23 4.84

MatchFlow[CVPR2023] [15] (0.51) (0.81) (0.59) (1.3) 1.33 2.64 4.72

Ours (0.40) 0.66 0.48 0.98 1.04 2.01 4.30

Table 1. Quantitative comparison on Sintel. ‘C+T’: Succeeding training on FlyingChairs (C) and FlyingThings3D (T), the models are

evaluated for generalization on Sintel (S) and KITTI (K) validation sets. ‘C+T+S+K(+H)’: Training on a combination of C, T, S, K, and

HD1K (+H) is evaluated. The first and second place results are bolded and underlined, respectively. † indicates the use of tile technique [34].

Sintel, and Fl-epe (AEPE on outlier pixels) and Fl-all (AEPE
over all pixels) on KITTI.

Quantitative Results. Following [75], we first evaluate the

generalization performance after training on C+T. As shown

in Table 1, PROMOTION achieves a 36.4% and 20.2% re-

duction in AEPE on Sintel clean pass, surpassing both the

strong baseline [75] and the recent SOTA method [15]. On

KITTI, there is a 21.6% and 5.7% decrease of Fl-epe in

comparison to [75] and [15]. These outcomes indicate the

good generalization of our approach.

The method is then evaluated in a more general manner to

report leaderboard results for the Sintel and KITTI test sets

with training on C+T+S+K(+H). On the Sintel, PROMOTION

obtains AEPE of 1.04 and 2.01 on Clean and Final passes

respectively, which significantly lowers baseline model [75]

error by 35.4% and 29.7%. Similarly, for the KITTI, PRO-

MOTION reduces [75] by 15.7%, from 5.10 to 4.30. The

results demonstrate overall superior performance compared

to other recent published works.

Qualitative Examples. We also provide qualitative results

on Sintel and KITTI in Fig. 3. Under severe illumination and

shadow variations and object occlusion, the estimation from

PROMOTION exhibits more complete objects and robust

estimation (second and third rows), which is attributed to the

design of feature denoiser to mitigate uncertainties. Within

highly similar textures and patterns (first and fourth rows),

the estimation of PROMOTION shows better capability in

capturing object-level shapes and boundaries, which can be

explained by the design of prototypical learner to capture

more object-level motion patterns.

Dataset Method Abs Rel ↓ Sq Rel ↓ RMSE ↓
TransDepth[ICCV2021] [89] 0.78 1.07 0.83

AdaBins[CVPR2021] [2] 0.73 0.74 0.57

Sintel DPT-Hybrid[ICCV2021] [64] 0.62 0.65 0.58

P3Depth[CVPR2022] [62] 0.65 0.67 0.39

Ours 0.54 0.38 0.36
TransDepth[ICCV2021] [89] 0.064 0.252 2.755

AdaBins[CVPR2021] [2] 0.058 0.198 2.360

KITTI DPT-Hybrid[ICCV2021] [64] 0.059 0.190 2.315

P3Depth[CVPR2022] [62] 0.060 0.206 2.519

Ours 0.054 0.182 2.298

Table 2. Depth performance on Sintel clean and KITTI test
sets. The best results are in bold and the second-best results are

underlined. Our method outperforms other recent methods on most

of the common error metrics.
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Figure 3. Qualitative comparison of optical flow on Sintel and KITTI val set. Notable areas are marked with red circles. Compared to

[31] and [15], our approach shows better ability to reduce matching uncertainties due to similar patterns, illumination changes, shadows, etc.

4.2. Experiments on Scene Depth

Training. We train scene depth under the same architecture

as for flow, except for the dimensions in the headers. We

follow the standard Eigen split [19] for training and then fine-

tune the model to the smaller MPI Sintel [4] consisting of 14

sequences with clear edges and varying levels of motions.

Testing. The model is tested on the Sintel depth benchmark

(1,104 images) and KITTI depth split (697 images).

Metrics. Following standard depth estimation metrics, we

use absolute mean relative error (Abs Rel), squared mean rel-

ative error (Sq Rel), and root mean square error (RMSE).

Quantitative Results. As shown in Table 2, although the

leading algorithms approach a saturation point to some ex-

tent (Abs Rel and Sq Rel are close among approaches),

PROMOTION showed improvements with reductions of

26.0% and 16.9% on Sintel and 6.9% and 10.0% on KITTI

in Abs Rel compared to the strong baseline AdaBins [2]

and recent SOTA [62] for monocular depth estimation. This

suggests that our method is suitable for a range of depth

scenarios, including synthetic Sintel and real-world KITTI.

Qualitative Examples. As depicted in Fig. 4, the compared

methods AdaBins [2] and DPT-Hybrid [64] tend to gener-

ate inconsistent noisy depth due to the texture-less regions,

shadows, and lighting changes (first, second, and third rows),

while PROMOTION shows more consistent and smoother

depth estimates without being affected by the uncertainties,

which is in line with the goal of our design feature denoiser.

Moreover, the proposed method is able to preserve more

object characteristics (e.g., shape, surface, and boundaries)

for both foreground objects and the out-of-focus image back-

ground (first and fourth rows) compared to AdaBins and

DPT-Hybrid. This may be explained by the design of proto-
typical learner for better object-level representation learning.

4.3. Ablative Study

We conduct a series of ablation studies on PROMOTION with

evaluating on the validation set of Sintel, as in Table 3.

Key Components. We first assess the effect of each core

component in PROMOTION. As seen in Table 3a, solely

baseline architecture without any proposed designs performs

much worse than the model with feature denoiser. With

further prototypical learner, we can get lower errors on all

datasets, from 0.51 on clean pass to 0.45 on flow. The full

settings achieves the best for both flow and depth, which

validates the benefit of PROMOTION.

Attention Types. We also try vanilla self-attention, multi-

head self-attention [17], and spatial reduction attention [77]

in Table 3b. Considering that vanilla self-attention is a simple

case of multi-head attention with only a single head, and

spatial reduction attention focuses only on local context

and ignores global dependencies, multi-head self-attention

achieves the lowest error among the compared three, but still

worse than the subspace self-attention in PROMOTION.

Number of Prototypes. Table 3c reports the performance

of our approach with respect to different numbers of pro-

totypes. The number of prototypes 10 achieves a baseline

performance. As the number gradually increases to 100, we

observe a clear performance gain from 0.46 to 0.40 in error

for flow and from 0.65 to 0.59 for depth. However, continu-

ing to increase beyond 100 results in marginal changes.

Decoder Iteration Number. To gain insights into the adap-

tation head, we ablate the effect of iteration number T in

Table 3d. We find that the performance gradually improves

from 0.58 and 0.84 on clean pass for flow and depth to

0.40 and 0.59 when increasing T from 1 to 12, but remains

almost unchanged after running more iterations. However,

with more iteration steps, the training and inference time

will be stretched. We therefore set T = 12 by default for a
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Figure 4. Qualitative comparison of scene depth on the Sintel and KITTI val set. Notable areas are marked with red circles. Compared

to [2] and [64], our approach produces more consistent and smooth depths with complete object shapes and clear boundaries. Sparse ground

truths in KITTI are interpolated for better visualization.

Flow (val) Depth (val)
Algorithm Component

Clean Final Clean Final

BASELINE 0.54 0.77 0.72 0.71

+ Feature Denoiser 0.51 0.73 0.67 0.66

+ Prototypical Learner 0.45 0.70 0.63 0.62

+ Unified Learning (Our ProMotion) 0.40 0.66 0.59 0.57
(a) Key Component Analysis (§3)

Flow (val) Depth (val)
Attention Types

Clean Final Clean Final

Vanilla Self-Attention 0.45 0.69 0.63 0.61

Multi-head Self Attention 0.42 0.67 0.61 0.58

Spatial Reduction Attention 0.43 0.68 0.63 0.60

Subspace Self-Attention (Ours) 0.40 0.66 0.59 0.57
(b) Attention Types (§3.1)

Flow (val) Depth (val)
Variant Number of Prototype

Clean Final Clean Final

10 0.46 0.71 0.65 0.62
50 0.42 0.69 0.61 0.59
100 0.40 0.66 0.59 0.57
200 0.41 0.68 0.61 0.58

(c) Number of Prototypes (§3.2)

Flow (val) Depth (val)
Decoder Iteration Number

Clean Final Clean Final

1 0.58 0.89 0.84 0.77
6 0.42 0.71 0.62 0.61
12 0.40 0.66 0.59 0.57
24 0.39 0.66 0.60 0.56

(d) Decoder Iteration Number (§3.3)
Flow (val) Depth (val)

Variant Prototype Updating Strategy
Clean Final Clean Final

Cosine Similarity 0.43 0.70 0.62 0.61
K-Means 0.41 0.68 0.62 0.60
Gaussian Mixture Models 0.41 0.67 0.61 0.58
Sinkhorn-Knopp 0.40 0.66 0.59 0.57

(e) Prototype Updating Strategy (§3.2)

Flow (val) Depth (val)
Head Dimension

Clean Final Clean Final

1 0.47 0.76 0.68 0.65
4 0.43 0.69 0.62 0.61
8 0.40 0.66 0.59 0.57
16 0.40 0.65 0.59 0.55

(f) Head Dimension (§3.1)
Table 3. A set of ablative studies on Sintel [5] flow and depth datasets (see §4.3). The adopted designs are marked in red.

better trade-off between accuracy and cost.

Prototype Updating Strategy. We further probe the influ-

ence of prototype updating methods, by comparing it with

vanilla cosine similarity, K-Means, and Gaussian Mixture

Models. As shown in Table 3e, the adoption is effective, im-

proving cosine similarity and K-Means by 3.3% and 0.9%.

Head Dimensions. Finally, we compare the different head

dimensions for the attention heads in Table 3f. We find that

error significantly reduces from 0.47 to 0.40 in AEPE for

flow and from 0.68 to 0.59 in Abs Rel for depth when in-

creasing the dimension from 1 to 8, but there is no obvious

decrease as the dimension grows to 16. For a fair comparison

with other methods [15, 31], we choose it as 8.

5. Conclusion
In this work, we centered on a prototypical motion paradigm

and a feature denoising optimization, which advocates a

unified motion framework named PROMOTION. This work

aims to mitigate the uncertainties by modeling motion as

prototypical features and optimizing them in feature space.

Empirical results suggest that PROMOTION achieves supe-

rior performance on two most representative motion tasks:

optical flow and scene depth. Our work may potentially ben-

efit the broader domain of dense motion estimation.
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