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What food could you 
make with these 
ingredients ? Give 
me the recipe.

One delicious recipe using these ingredients is 
chocolate pudding! Here's the recipe:

Ingredients:
- 1 cup all-purpose flour, - ½ cup sugar ….
Instructions:
1. In a large bowl whisk together the flour, sugar..
2. In a separate bowl, mix together the eggs …

Generate an audio 
track for this band.

Generate an audio 
track for this band.

Render a sunsetRemove the dock
Paint this image 
like Van Gogh

Generate an image of 
a car with the model 
in the first image and 
the color in the 
second image.

Generate a 
depth image

Generate a depth & 
surface normal map

Generate a surface 
normal map

Which fruits are in this 
image ? List them in 
json format with the 
name of the fruit as the 
key and the color of 
the fruit as the value.

{
"banana" : "Yellow",
"apple" : "Red",
"grapes" : "Green"

}

Segment grapes and 
one apple

Put the less kobar 
blicket into the dax.

= blicket

= dax

is kobar than

Given the initial 
image and a 
sequence of 
actions, predict 
the next frames

Generated
Images

Generate an image 
of an astronaut 
riding a horse in the 
forest. There is a 
river in front of them 
with water lilies. 

Generate an image of 
an elephant swimming 
underwater. aesthetic. 
Fantasy.

Add the missing 
details to the 
masked image (left) 
using the reference 
image (right).

Find the visible keypoints 
corresponding to the 
person located in the 

highlighted region.

Identify the locations 
of the instruments 

producing the given 
sound.(drum sounds)

Image Editing

Image Generation

Reference Image Generation

Multiview Image Completion

Depth & Surface Normal Keypoint Estimation

Visual ParsingFree Form VQA

Visual based Audio Generation Visual Audio Localization

Robotic Manipulation Future Frame Prediction turn right turn right turn right move ahead

move ahead move ahead move ahead turn right

Segmentation&

Figure 1. UNIFIED-IO 2 is an instruction-following model with a huge breadth of abilities and supported modalities. It can generate images
(red box), including image editing, image generation, depth estimation, surface normal estimation, and future frame prediction etc. It can
also generate texts (blue box), including long-form answers to queries, keypoint estimation, visual audio localization, predicting actions
for robotic manipulation etc. It can generate audio (green box) from images or text. Click � and � for the corresponding audio samples.
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Abstract

We present UNIFIED-IO 2, the first autoregressive multi-
modal model that is capable of understanding and generat-
ing image, text, audio, and action. To unify different modal-
ities, we tokenize inputs and outputs – images, text, audio,
action, bounding boxes etc., into a shared semantic space
and then process them with a single encoder-decoder trans-
former model. Since training with such diverse modalities
is challenging, we propose various architectural improve-
ments to stabilize model training. We train our model from
scratch on a large multimodal pre-training corpus from di-
verse sources with a multimodal mixture of denoisers objec-
tive. To learn an expansive set of skills, such as following
multimodal instructions, we construct and finetune on an
ensemble of 120 datasets with prompts and augmentations.
With a single unified model, UNIFIED-IO 2 achieves state-
of-the-art performance on the GRIT benchmark and strong
results in more than 35 benchmarks, including image gener-
ation and understanding, natural language understanding,
video and audio understanding, and robotic manipulation.
We release all our models to the research community.

1. Introduction
As AI researchers, we seek to build intelligent agents that
can perceive their environment, communicate with others,
act in the world, and reason about their interactions. The
world is multimodal, so our agents must partake in rich
interactions that are multimodal in nature via vision, lan-
guage, sound, action etc. Psychologists have argued that
the redundancy of our sensory systems serves as supervi-
sory mechanisms to improve each other [48, 144, 167]. This
provides a natural motivation to create models with similar
learning capabilities, supporting many different modalities
that can supervise each other during training.

Building models that can parse and produce many
modalities is a complex undertaking. Training Large Lan-
guage Models (LLMs) with billions of parameters, despite
only supporting a single modality, is extremely challenging
across many fronts – from sourcing and processing massive
datasets, ensuring data quality and managing biases, design-
ing effective model architectures, maintaining stable train-
ing processes, and instruction tuning to enhance the model’s
ability to follow and understand user instructions. These
challenges are hugely amplified with the addition of each
new modality.

In light of these difficulties, a line of recent works
in building multimodal systems has leveraged pre-trained
LLMs, with some augmenting with new modality encoders
[5, 46, 119], some adding modality specific decoders [14,
96] and others leveraging the LLM’s capabilities to build
modular frameworks [64, 166, 173]. Another line of works
on training multimodal models from scratch has focused on

generating text output [81, 143] with a few recent works
supporting the understanding and generation of two modal-
ities – text and images [123, 125]. Building generative mod-
els with a wider coverage of modalities, particularly when
training from scratch, remains an open challenge.

In this work, we present UNIFIED-IO 2, a large multi-
modal model (LMM) that can encode text, image, audio,
video, and interleaved sequences and produce text, action,
audio, image, and sparse or dense labels. It can output free-
form multimodal responses and handle tasks unseen during
training through instruction-following. UNIFIED-IO 2 con-
tains 7 billion parameters and is pre-trained from scratch on
an extensive variety of multimodal data – 1 billion image-
text pairs, 1 trillion text tokens, 180 million video clips,
130 million interleaved image & text, 3 million 3D assets,
and 1 million agent trajectories. We further instruction-tune
the model with a massive multimodal corpus by combining
more than 120 datasets covering 220 tasks across vision,
language, audio, and action.

Our pre-training and instruction tuning data, totaling
over 600 terabytes, presents significant challenges for train-
ing due to its diversity and volume. To effectively facilitate
self-supervised learning signals across multiple modalities,
we develop a novel multimodal mixture of denoiser objec-
tive that combines denoising and generation across modali-
ties. We also develop dynamic packing – an efficient imple-
mentation that provides a 4x increase in training throughput
to deal with highly variable sequences. To overcome the
stability and scalability issues in training, we propose to ap-
ply key architectural changes, including 2D rotary embed-
dings, QK normalization, and scaled cosine attention mech-
anisms on the perceiver resampler. For instruction tuning,
we ensure every task has a clear prompt, either using exist-
ing ones or crafting new ones. We also include open-ended
tasks and create synthetic tasks for less common modalities
to enhance task and instruction variety.

We evaluate UNIFIED-IO 2 on over 35 datasets across
the various modalities it supports. Our single model sets the
new state of the art on the GRIT [66] benchmark, which in-
cludes diverse tasks such as keypoint estimation and surface
normal estimation. On vision & language tasks, it matches
or outperforms the performance of many recently proposed
VLMs that leverage pre-trained LLMs. On image genera-
tion, it outperforms the closest competitor [174] that lever-
ages the pre-trained stable diffusion model [154], especially
in terms of faithfulness as per the metrics defined in [76]. It
also shows effectiveness in video, natural language, audio,
and embodied AI tasks, showcasing versatility despite its
broad capability range. Moreover, UNIFIED-IO 2 can fol-
low free-form instructions, including novel ones. Figure 1
offers a glimpse into how it handles various tasks. Further
examples, along with the code and models, are accessible
on our project website.
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2. Related Work
Inspired by the success of language models as general-
purpose text processing systems [20, 122, 177], there has
been a recent wave of multimodal systems trying to achieve
similar general-purpose capabilities with additional modali-
ties. A common approach is to use a vision-encoder to build
features for input images and then an adapter to map those
features into embeddings that can be used as part of the in-
put to an LLM. The network is then trained on paired im-
age/language data to adapt the LLM to the visual features.
These models can already perform some tasks zero-shot or
with in-context examples [109, 132, 178], but generally a
second stage of visual instruction tuning follows using in-
structions, visual inputs, and target text triples to increase
zero-shot capabilities [25, 34, 118, 119, 205, 218, 225].

Building upon this design, many researchers have ex-
panded the breadth of tasks these models can support. This
includes creating models that can do OCR [12, 220], vi-
sual grounding [12, 26, 143, 189, 207, 212, 219], image-
text-retrieval [97], additional languages [112], embodied
AI tasks [17, 135, 140, 152] or leverage other expert sys-
tems [52]. Other efforts have added new input modali-
ties. This includes video inputs [110, 126], audio [80] or
both [216]. PandaGPT [170] and ImageBind-LLM [69] use
the universal encoder ImageBind [56] to encode many kinds
of input modalities, and ChatBridge [222] uses a similar
universal encoder based on language. While these efforts
are effective for understanding tasks, they do not allow com-
plex multimodal generation and often exclude modalities
long considered central to computer vision (e.g., ImageBind
cannot support sparse annotation of images).

Fewer works have considered multimodal generation.
UNIFIED-IO [123], LaVIT [88], OFA [186], Emu [172]
and CM3Leon [210] train models to generate tokens that
a VQ-GAN [49, 179] can then decode into an image,
while GILL [96], Kosmos-G [141] and SEED [53] gener-
ate features that a diffusion model can use, and JAM [4]
fuses pre-trained language and image generation models.
UNIFIED-IO 2 also uses a VQ-GAN, but supports text, im-
age, and audio generation. See Appendix C for more dis-
cussion about related work.

3. Approach
In this section, we discuss the unified task representation
(3.1), the model architecture and techniques to stabilize
training (3.2), the multimodal training objective (3.3) and
the efficiency optimizations (3.4) used in UNIFIED-IO 2.

3.1. Unified Task Representation
UNIFIED-IO 2 processes all modalities with a single, uni-
fied encoder-decoder transformer [181]. This is achieved
by encoding various inputs and outputs – images, text, au-

dio, action, boxes etc., into sequences of tokens in a shared
representation space. Our encoding procedure follows the
design of UNIFIED-IO [123], with several modifications to
improve performance and new encoders and decoders for
additional modalities. Figure 2 shows an overview of the
model. A high-level overview of how modalities are en-
coded is given below, see Appendix D.1 for additional de-
tails.
Text, Sparse Structures, and Action. Text inputs and out-
puts are tokenized using the byte-pair encoding [161] from
LLaMA [177], which we chose since it supports Unicode
symbols and preserves whitespace. Sparse structures such
as bounding boxes, keypoints, and camera poses are dis-
cretized and then encoded using 1000 special tokens added
to the vocabulary [27, 123]. Points are encoded with a se-
quence of two such tokens (one for x and one for y), boxes
are encoded with a sequence of four tokens (upper left and
lower right corners), and 3D cuboids are represented with
12 tokens that encode the projected center, virtual depth,
log-normalized box dimension, and continuous allocentric
rotation [16]. For embodied tasks, discrete robot actions
[17] are generated as text commands (e.g., “move ahead” to
command the robot to move forward in navigation). Spe-
cial tokens are used to encode the robot’s state, such as its
position and rotation.
Images and Dense Structures. Images are encoded with a
pre-trained Vision Transformer (ViT) [84]. We concatenate
the patch features from the second and second-to-last layers
of the ViT to capture both low and high-level visual infor-
mation. These features are passed through a linear layer
to get embeddings that can be used as part of the input se-
quence for the transformer. To generate images, we use VQ-
GAN [49] to convert images into discrete tokens. These to-
kens are added to the vocabulary and then used as the target
output sequence in order to generate an image. For better
image quality, we use a dense pre-trained VQ-GAN model
with 8 ⇥ 8 patch size that encodes a 256 ⇥ 256 image into
1024 tokens with a codebook size of 16512.

Following [123], we represent per-pixel labels, which
include depth, surface normals, and binary segmentation
masks, as RGB images that can be generated or encoded
with our image generation and encoding abilities. For seg-
mentation, UNIFIED-IO 2 is trained to predict a binary
mask given a class and bounding box. An entire image can
be segmented by first doing detection, and then querying the
model for a segmentation mask for each detected bounding
box and class.
Audio. UNIFIED-IO 2 encodes up to 4.08 seconds of au-
dio into a spectrogram (See Appendix D.1 and Table 7).
The spectrogram is then encoded with a pre-trained Audio
Spectrogram Transformer (AST) [57], and the input embed-
dings are built by concatenating the second and second-to-
last layer features from the AST and applying a linear layer
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Figure 2. UNIFIED-IO 2 architecture. Input text, images, audio, or image/audio history are encoded into sequences of embeddings which
are concatenated and used as input to an encoder-decoder transformer model. The transformer outputs discrete tokens that can be decoded
into text, an image, or an audio clip.

just as with the image ViT. To generate audio, we use a ViT-
VQGAN [208] to convert the audio into discrete tokens.
Since there is no public codebase, we implement and train
our own ViT-VQGAN with 8 ⇥ 8 patch size that encodes
a 256 ⇥ 128 spectrogram into 512 tokens with a codebook
size of 8196.
Image and Audio History. We allow up to four additional
images and audio segments to be given as input, which we
refer to as the image or audio history. These elements are
also encoded using the ViT or AST, but we then use a per-
ceiver resampler [5, 86], see Table 7 for hyperparameters,
to further compress the features into a smaller number of
tokens (32 for images and 16 for audio). This approach
greatly reduces the sequence length and allows the model
to inspect an image or audio segment in a high level of de-
tail while using elements in the history for context. This his-
tory is used to encode previous video frames, previous audio
segments, or reference images for tasks such as multi-view
image reconstruction or image-conditioned image editing.
Eight special tokens are added to the text vocabulary and
used to reference the individual elements in these histories
in the text input or output.

3.2. Architecture
UNIFIED-IO 2 uses a transformer encoder-decoder archi-
tecture. However, we observe that using a standard im-
plementation following UNIFIED-IO leads to increasingly
unstable training as we integrate additional modalities. To
address this, we include various architectural changes that
significantly stabilize multimodal training.
2D Rotary Embedding. We extend RoPE to two-
dimensional positions: For any 2D indexes (i, j), we split
each of the query and key embeddings of the transformer at-
tention heads in half and apply separate rotary embeddings
constructed by each of the two coordinates to the halves, see

Appendix D.2.
QK Normalization. We observe extremely large values in
the multi-head attention logits and find that applying Layer-
Norm [10] to the queries and keys following [38] mitigates
the problem.
Scaled Cosine Attention. Even with QK normalization we
observe extreme values in the logits of the perceive resam-
pler used for the history inputs. Therefore, we apply more
strict normalization in the perceiver by using scaled cosine
attention [121], which significantly stabilizes training.

To avoid numerical instabilities, we also enable float32
attention logits. Jointly updating the pre-trained ViT and
AST can also cause instabilities. Thus, we freeze the ViT
and AST during pretraining and finetune them at the end
of instruction tuning. More details and loss curves are in
Appendix D.7.

Table 1 gives the details of our different models, see Ap-
pendix D.5 for additional hyperparameter details and Ap-
pendix D.7 for loss curves.

3.3. Training Objective
A strong multimodal model has to be exposed to solving
diverse sets of problems during pre-training. UL2 [175]
proposed the Mixture of Denoisers (MoD), a unified per-
spective to train LLMs, which combines the span corruption
[147] and causal language modeling [19] objectives. Moti-
vated by this, we propose a generalized and unified perspec-
tive for multimodal pre-training.
Multimodal Mixture of Denoisers. MoD uses three
paradigms: [R] – standard span corruption, [S] – causal
language modeling, and [X] – extreme span corruption.
For text targets, we follow the UL2 paradigms. For im-
age and audio targets, we define two analogous paradigms:
[R] – masked denoising where we randomly mask x% of
the input image or audio patch features and task the model
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Model model dims mlp dims encoder lyr decoder lyr heads Params

UIO-2L 1024 2816 24 24 16 1.1B
UIO-2XL 2048 5120 24 24 16 3.2B
UIO-2XXL 3072 8192 24 24 24 6.8B

Table 1. Size variant of UNIFIED-IO 2.

to re-construct it and [S] – where we ask the model to gen-
erate the target modality conditioned only on other input
modalities. During training, we prefix the input text with a
modality token ([Text], [Image], or [Audio]) and a
paradigm token ([R], [S], or [X]) to indicate the task.

3.4. Efficient Implementation
Training on heavily multimodal data results in highly vari-
able sequence lengths for the transformer’s inputs and out-
puts, both because modalities are often missing for individ-
ual examples and because the number of tokens used to en-
code particular modalities can vary from just a few tokens
(for a sentence) to 1024 tokens (for an output image). To
handle this efficiently, we use packing, a process where the
tokens of multiple examples are packed into a single se-
quence, and the attentions are masked to prevent the trans-
former from cross-attending between examples.

A complication in the multi-modal setting is that many
modality-specific encoders cannot be run on packed inputs
(e.g. the image ViT). As a solution, we apply the modality-
specific encoders before packing, and then dynamically ar-
range the resulting features into packed sequences for the
transformer. During training, we use a heuristic algorithm
to re-arrange data being streamed to the model so that long
examples are matched with short examples they can be
packed with. This overall setup lets us train efficiently while
using fixed-size tensors in the computation graph, as re-
quired by the Jax neural network library that our implemen-
tation uses [15]. Packing optimization was also explored
in [100], but not in the streaming setup. Dynamic packing
leads to an almost 4x increase in training throughput (De-
tails in Appendix D.4).

4. Multimodal Data
One critical difference between UNIFIED-IO 2 and prior
work is that we train the model with a diverse set of mul-
timodal data from scratch. This requires curating high-
quality, open-source multimodal data for both pre-training
(4.1) and instruction tuning (4.2).

4.1. Pre-training Data
Our pre-training data comes from various sources and cov-
ers many modalities. We provide a high-level overview and
details in Appendix E.
NLP [33%]. We use the publicly available datasets that
were employed to train MPT-7B [176]. This dataset em-

phasizes English natural language text but also contains
code and markdown. It includes text from the RedPajama
dataset [32], C4 [68], Wikipedia, and stack overflow. We
follow the proportion suggested by [176] and remove multi-
lingual and scientific data.
Image & Text [40%]. Text and image paired data comes
from LAION-400M [159], CC3M [163], CC12M [23], and
RedCaps [42]. To help train the image-history modal-
ity, we also use the interleaved image/text data from
OBELICS [104]. We use the last image as the image in-
put and the remaining images as the image history. Special
tokens are used to mark where those images occur in the
text.
Video & Audio [25%]. Video provides strong self-
supervisory signals with high correlations between audio
and visual channels. We sample audio and video data from
various public datasets including YT-Temporal-1B [215],
ACAV100M [105], AudioSet [54], WebVid-10M [13], HD-
VILA-10M [200] and Ego4D [60].
3D & Embodiment [1%]. For self-supervised 3D and em-
bodiment pre-training, we use CroCo [194] for cross-view
generation and denoising; Objaverse [40] for view synthe-
sis; and random trajectories in ProcTHOR [39] and Habi-
tat [157] for the next action and frame predictions.
Augmentation [1%]. While there is a lot of unsupervised
data on the web for images, text, video, and audio, options
are much more limited for dense and sparse annotations.
We propose to solve this through large-scale data augmen-
tation. We consider two types of data augmentation: 1. Au-
tomatically generated segmentation data from SAM [94] to
train the model to segment an object given a point or bound-
ing box. 2. Synthetic patch-detection data which tasks
the model to list the bounding boxes of synthetically added
shapes in an image. We additionally train the model to out-
put the total number of patches in the image to pre-train its
counting abilities.
Training Sample Construction. During pre-training, most
of our data contains various modalities without a supervised
target. In these cases, we randomly pick one of the modal-
ities present to be the target output. Then, we either re-
move that modality from the example or replace it with a
corrupted version. Other modalities that might be present
in the example are randomly kept or masked to force the
model to make predictions using whatever information is
left. An example is shown in E.2.

4.2. Instruction Tuning Data
Multimodal instruction tuning is the key process to equip
the model with diverse skills and capabilities across various
modalities and even adapt to new and unique instructions.
We construct the multimodal instruction tuning dataset by
combining a wide range of supervised datasets and tasks.
We ensure every task has a clear prompt, either using exist-
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ing ones or writing new ones. We also include open-ended
tasks and create synthetic tasks for less common modali-
ties to enhance task and instruction variety. Our mixture in-
cludes 220 tasks drawn from over 120 external datasets. We
provide a high-level overview and examples here and leave
details and a visualization of the distribution in Appendix F.

Overall, our instruction tuning mixture is composed of
60% prompting data, meaning supervised datasets com-
bined with prompts. To avoid catastrophic forgetting, 30%
of the data is carried over from pre-training. Addition-
ally, 6% is task augmentation data we build by constructing
novel tasks using existing data sources, which enhances ex-
isting tasks and increases task diversity. The remaining 4%
consists of free-form text to enable chat-like responses.

5. Experiments
In this section, we evaluate our pre-trained and instruction-
tuned models on a broad range of tasks that require parsing
and producing all modalities: images, video, audio, text,
and actions. We do not perform task-specific finetuning
in any experiments. Details about experimental setups,
additional result details, results on natural language tasks,
results on 3D object detection, and additional studies for
UNIFIED-IO 2’s instruction capabilities are in Appendix G.

5.1. Pre-training Evaluation
We demonstrate the effectiveness of our pre-training by
evaluating UNIFIED-IO 2 on commonsense natural lan-
guage inference (HellaSwag [214]), text-to-image gener-
ation (TIFA [76]) and text-to-audio generation (Audio-
Caps [93]). We also assess spatial and temporal under-
standing on SEED-Bench [106], a benchmark for compre-
hensively evaluating perception and reasoning on image
and video modalities. Table 2 shows that UNIFIED-IO 2
achieves comparable or even better performance on both
generation and comprehension tasks compared to the
task-specific specialist [154] or the universal multimodal
model [9].

Results on HellaSwag suggest that UNIFIED-IO 2 has
decent language modeling capabilities, but is behind ded-
icated language models. This may be due to the fact that
the model sees far fewer tokens compared to language-only
LLMs – approximately 250 billion tokens in total. Qualita-
tive results of pre-training are in Appendix G.1.

5.2. GRIT Results
We evaluate on the General Robust Image Task (GRIT)
Benchmark [66], which includes seven tasks: categoriza-
tion, localization, VQA, referring expression, instance seg-
mentation, keypoint, and surface normal estimation. Com-
pleting all 7 tasks requires understanding image, text, and
sparse inputs and generating text, sparse, and dense outputs.
Although this is a subset of the modalities UNIFIED-IO 2

Method HellaSwag" TIFA" SEED-S" SEED-T" AudioCaps#

LLaMA-7B [177] 76.1 - - - -
OpenLLaMa-3Bv2 [55] 70.0 - - - -
KOSMOS- [143] 2 49.4 - - - -
SD v1.5 [154] - 78.4 - - -
OpenFlamingo-7B [9] - - 34.5 33.1 -

UIO-2L 38.3 70.2 37.2 32.2 3.08
UIO-2XL 47.6 77.2 40.9 34.0 3.10
UIO-2XXL 54.3 78.7 40.7 35.0 3.02

Table 2. Zero-shot performance on commonsense sentence com-
pletion (HellaSwag [214]), text-to-image generation (TIFA [76]),
spatial and temporal comprehension (Seed-Bench [106]), and text-
to-audio generation (AudioCaps [93]).

Method Cat. Loc. Vqa Ref. Seg. KP Norm. All

A
bl

at
io

n UIO-2L 70.1 66.1 67.6 66.6 53.8 56.8 44.5 60.8
UIO-2XL 74.2 69.1 69.0 71.9 57.3 68.2 46.7 65.2
UIO-2XXL 74.9 70.3 71.3 75.5 58.2 72.8 45.2 66.9

Te
st

GPV-2 [89] 55.1 53.6 63.2 52.1 - - - -
UIOXL [123] 60.8 67.1 74.5 78.9 56.5 67.7 44.3 64.3
UIO-2XXL 75.2 70.2 71.1 75.5 58.8 73.2 44.7 67.0

Table 3. Results on the GRIT ablation and test sets [66].

supports, we evaluate on GRIT because it provides a stan-
dardized and comprehensive benchmark on this set of capa-
bilities. See Appendix G.4 for additional inference details
on GRIT.

Results are shown in Table 3. Overall, UNIFIED-IO 2
is state-of-the-art on GRIT, surpassing the previous best
model, UNIFIED-IO, by 2.7 points. On individual tasks,
we can observe gains in localization (3 points), catego-
rization (14 points), segmentation (2 points), and key-
point (5 points). On VQA, our GRIT evaluations show
UNIFIED-IO 2 is better on same-source (84.6 vs. 81.2)
questions, suggesting the gap is due to reduced performance
on the new-source questions that were constructed from Vi-
sual Genome; see Appendix G.4 for additional discussion.
Despite being slightly behind UNIFIED-IO, UNIFIED-IO 2
still obtains strong referring expression scores that compare
favorably to prior work on generalist multimodal models,
see Table 5. Surpassing UNIFIED-IO while also support-
ing much higher quality image and text generation, along
with many more tasks and modalities, illustrates the impres-
sive multi-tasking capabilities of our model. UNIFIED-IO 2
even maintains better overall performance with the 3-billion
parameter model (65.2 vs. 64.5), which is roughly equal in
size to UNIFIED-IO. Ablation results show average perfor-
mance, and all individual tasks improve with model size,
showing that UNIFIED-IO 2 benefits from scale.

5.3. Generation Results

Table 4 shows results on tasks that require generating
image, audio, and action outputs. We evaluate using
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Method
Image Audio Action

FID# TIFA" FAD# IS" KL# Succ."

minDALL-E [37] - 79.4 - - - -
SD-1.5 [154] - 78.4 - - - -
AudioLDM-L [117] - - 1.96 8.13 1.59 -
AudioGen [101] - - 3.13 - 2.09 -
DiffSound [203] - - 7.75 4.01 2.52 -
VIMA [87] - - - - - 72.6
VIMA-IMG [87] - - - - - 42.5

CoDi [174] 11.26 71.6 1.80 8.77 1.40 -
Emu [172] 11.66 65.5 - - - -

UIO-2L 16.68 74.3 2.82 5.37 1.93 50.2
UIO-2XL 14.11 80.0 2.59 5.11 1.74 54.2
UIO-2XXL 13.39 81.3 2.64 5.89 1.80 56.3

Table 4. Results on text-to-image generation (MS COCO [115]
and TIFA [76]), text-to-audio generation (AudioCaps [93]) and ac-
tion generation (VIMA-Bench [87]).

TIFA [76], which measures faithfulness to the prompt us-
ing VQA models and has been shown to correlate well
with human judgments, and FID [73] on MS COCO [115].
On TIFA, we find that UNIFIED-IO 2 scores close to
minDALL-E [37], and about 10 points ahead of other gen-
eralist models such as CoDi [174] and Emu [172]. We at-
tribute this strong image generation ability to extensive pre-
training and the use of a fine-grained VQ-GAN. We include
examples of our generation results from the TIFA bench-
mark in the Appendix G.6. UNIFIED-IO 2’s FID scores are
slightly higher than the compared models, although we note
that qualitatively the generated images are still very smooth
and detailed.

For text-to-audio generation, we evaluate on the Audio-
Caps [93] test set. AudioCaps consists of 10-second audio
clips, while our model can generate 4.08-second audio at
a time, so we cannot do a direct evaluation on this bench-
mark. Instead, we generate an audio segment based on the
text description and previous audio segments as additional
input; see Appendix G.7 for more details. While this is not
a directly comparable setup to related work, it still gives
a reasonable quantitative measure of our audio generation
abilities. UNIFIED-IO 2 scores higher then specialist mod-
els except the recent latent diffusion model [117], which
shows it’s competitive audio generation ability.

For action, we evaluate using VIMA-Bench [87], a robot
manipulation benchmark containing 17 tasks with text-
image interleaved prompts. Since VIMA’s action space is
action primitives, UNIFIED-IO 2 directly predicts all ac-
tions at once given the initial observation and multimodal
prompt. We report the average success rate for 4-level eval-
uation protocol [87] and compare with the original casual
VIMA policy with object-centric inputs, as well as VIMA-
IMG, a Gato [152]-like policy with image inputs like ours.

5.4. Vision Language Results
We evaluate vision language performance and compare it
against other vision/language generalist models, i.e., mod-
els that are also designed to perform many tasks and can
follow instructions. Results on a collection of 12 vi-
sion/language benchmarks are shown in Table 5. SoTA re-
sults from specialist models are shown for reference.

UNIFIED-IO 2 achieves strong results on VQA, only
passed by the much larger 13B LLaVa model [118] on VQA
v2 [59], and ahead of all other generalist models on Sci-
enceQA [124] and TallyQA [1]. OK-VQA [130] is the ex-
ception. We hypothesize that because it requires external
knowledge, extensive language pre-training is important for
this task, and therefore our reduced performance is since
UNIFIED-IO 2 was not pre-trained as extensively on text as
the dedicated language models used by Qwen-VL [12] and
mPLUG-Owl2 [206].

On referring expression, UNIFIED-IO 2 is ahead of
Shikra [26] and Ferret [207] and matches the scores
achieved by Qwen-VL. On captioning, UNIFIED-IO 2 also
achieves a strong CIDEr score [182] of 130.3, ahead of
Shikra and InstructBLIP [34] but behind Qwen-VL and
mPLUG-Owl2.

Finally, we evaluate using three recently proposed
evaluation-only benchmarks. MMB (MMBench [120])
tests multiple facets of vision language understanding with
multiple choice questions, while SEED-Bench additionally
tests video understanding. We show a detailed breakdown
of our score in the Appendix G.5. Regarding the over-
all score, UNIFIED-IO 2 has the strongest score of any
7B model on the SEED-Bench leaderboard1, and scores
the highest on MMB by 3.8 points. Notably, it excels
LLaVa-1.5 13B model in both benchmarks. UNIFIED-IO 2
also reaches 87.7 on the POPE object hallucination bench-
mark [113], showing that it is not very prone to object hal-
lucination.

Overall, UNIFIED-IO 2 can match or surpass other vi-
sion & language generalist models on these benchmarks
despite encompassing many more modalities and support-
ing high-quality image and audio generation. This shows
that its wide breadth of capabilities does not come at the
expense of vision/language performance.

5.5. Video, Audio and other Results
UNIFIED-IO 2 shows reasonable performance on au-
dio and video classification and captioning, as well as
video question answering, as shown in Table 6. No-
tably, UNIFIED-IO 2 outperforms BLIP-2 [109] and In-
structBLIP [34] on Seed-Bench Temporal [106] by 8.5
points. UNIFIED-IO 2 also achieves better performance
on Kinetics-Sounds [7] than MBT [137], which is trained

1as of 11/17/23
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Method VQAv2 OKVQA SQA SQAI Tally-QA RefCOCO RefCOCO+ RefCOCO-g COCO-Cap. POPE SEED MMB

InstructBLIP (8.2B) - - - 79.5 68.2† - - - 102.2 - 53.4 36
Shikra (7.2B) 77.4 47.2 - - - 87.0 81.6 82.3 117.5 84.7 - 58.8
Ferret (7.2B) - - - - - 87.5 80.8 83.9 - 85.8 - -
Qwen-VL (9.6B) 78.8 58.6 - 67.1⇤ - 89.4 83.1 85.6 131.9 - 38.2
mPLUG-Owl2 (8.2B) 79.4 57.7 - 68.7⇤ - - - - 137.3 86.2 57.8 64.5
LLaVa-1.5 (7.2B) 78.5 - - 66.8⇤ - - - - - 85.9 58.6 64.3
LLaVa-1.5 (13B) 80.0 - - 71.6⇤ 72.4† - - - - 85.9 61.6 67.7

Single Task SoTA 86.0 [29] 66.8 [77] 90.9 [119] 90.7 [34] 82.4 [77] 92.64 [202] 88.77 [187] 89.22 [187] 149.1 [29] - - -

UIO-2L (1.1B) 75.3 50.2 81.6 78.6 69.1 84.1 71.7 79.0} 128.2 77.8 51.1 62.1
UIO-2XL (3.2B) 78.1 53.7 88.8 87.4 72.2 88.2 79.8 84.0} 130.3 87.2 60.2 68.1
UIO-2XXL (6.8B) 79.4 55.5 88.7 86.2 75.9 90.7 83.1 86.6} 125.4 87.7 61.8 71.5

Table 5. Vision-language results on nine tasks [1, 28, 59, 91, 124, 129, 130, 136, 209] and three evaluation-only benchmarks [106, 113, 120].
Results marked with ⇤ are zero-shot and † are evaluated with the open-source releases, and } indicates that our RefCOCO-g results are on
the Google split rather than the UMD split.
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MBT [137] - - - - - - - 52.3 - 85.0
CoDi [174] - - 74.4 - - - - - 78.9 -
ImageBind [69]⇤ 50.0 - - - - - - 27.8 - -
BLIP-2 [109]⇤ - - - 9.2 18.3 - 36.7 - - -
InstructBLIP [34]⇤ - - - 22.1 41.8 - 38.3 - - -
Emu [172]⇤⇤ - - - 24.1 39.8 - - - - -
Flamingo-9B [5]⇤⇤ - 57.4 - 29.4 47.2 41.2 - -
Flamingo-80B [5] - 84.2 - 47.4 - - - - - -

UIO-2L 68.5 37.1 44.0 39.6 48.2 51.0 37.5 37.8 45.7 86.1
UIO-2XL 71.4 41.6 47.1 39.3 50.4 52.0 45.6 44.2 45.7 88.0
UIO-2XXL 73.8 45.6 48.8 41.5 52.1 52.2 46.8 47.7 48.9 89.3

Table 6. Results on action classification, video captioning, VQA,
visual comprehension, audio classification, and audio captioning.
⇤: zero-shot, ⇤⇤: few-shot in-context learning.

solely on that dataset.
In COCO object detection, excluding the ‘stuff’ cate-

gories, our model reached an average precision (AP) of
47.2, with AP50 at 57.7 and AP75 at 50.0. However, it
has difficulties with images containing many objects. Previ-
ous research, like Pix2Seq [27], suggests that autoregressive
models face similar challenges, which can be improved with
extensive data augmentation. Our model’s data augmenta-
tion on object detection is comparatively more limited.

Our model shows weak performance in depth estimation,
with an RMSE of 0.623 on NYUv2 depth dataset [138].
However, fine-tuning specifically for this task improved
the RMSE to 0.423. In our experiment, we simply nor-
malize the depth map with the max depth value in each
dataset. Due to the incompatibility of dense ground-truth

depth across different datasets [150], our model failed to
capture the exact scale in the current prompt, which could
potentially be solved by using better normalization and met-
ric evaluation.

Appendix G shows qualitative visualizations of other
tasks, such as single object tracking, future state prediction
of robotic manipulation, and image-based 3D view synthe-
sis, etc.

6. Conclusion
We introduced UNIFIED-IO 2, the first autoregressive mul-
timodal model that is capable of understanding and generat-
ing image, text, audio, and action. This model was trained
from scratch on a wide range of multimodal data and fur-
ther refined with instruction tuning on a massive multimodal
corpus. We developed various architectural changes to sta-
bilize the multimodal training and proposed a multimodal
mixture of denoiser objective to effectively utilize the multi-
modal signals. Our model achieves promising results across
a wide range of tasks. We show that going from LLMs to
LMMs enables new capabilities and opportunities. In the
future, we would like to extend UNIFIED-IO 2 from the
encoder-decoder model to a decoder-only model. Addition-
ally, we plan to expand the model’s size, enhance the data
quality, and refine the overall model design.
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[150] René Ranftl, Katrin Lasinger, David Hafner, Konrad
Schindler, and Vladlen Koltun. Towards Robust Monocular
Depth Estimation: Mixing Datasets for Zero-Shot Cross-
Dataset Transfer. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 44(3):1623–1637, 2020. 8

[151] Esteban Real, Jonathon Shlens, Stefano Mazzocchi, Xin
Pan, and Vincent Vanhoucke. YouTube-BoundingBoxes: A
Large High-Precision Human-Annotated Data Set for Ob-
ject Detection in Video. In CVPR, 2017. 28, 29

[152] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez
Colmenarejo, Alexander Novikov, Gabriel Barth-Maron,
Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Sprin-
genberg, et al. A Generalist Agent. Transactions on Ma-
chine Learning Research, 2022. 3, 7, 36, 37

[153] Mike Roberts, Jason Ramapuram, Anurag Ranjan, At-
ulit Kumar, Miguel Angel Bautista, Nathan Paczan, Russ
Webb, and Joshua M. Susskind. Hypersim: A Photorealis-
tic Synthetic Dataset for Holistic Indoor Scene Understand-
ing. In ICCV, 2021. 32

[154] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Image
Synthesis With Latent Diffusion Models. In CVPR, 2022.
2, 6, 7, 34

[155] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved Techniques
for Training GANs. In NeurIPS, 2016. 34

[156] Victor Sanh, Albert Webson, Colin Raffel, Stephen H Bach,
Lintang Sutawika, Zaid Alyafeai, Antoine Chaffin, Ar-
naud Stiegler, Teven Le Scao, Arun Raja, et al. Multitask
Prompted Training Enables Zero-Shot Task Generalization.
In ICLR, 2022. 28

[157] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets,
Yili Zhao, Erik Wijmans, Bhavana Jain, Julian Straub, Jia
Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A Plat-
form for Embodied AI Research. In ICCV, 2019. 5, 24, 25,
30

[158] Christoph Schuhmann. LAION-AESTHETICS. https:
//laion.ai/blog/laion-aesthetics/, 2022.
24

[159] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. LAION-
400M: Open Dataset of CLIP-Filtered 400 Million Image-
Text Pairs. In NeurIPS Data-Centric AI Workshop, 2021.
5, 24

[160] Dustin Schwenk, Apoorv Khandelwal, Christopher Clark,
Kenneth Marino, and Roozbeh Mottaghi. A-OKVQA: A
Benchmark for Visual Question Answering using World
Knowledge. In ECCV, 2022. 28

[161] Rico Sennrich, Barry Haddow, and Alexandra Birch. Neu-
ral Machine Translation of Rare Words with Subword
Units. In ACL, 2016. 3

[162] Pierre Sermanet, Tianli Ding, Jeffrey Zhao, Fei Xia,
Debidatta Dwibedi, Keerthana Gopalakrishnan, Christine
Chan, Gabriel Dulac-Arnold, Sharath Maddineni, Nikhil J
Joshi, et al. RoboVQA: Multimodal Long-Horizon Reason-
ing for Robotics. arXiv preprint arXiv:2311.00899, 2023.
31

[163] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual Captions: A Cleaned, Hypernymed,
Image Alt-text Dataset For Automatic Image Captioning.
In ACL, 2018. 5, 24

26452

https://laion.ai/blog/laion-aesthetics/
https://laion.ai/blog/laion-aesthetics/


[164] Noam Shazeer and Mitchell Stern. Adafactor: Adaptive
Learning Rates with Sublinear Memory Cost. In ICML,
2018. 22

[165] Amanpreet Singh, Vivek Natarjan, Meet Shah, Yu Jiang,
Xinlei Chen, Devi Parikh, and Marcus Rohrbach. Towards
VQA Models That Can Read. In CVPR, 2019. 28

[166] Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox, Jesse
Thomason, and Animesh Garg. ProgPrompt: Generating
Situated Robot Task Plans using Large Language Models.
ICRA, 2023. 2

[167] Linda Smith and Michael Gasser. The Development of Em-
bodied Cognition: Six Lessons from Babies. Artificial life,
11(1-2):13–29, 2005. 2

[168] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A Dataset of 101 Human Actions Classes From
Videos in The Wild. arXiv preprint arXiv:1212.0402, 2012.
25, 29

[169] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo
Wen, and Yunfeng Liu. RoFormer: Enhanced Transformer
with Rotary Position Embedding. Neurocomputing, 2023.
20

[170] Yixuan Su, Tian Lan, Huayang Li, Jialu Xu, Yan Wang, and
Deng Cai. PandaGPT: One Model To Instruction-Follow
Them All. arXiv preprint arXiv:2305.16355, 2023. 3

[171] Alane Suhr, Stephanie Zhou, Ally Zhang, Iris Zhang, Hua-
jun Bai, and Yoav Artzi. A Corpus for Reasoning About
Natural Language Grounded in Photographs. In ACL, 2019.
28

[172] Quan Sun, Qiying Yu, Yufeng Cui, Fan Zhang, Xiaosong
Zhang, Yueze Wang, Hongcheng Gao, Jingjing Liu, Tiejun
Huang, and Xinlong Wang. Generative Pretraining in Mul-
timodality. arXiv preprint arXiv:2307.05222, 2023. 3, 7, 8,
34

[173] Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. ViperGPT:
Visual Inference via Python Execution for Reasoning. In
ICCV, 2023. 2

[174] Zineng Tang, Ziyi Yang, Chenguang Zhu, Michael Zeng,
and Mohit Bansal. Any-to-Any Generation via Composable
Diffusion. In NeurIPS, 2023. 2, 7, 8, 18, 34

[175] Yi Tay, Mostafa Dehghani, Vinh Q Tran, Xavier Garcia,
Jason Wei, Xuezhi Wang, Hyung Won Chung, Dara Bahri,
Tal Schuster, Steven Zheng, et al. UL2: Unifying Language
Learning Paradigms. In ICLR, 2023. 4

[176] MosaicML NLP Team. Introducing MPT-7B: A New Stan-
dard for Open-Source, Commercially Usable LLMs, 2023.
Accessed: 2023-05-05. 5, 22

[177] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix, Bap-
tiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar,
et al. LLaMA: Open and Efficient Foundation Language
Models. arXiv preprint arXiv:2302.13971, 2023. 3, 6, 20

[178] Maria Tsimpoukelli, Jacob Menick, Serkan Cabi, S. M. Ali
Eslami, Oriol Vinyals, Felix Hill, and Zacharias Janssen.
Multimodal Few-Shot Learning with Frozen Language
Models. In NeurIPS, 2021. 3

[179] Aaron Van Den Oord, Oriol Vinyals, and Koray
Kavukcuoglu. Neural Discrete Representation Learning. In
NeurIPS, 2017. 3

[180] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona,
and Serge Belongie. The iNaturalist Species Classification
and Detection Dataset. In CVPR, 2018. 28

[181] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin. Attention Is All You Need. In
NeurIPS, 2017. 3

[182] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. CIDEr: Consensus-based Image Description Eval-
uation. In CVPR, 2015. 7, 36

[183] Andreas Veit, Tomas Matera, Lukas Neumann, Jiri Matas,
and Serge Belongie. COCO-Text: Dataset and Bench-
mark for Text Detection and Recognition in Natural Images.
arXiv preprint arXiv:1601.07140, 2016. 25, 29

[184] Homer Walke, Kevin Black, Abraham Lee, Moo Jin Kim,
Max Du, Chongyi Zheng, Tony Zhao, Philippe Hansen-
Estruch, Quan Vuong, Andre He, et al. BridgeData V2:
A Dataset for Robot Learning at Scale. In CoRL, 2023. 28,
30

[185] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal Segment
Networks for Action Recognition in Videos. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 41
(11):2740–2755, 2019. 29

[186] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai
Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren Zhou,
and Hongxia Yang. OFA: Unifying Architectures, Tasks,
and Modalities Through a Simple Sequence-to-Sequence
Learning Framework. In ICML, 2022. 3, 18, 32

[187] Peng Wang, Shijie Wang, Junyang Lin, Shuai Bai, Xi-
aohuan Zhou, Jingren Zhou, Xinggang Wang, and Chang
Zhou. ONE-PEACE: Exploring One General Representa-
tion Model Toward Unlimited Modalities. arXiv preprint
arXiv:2305.11172, 2023. 8

[188] Wenhui Wang, Hangbo Bao, Li Dong, Johan Bjorck, Zhil-
iang Peng, Qiang Liu, Kriti Aggarwal, Owais Khan Mo-
hammed, Saksham Singhal, Subhojit Som, and Furu Wei.
Image as a Foreign Language: BEiT Pretraining for Vision
and Vision-Language Tasks. In CVPR, 2023. 18

[189] Wenhai Wang, Zhe Chen, Xiaokang Chen, Jiannan Wu,
Xizhou Zhu, Gang Zeng, Ping Luo, Tong Lu, Jie Zhou,
Yu Qiao, et al. VisionLLM: Large Language Model is
also an Open-Ended Decoder for Vision-Centric Tasks. In
NeurIPS, 2023. 3

[190] Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
Wang, and William Yang Wang. VATEX: A Large-
Scale, High-Quality Multilingual Dataset for Video-and-
Language Research. In ICCV, 2019. 8, 25, 29

[191] Yizhong Wang, Swaroop Mishra, Pegah Alipoormolabashi,
Yeganeh Kordi, Amirreza Mirzaei, Anjana Arunkumar,
Arjun Ashok, Arut Selvan Dhanasekaran, Atharva Naik,
David Stap, et al. Super-NaturalInstructions: Generaliza-
tion via Declarative Instructions on 1600+ NLP Tasks. In
EMNLP, 2022. 28

26453



[192] Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia
Tsvetkov, and Yuan Cao. SimVLM: Simple Visual Lan-
guage Model Pretraining with Weak Supervision. In ICLR,
2022. 18

[193] Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M Dai, and
Quoc V Le. Finetuned Language Models are Zero-Shot
Learners. In ICLR, 2022. 28

[194] Philippe Weinzaepfel, Vincent Leroy, Thomas Lucas, Ro-
main Brégier, Yohann Cabon, Vaibhav Arora, Leonid Ants-
feld, Boris Chidlovskii, Gabriela Csurka, and Jérôme Re-
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