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Figure 1. Scaffold-GS represents the scene using a set of 3D Gaussians structured in a dual-layered hierarchy. Anchored on a sparse

grid of initial points, a modest set of neural Gaussians are spawned from each anchor to dynamically adapt to various viewing angles

and distances. Our method achieves rendering quality and speed comparable to 3D-GS with a more compact model (last row metrics:

PSNR/storage size/FPS). Across multiple datasets, Scaffold-GS demonstrates more robustness in large outdoor scenes and intricate indoor

environments with challenging observing views e.g. transparency, specularity, reflection, texture-less regions and fine-scale details.

Abstract
Neural rendering methods have significantly advanced

photo-realistic 3D scene rendering in various academic and

industrial applications. The recent 3D Gaussian Splatting

method has achieved the state-of-the-art rendering quality

and speed combining the benefits of both primitive-based

representations and volumetric representations. However,

it often leads to heavily redundant Gaussians that try to

fit every training view, neglecting the underlying scene ge-

ometry. Consequently, the resulting model becomes less

robust to significant view changes, texture-less area and

lighting effects. We introduce Scaffold-GS, which uses an-

chor points to distribute local 3D Gaussians, and predicts

their attributes on-the-fly based on viewing direction and

distance within the view frustum. Anchor growing and

pruning strategies are developed based on the importance

of neural Gaussians to reliably improve the scene cover-

age. We show that our method effectively reduces redun-

* denotes equal contribution.

dant Gaussians while delivering high-quality rendering. We

also demonstrates an enhanced capability to accommodate

scenes with varying levels-of-detail and view-dependent ob-

servations, without sacrificing the rendering speed. Project

page: https://city-super.github.io/scaffold-gs/.

1. Introduction

Photo-realistic and real-time rendering of 3D scenes has al-

ways been a pivotal interest in both academic research and

industrial domains, with applications spanning virtual real-

ity [51], media generation [36], and large-scale scene vi-

sualization [43, 45, 49]. Traditional primitive-based repre-

sentations like meshes and points [6, 26, 32, 55] are faster

due to the use of rasterization techniques tailored for mod-

ern GPUs. However, they often yield low-quality render-

ings, exhibiting discontinuity and blurry artifacts. In con-

trast, volumetric representations and neural radiance fields

utilize learning-based parametric models [3, 5, 30], hence
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can produce continuous rendering results with more details

preserved. Nevertheless, they come with the cost of time-

consuming stochastic sampling, leading to slower perfor-

mance and potential noise.

In recent times, 3D Gaussian Splatting (3D-GS) [22] has

achieved state-of-the-art rendering quality and speed. Ini-

tialized from point clouds derived from Structure from Mo-

tion (SfM) [42], this method optimizes a set of 3D Gaus-

sians to represent the scene. It preserves the inherent conti-

nuity found in volumetric representations, whilst facilitating

rapid rasterization by splatting 3D Gaussians onto 2D im-

age planes. While this approach offers several advantages,

it tends to excessively expand Gaussian balls to accommo-

date every training view, thereby neglecting scene structure.

This results in significant redundancy and limits its scal-

ability, particularly in the context of complex large-scale

scenes. Furthermore, view-dependent effects are baked into

individual Gaussian parameters with little interpolation ca-

pabilities, making it less robust to substantial view changes

and lighting effects.

We present Scaffold-GS, a Gaussian-based approach that

utilizes anchor points to establish a hierarchical and region-

aware 3D scene representation. We construct a sparse grid

of anchor points initiated from SfM points. Each of these

anchors tethers a set of neural Gaussians with learnable off-

sets, whose attributes (i.e. opacity, color, rotation, scale) are

dynamically predicted based on the anchor feature and the

viewing position. Unlike the vanilla 3D-GS which allows

3D Gaussians to freely drift and split, our strategy exploits

scene structure to guide and constrain the distribution of 3D

Gaussians, whilst allowing them to locally adaptive to vary-

ing viewing angles and distances. We further develop the

corresponding growing and pruning operations for anchors

to enhance the scene coverage.

Through extensive experiments, we show that our

method delivers rendering quality on par with or even sur-

passing the original 3D-GS. At inference time, we limit

the prediction of neural Gaussians to anchors within the

view frustum, and filter out trivial neural Gaussians based

on their opacity with a filtering step (i.e. learnable selec-

tor). As a result, our approach can render at a similar speed

(around 100 FPS at 1K resolution) as the original 3D-GS

with little computational overhead. Moreover, our storage

requirements are significantly reduced as we only need to

store anchor points and MLP predictors for each scene.

In conclusion, our contributions are: 1) Leveraging scene

structure, we initiate anchor points from a sparse voxel

grid to guide the distribution of local 3D Gaussians, form-

ing a hierarchical and region-aware scene representation; 2)

Within the view frustum, we predict neural Gaussians from

each anchor on-the-fly to accommodate diverse viewing di-

rections and distances, resulting in more robust novel view

synthesis; 3) We develop a more reliable anchor growing

and pruning strategy utilizing the predicted neural Gaus-

sians for better scene coverage.

2. Related work

MLP-based Neural Fields and Rendering. Early neu-

ral fields typically adopt a multi-layer perceptron (MLP) as

the global approximator of 3D scene geometry and appear-

ance. They directly use spatial coordinates (and viewing

direction) as input to the MLP and predict point-wise at-

tribute, e.g. signed distance to scene surface (SDF) [33, 34,

46, 54], or density and color of that point [2, 30, 49]. Be-

cause of its volumetric nature and inductive bias of MLPs,

this stream of methods achieves the SOTA performance in

novel view synthesis. The major challenge of this scene rep-

resentation is that the MLP need to be evaluated on a large

number of sampled points along each camera ray. Con-

sequently, rendering becomes extremely slow, with limited

scalability towards complex and large-scale scenes. Despite

several works have been proposed to accelerate or mitigate

the intensive volumetric ray-marching, e.g. using proposal

network [4], baking technique [11, 19], and surface render-

ing [41]. They either incorporated more MLPs or traded

rendering quality for speed.

Grid-based Neural Fields and Rendering. This type of

scene representations are usually based on a dense uniform

grid of voxels. They have been greatly used in 3D shape

and geometry modeling [12, 15, 21, 29, 35, 44, 57]. Some

recent methods have also focused on faster training and in-

ference of radiance field by exploiting spatial data struc-

ture to store scene features, which were interpolated and

queried by sampled points during ray-marching. For in-

stance, Plenoxel [13] adopted a sparse voxel grid to inter-

polate a continuous density field, and represented view-

dependent visual effects with Spherical Harmonics. The

idea of tensor factorization has been studied in multiple

works [9, 10, 50, 52] to further reduce data redundancy and

speed-up rendering. K-planes [14] used neural planes to

parameterize a 3D scene, optionally with an additional tem-

poral plane to accommodate dynamics. Several generative

works [8, 40] also capitalized on triplane structure to model

a 3D latent space for better geometry consistency. Instant-

NGP [31] used a hash grid and achieved drastically faster

feature query, enabling real-time rendering of neural radi-

ance field. Although these approaches can produce high-

quality results and are more efficient than global MLP rep-

resentation, they still need to query many samples to render

a pixel, and struggle to represent empty space effectively.

Point-based Neural Fields and Rendering. Point-based

representations utilize the geometric primitive (i.e. point

clouds) for scene rendering. A typical procedure is to ras-
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terize an unstructured set of points using a fixed size, and

exploits specialized modules on GPU and graphics APIs for

rendering [7, 37, 38]. In spite of its fast speed and flexibil-

ity to solve topological changes, they usually suffer from

holes and outliers that lead to artifacts in rendering. To alle-

viate the discontinuity issue, differentiable point-based ren-

dering has been extensively studied to model objects geom-

etry [16, 20, 27, 48, 55]. In particular, [48, 55] used dif-

ferentiable surface splatting that treats point primitives as

discs, ellipsoids or surfels that are larger than a pixel. [1, 24]

augmented points with neural features and rendered using

2D CNNs. As a comparison, Point-NeRF [53] achieved

high-quality novel view synthesis utilizing 3D volume ren-

dering, along with region growing and point pruning dur-

ing optimization. However, they resorted to volumetric ray-

marching, hence hindered display rate. Notably, the recent

work 3D-GS [22] employed anisotropic 3D Gaussians ini-

tialized from structure from motion (SfM) to represent 3D

scenes, where a 3D Gaussian was optimized as a volume

and projected to 2D to be rasterized as a primitive. Since

it integrated pixel color using ³-blender, 3D-GS produced

high-quality results with fine-scale detail, and rendered at

real-time frame rate.

3. Methods

The original 3D-GS [22] optimizes Gaussians to reconstruct

every training view, with heuristic splitting and pruning op-

erations but in general neglects the underlying scene struc-

ture. This often leads to highly redundant Gaussians and

makes the model less robust to novel viewing angles and

distances. To address this issue, we propose a hierarchical

3D Gaussian scene representation that respects the scene

geometric structure, with anchor points initialized from

SfM to encode local scene information and spawn local neu-

ral Gaussians. The physical properties of neural Gaussians

are decoded from the learned anchor features in a view-

dependent manner on-the-fly. Fig. 2 illustrates our frame-

work. We start with a brief background of 3D-GS then un-

fold our proposed method in details. Sec. 3.2.1 introduces

how to initialize the scene with a regular sparse grid of an-

chor points from the irregular SfM point clouds. Sec. 3.2.2

explains how we predict neural Gaussians properties based

on anchor points and view-dependent information. To make

our method more robust to the noisy initialization, Sec. 3.3

introduces a neural Gaussian based “growing” and “prun-

ing” operations to refine the anchor points. Sec. 3.4 elabo-

rates training details.

3.1. Preliminaries

3D-GS [22] represents the scene with a set of anisotropic

3D Gaussians that inherit the differential properties of vol-

umetric representation while be efficiently rendered via a

tile-based rasterization.

Starting from a set of Structure-from-Motion (SfM)

points, each point is designated as the position (mean) µ

of a 3D Gaussian:

G(x) = e−
1

2
(x−µ)TΣ−1(x−µ), (1)

where x is an arbitrary position within the 3D scene and

Σ denotes the covariance matrix of the 3D Gaussian. Σ is

formulated using a scaling matrix S and rotation matrix R

to maintain its positive semi-definite:

Σ = RSSTRT . (2)

In addition to color c modeled by Spherical harmonics, each

3D Gaussian is associated with an opacity ³ which is mul-

tiplied by G(x) during the blending process.

Distinct from conventional volumetric representations,

3D-GS efficiently renders the scene via tile-based rasteri-

zation instead of resource-intensive ray-marching. The 3D

Gaussian G(x) are first transformed to 2D Gaussians G′(x)
on the image plane following the projection process as de-

scribed in [58]. Then a tile-based rasterizer is designed to

efficiently sort the 2D Gaussians and employ ³-blending:

C(x′) =
∑

i∈N

ciÃi

i−1
∏

j=1

(1− Ãj), Ãi = ³iG
′

i(x
′), (3)

where x′ is the queried pixel position and N denotes the

number of sorted 2D Gaussians associated with the queried

pixel. Leveraging the differentiable rasterizer, all attributes

of the 3D Gaussians are learnable and directly optimized

end-to-end via training view reconstruction.

3.2. ScaffoldGS

3.2.1 Anchor Point Initialization

Consistent with existing methods [22, 53], we use the sparse

point cloud from COLMAP [39] as our initial input. We

then voxelize the scene from this point cloud P ∈ R
M×3

as:

V =

{⌊

P

ϵ

⌉}

· ϵ, (4)

where V ∈ R
N×3 denotes voxel centers, and ϵ is the voxel

size. +·, denotes rounding operation. We then remove du-

plicate entries, denoted by {·} to reduce the redundancy and

irregularity in P.

The center of each voxel v ∈ V is treated as an anchor

point, equipped with a local context feature fv ∈ R
32, a

scaling factor lv ∈ R
3, and k learnable offsets Ov ∈ R

k×3.

In a slight abuse of terminology, we will denote the anchor

point as v in the following context. We further enhance fv
to be multi-resolution and view-dependent. For each anchor

v, we 1) create a features bank {fv, fv↓1 , fv↓2 }, where ³n
denotes fv being down-sampled by 2n factors in channel
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(a) Sparse Voxel from SfM Points (b) Neural Gaussian Derivation (k=4) (c) Neural Gaussian Splatting
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Figure 2. Overview of Scaffold-GS. (a) We start by forming a sparse voxel grid from SfM-derived points. An anchor associated with

a learnable scale is placed at the center of each voxel, roughly sculpturing the scene occupancy. (b) Within a view frustum, k neural

Gaussians are spawned from each visible anchor with offsets {Ok}. Their attributes, i.e. opacity, color, scale and quaternion are then

decoded from the anchor feature, relative camera-anchor viewing direction and distance using Fα, Fc, Fs, Fq respectively. (c) Note that

to alleviate redundancy and improve efficiency, only non-trivial neural Gussians (i.e. ³ ≥ Äα) are rasterized following [22]. The rendered

image is supervised via reconstruction (L1), structural similarity (LSSIM ) and a volume regularization (Lvol).

dimension; 2) blend the feature bank with view-dependent

weights to form an integrated anchor feature f̂v . Specifi-

cally, Given a camera at position xc and an anchor at po-

sition xv , we calculate their relative distance and viewing

direction with:

¶vc = ∥xv − xc∥2, d⃗vc =
xv − xc

∥xv − xc∥2
, (5)

then weighted sum the feature bank with weights predicted

from a tiny MLP Fw:

{w,w1, w2} = Softmax(Fw(¶vc, d⃗vc)), (6)

f̂v = w · fv + w1 · fv↓1 + w2 · fv↓2 . (7)

3.2.2 Neural Gaussian Derivation

In this section, we elaborate on how our approach derives

neural Gaussians from anchor points. Unless specified oth-

erwise, F∗ represents a particular MLP throughout the sec-

tion. Moreover, we introduce two efficient pre-filtering

strategies to reduce MLP overhead.

We parameterize a neural Gaussian with its position

µ ∈ R
3, opacity ³ ∈ R, covariance-related quaternion

q ∈ R
4 and scaling s ∈ R

3, and color c ∈ R
3. As shown

in Fig. 2(b), for each visible anchor point within the view-

ing frustum, we spawn k neural Gaussians and predict their

attributes. Specifically, given an anchor point located at xv ,

the positions of its neural Gaussians are calculated as:

{µ0, ..., µk−1} = xv + {O0, . . . ,Ok−1} · lv, (8)

where {O0,O1, ...,Ok−1} ∈ R
k×3 are the learnable offsets

and lv is the scaling factor associated with that anchor, as

described in Sec. 3.2.1. The attributes of k neural Gaussians

are directly decoded from the anchor feature f̂v , the relative

viewing distance ¶vc and direction d⃗vc between the cam-

era and the anchor point (Eq. 5) through individual MLPs,

denoted as Fα, Fc, Fq and Fs. Note that attributes are de-

coded in one-pass. For example, opacity values of neural

Gaussians spawned from an anchor point are given by:

{³0, ..., ³k−1} = Fα(f̂v, ¶vc, d⃗vc), (9)

their colors {ci}, quaternions {qi} and scales {si} are simi-

larly derived. Implementation details are in supplementary.

Note that the prediction of neural Gaussian attributes

are on-the-fly, meaning that only anchors visible within

the frustum are activated to spawn neural Gaussians. To

make the rasterization more efficient, we only keep neural

Gaussians whose opacity values are larger than a predefined

threshold Äα. This substantially cuts down the computa-

tional load and helps our method maintain a high rendering

speed on-par with the original 3D-GS.

3.3. Anchor Points Refinement

Growing Operation. Since neural Gaussians are closely

tied to their anchor points which are initialized from SfM

points, their modeling power is limited to a local region, as

has been pointed out in [22, 53]. This poses challenges to

the initial placement of anchor points, especially in texture-

less and less observed areas. We therefore propose an error-

based anchor growing policy that grows new anchors where

neural Gaussians find significant. To determine a signifi-

cant area, we first spatially quantize the neural Gaussians

by constructing voxels of size ϵg . For each voxel, we com-

pute the averaged gradients of the included neural Gaus-

sians over N training iterations, denoted as ∇g . Then, vox-

els with ∇g > Äg are deemed as significant, where Äg is a

pre-defined threshold; and a new anchor point is thereby

deployed at the center of that voxel if there was no an-
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Figure 3. Growing operation. Dots represent neural Gaussians,

with grey shades indicating varied accumulated gradients. From

left to right, we spatially quantize neural Gaussians into multi-

resolution voxels (m ∈ {1, 2, 3}) of size {ϵ
(m)
g } to capture scene

details of different granularity (illustrated by voxels in three col-

ors). For each voxel, we compute averaged gradients and generate

a new anchor if it surpasses a threshold {Ä
(m)
g } (indicated by col-

ored fills).

chor point established. Fig. 3 illustrates this growing opera-

tion. In practice, we quantize the space into multi-resolution

voxel grid to allow new anchors to be added at different

granularity, where

ϵ(m)
g = ϵg/4

m−1, Ä (m)
g = Äg ∗ 2

m−1, (10)

where m denotes the level of quantization. To further regu-

late the addition of new anchors, we apply a random elimi-

nation to these candidates. This cautious approach to adding

points effectively curbs the rapid expansion of anchors. De-

tails in supplementary.

Pruning Operation To eliminate trivial anchors, we ac-

cumulate the opacity values of their associated neural Gaus-

sians over N training iterations. If an anchor fails to pro-

duce neural Gaussians with a satisfactory level of opacity,

we then remove it from the scene.

Observation Threshold To enhance the robustness of the

Growing and Pruning operations for long image sequences,

we implement a minimum observation threshold for anchor

refinement control. We define the anchor update interval as

N , allowing only anchors been visited more than N×rg and

N×rp times to undergo growing and pruning, respectively.

3.4. Losses Design

We optimize the learnable parameters and MLPs with re-

spect to the L1 loss over rendered pixel colors, with SSIM

term [47] LSSIM and volume regularization [28] Lvol. The

total supervision is given by:

L = L1 + ¼SSIMLSSIM + ¼volLvol, (11)

where the volume regularization Lvol is:

Lvol =

Nng∑

i=1

Prod(si). (12)

Here, Nng denotes the number of neural Gaussians in the

scene and Prod(·) is the product of the values of a vector,

e.g., in our case the scale si of each neural Gaussian. The

volume regularization term encourages the neural Gaus-

sians to be small with minimal overlapping.

4. Experiments

4.1. Experimental Setup

Dataset and Metrics We conducted a comprehen-

sive evaluation across 27 scenes from publicly avail-

able datasets. Specifically, we tested our approach on

all available scenes tested in the 3D-GS [22], includ-

ing nine scenes from Mip-NeRF360 [4], two scenes from

Tanks&Temples [23], two scenes from DeepBlending [18]

and synthetic Blender dataset [30]. We additionally evalu-

ated on datasets with contents captured at multiple LODs

to demonstrate our advantages in view-adaptive rendering.

Six scenes from BungeeNeRF [49] and two scenes from

VR-NeRF [51] are selected. The former provides multi-

scale outdoor observations and the latter captures intricate

indoor environments. Apart from the commonly used met-

rics (PSNR, SSIM [47], and LPIPS [56]), we additionally

report the storage size (MB) and the rendering speed (FPS)

for model compactness and performance efficiency. We

provide the averaged metrics over all scenes of each dataset

in the main paper and leave the full quantitative results on

each scene in the supplementary.

Baseline and Implementation. 3D-GS [22] is selected as

our main baseline for its established SOTA performance in

novel view synthesis. Both 3D-GS and our method were

trained for 30k iterations. We also record the results of Mip-

NeRF360 [4], iNGP [31] and Plenoxels [13] as in [22].

For our method, we set k = 10 for all experiments. All

the MLPs employed in our approach are 2-layer MLPs with

ReLU activation; the dimensions of the hidden units are all

32. For anchor points refinement, we average gradients over

N = 100 iterations, and by default use Äg = 64ϵ. And we

set the observation threshold as rg = 0.4, rp = 0.8. On

intricate scenes and the ones with dominant texture-less re-

gions, we use Äg = 16ϵ. An anchor is pruned if the accumu-

lated opacity of its neural Gaussians is less than 0.5 at each

round of refinement. The two loss weights ¼SSIM and ¼vol

are set to 0.2 and 0.001 in our experiments. Please check

the supplementary material for more details.

4.2. Results Analysis

Our evaluation was conducted on diverse datasets, ranging

from synthetic object-level scenes, indoor and outdoor envi-

ronments, to large-scale urban scenes and landscapes. A va-

riety of improvements can be observed especially on chal-

lenging cases, such as texture-less area, insufficient obser-
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Table 1. Quantitative comparison to previous methods on real-world datasets. Competing metrics are extracted from respective papers.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

Method Metrics PSNR ↑ SSIM ↑ LPIPS ³ PSNR ↑ SSIM ↑ LPIPS ³ PSNR ↑ SSIM ↑ LPIPS ³

3D-GS [22] 27.21 0.815 0.214 23.14 0.841 0.183 29.41 0.903 0.243

Mip-NeRF360 [4] 27.69 0.792 0.237 22.22 0.759 0.257 29.40 0.901 0.245

iNGP [31] 25.59 0.699 0.331 21.72 0.723 0.330 23.62 0.797 0.423

Plenoxels [13] 23.08 0.626 0.463 21.08 0.719 0.379 23.06 0.795 0.510

Ours 27.72 0.811 0.228 24.04 0.853 0.172 30.43 0.910 0.250

3D-GS (frame PSNR / avg PSNR)Ours (frame PSNR / avg PSNR)GT (scene name)

Closer view Closer view Closer view

3D-GS (frame PSNR / avg PSNR)Ours (frame PSNR / avg PSNR) GT (scene name)

29.88 / 31.93 27.76 / 31.52

33.46 / 31.93 32.32 / 31.52

31.51 / 29.34 30.15 / 28.88

30.12 / 29.34 29.10 / 28.88

23.52 / 22.15 22.56 / 21.90 30.17 / 29.8 28.48 / 28.95 

26.76 / 25.77 26.00 / 25.23 34.14 / 30.62 32.04 / 29.80 

26.97 / 29.61 21.80 / 29.40 27.04 / 28.87 22.76 / 28.48 30.88 26.24

Mip360-Room(a)

Mip360-Room(b)

Mip360-Counter(a)

Mip360-Counter(b)

TandT-Train 

TandT-Truck

DB-DrJohnson 

DB-Playroom 

VR-Kitchen VR-Apartment

Figure 4. Qualitative comparison of Scaffold-GS and 3D-GS [22] across diverse datasets [4, 17, 23, 51]. Patches that highlight the vi-

sual differences are emphasized with arrows and green & yellow insets for clearer visibility. Our approach consistently outperforms 3D-GS

on these scenes, with evident advantages in challenging scenarios, e.g. thin geometry and fine-scale details (MIP360-ROOM(a), MIP360-

COUNTER(a)), texture-less regions (DB-DRJOHNSON, DB-PLAYROOM), light effects (MIP360-COUNTER(b), DB-DRJOHNSON), in-

sufficient observations (TANDT-TRAIN, VR-KITCHEN). It can also be observed (e.g. VR-APARTMENT) that our model is superior in

representing contents at varying scales and viewing distances.

Table 2. Performance comparison. Rendering FPS and storage

size are reported. Storage size reduction ratio is indicated by (↓).

Rendering speed of both methods are measured on our machine.

Dataset Mip-NeRF360 Tanks&Temples Deep Blending

FPS Mem (MB) FPS Mem (MB) FPS Mem (MB)

3D-GS 97 721 123 411 109 676

Ours 102 171 (4.2× ³) 110 87 (4.7× ³) 139 66 (10.2× ³)

vations, fine-scale details and view-dependent light effects.

See Fig. 1 and Fig. 4 for examples.

Comparisons. Quality assessment on real-world datasets

are presented in Tab. 1. Baselines’ metrics align with

those reported in the 3D-GS study. It can be noticed that

our approach achieves comparable results with the SOTA

algorithms on Mip-NeRF360 dataset, and surpassed the

SOTA on Tanks&Temples and DeepBlending, which cap-

tures more challenging environments with the presence

of e.g. changing lighting, texture-less regions and reflec-

tions. In terms of efficiency, we evaluated rendering speed

and storage size of our method and 3D-GS, as shown in

Tab. 2. Our method achieved real-time rendering while us-

ing less storage, indicating that our model is more com-
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GT Ours 3D-GS

Figure 5. Comparison on multi-scale scenes (w/ zoom-in cases).

Rendering at an unsceen closer scale on the AMSTERDAM scene

from BungeeNeRF. Our method smoothly extrapolates to new

viewing distances using refined neural Gaussian properties, reme-

dying the needle-like artifacts of original 3D-GS caused by fixed

Gaussian scaling values.

pact than 3D-GS without sacrificing rendering quality and

speed. Additionally, akin to prior grid-based methods, our

approach converged faster than 3D-GS. See supplementary

material for more analysis.

We also examined our method on the synthetic Blender

dataset, which provides an exhaustive set of views capturing

objects at 360◦. Following 3D-GS, we use random points

to initialize the anchors. The PSNR score and storage size

comparisons presented in Tab. 3. Fig. 1 also demonstrate

that our method can achieve better visual quality with more

reliable geometry and texture details.

Multi-scale Scene Contents. We examined our model’s

capability in handling multi-scale scene details on the

BungeeNeRF and VR-NeRF datasets. As shown in Tab. 3,

our method achieved superior quality whilst using fewer

storage size. As illustrated in Fig. 4 and Fig. 5, our method

was superior in accommodating varying levels of detail in

the scene. In contrast, images rendered from 3D-GS often

suffered from noticeable blurry and needle-shaped artifacts.

This is likely because that 3D-GS tends to overfit multi-

scale training views, creating excessive Gaussians that work

for each observing distance. However, it can easily lead to

ambiguity and uncertainty when synthesizing novel views,

since it lacks the ability to reason about viewing angle and

distance. On contrary, our method efficiently encoded local

structures into compact neural features, enhancing both ren-

dering quality and convergence speed. Details are provided

in the supplementary material.

Feature Analysis. We further perform an analysis of the

learnable anchor features and the selector mechanism. As

depicted in Fig. 6, the clustered pattern suggests that the

Table 3. Qualitative comparison. Our method is able to handle

large-scale scenes (e.g. BUNGEENERF) with light-weight repre-

sentation. Our method shows consistent compactness and effec-

tiveness in complex lighting conditions and synthetic scenes.

Dataset BungeeNeRF VR-NeRF Synthetic Blender

PSNR Mem (MB) PSNR Mem (MB) PSNR Mem (MB)

3D-GS 24.89 1606 28.94 263 33.32 53

Ours 27.01 203 (7.9× ³) 29.24 69 (3.8× ³) 33.68 14 (3.8× ³)

Figure 6. Anchor feature clustering. We cluster anchor features

(DB-PLAYROOM) into 3 clusters using K-means [25] and visu-

alize the result. The clustered features show clues of scene con-

tents, e.g. the banister, stroller, desk and monitor can be clearly

identified. Anchors on the wall and floor are also respectively

grouped together. This shows that our approach improves the in-

terpretability of 3D-GS model, and has the potential to be scaled-

up on much larger scenes exploiting reusable features.

Table 4. Effects of filtering. FILTER 1: view frustum culling;

FILTER 2: the opacity-based selection. The filtering method has

no notable impact on fidelity, but greatly affects inference speed.

Scene DB-PLAYROOM DB-DRJOHNSON

PSNR FPS PSNR FPS

NO FILTERS 30.4 84 29.7 79

FILTER 1 30.3 118 29.6 100

FILTER 2 30.6 109 29.7 104

FULL 31.07 150 29.79 129

compact anchor feature spaces adeptly capture regions with

similar visual attributes and geometries, as evidenced by

their proximity in the encoded feature space.

View Adaptability. To support that our neural Gaussians

are view-adaptive, we explore how the values of attributes

change when the same Gaussian is observed from different

positions. Fig. 8 demonstrates a view-dependent distribu-

tion of attributes intensity, which maintains a degree of local

continuity. This accounts for the superior view adaptability
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Figure 7. Our cross-view performance in specular reflection, lever-

aging regularized structures and view adaptability (Better viewed

in zoom-in).

Figure 8. View-adaptive neural Gaussian attributes. Decoded

attributes of a single neural Gaussian observed at different posi-

tions. Each point corresponds to a viewpoint in space. The color

of the point denotes the intensity of attributes decoded for this view

(left: Fs → si; right: Fα → ³i). This pattern indicates that at-

tributes of a neural Gaussian adapt to viewpoint changing, while

exhibiting a certain degree of local continuity.

of our method compared to the static attributes of 3D-GS, as

well as its enhanced generalization to novel views. Cross-

view comparisons in Fig. 7 shows that the view adaptability

produces better performance in specular reflection.

4.3. Ablation Studies

Efficacy of Filtering Strategies. We evaluated our fil-

tering strategies (Sec. 3.2.2), which we found crucial for

speeding up our method. As Tab. 4 shows, while these

strategies had no notable effect on fidelity, they significantly

enhanced inference speed.

Efficacy of Anchor Points Refinement Policy. We eval-

uated our growing and pruning operations described in

Sec. 3.3. Tab. 5 shows the results of disabling each opera-

tion in isolation and maintaining the rest of the method. We

found that the addition operation is crucial for accurately re-

constructing details and texture-less areas, while the prun-

ing operation plays an important role in eliminating trivial

Gaussians and maintaining the efficiency of our approach.

Table 5. Anchor refinement. The growing operation is essential

for fidelity since it improves the poor initialization. The pruning

operation controls the increasing of storage size and optimizes the

quality of remained anchors.

Scene DB-PLAYROOM DB-DRJOHNSON

PSNR Mem (MB) PSNR Mem (MB)

NONE 28.45 24 28.81 12

W/ PRUNING 29.12 23 28.51 12

W/ GROWING 30.54 71 29.75 76

FULL 31.07 61 29.79 50

4.4. Discussions and Limitations

Through our experiments, we found that the initial points

play a crucial role for high-fidelity results. Initializing our

framework from SfM point clouds is a swift and viable

solution, considering these point clouds usually arise as a

byproduct of image calibration processes. However, this ap-

proach may be suboptimal for scenarios dominated by large

texture-less regions. Despite our anchor point refinement

strategy can remedy this issue to some extent, it still suffers

from extremely sparse points. We expect that our algorithm

will progressively improve as the field advances, yielding

more accurate results. Further details are discussed in the

supplementary material.

5. Conclusion

In this work, we introduce Scaffold-GS, a novel 3D neural

scene representation for efficient view-adaptive rendering.

The core of Scaffold-GS lies in its structural arrangement of

3D Gaussians guided by anchor points from SfM, whose at-

tributes are on-the-fly decoded from view-dependent MLPs.

We show that our approach leverages a much more com-

pact set of Gaussians to achieve comparable or even bet-

ter results than the SOTA algorithms. The advantage of

our view-adaptive neural Gaussians is particularly evident

in challenging cases where 3D-GS usually fails. We fur-

ther show that our anchor points encode local features in

a meaningful way that exhibits semantic patterns to some

degree, suggesting its potential applicability in a range of

versatile tasks such as large-scale modeling, manipulation

and interpretation in the future.
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