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Abstract

Foundation segmentation models, while powerful, pose
a significant risk: they enable users to effortlessly ex-
tract any objects from any digital content with a single
click, potentially leading to copyright infringement or ma-
licious misuse. To mitigate this risk, we introduce a new
task “Anything Unsegmentable” to grant any image “the
right to be unsegmented”. The ambitious pursuit of the
task is to achieve highly transferable adversarial attack
against all prompt-based segmentation models, regardless
of model parameterizations and prompts. We highlight
the non-transferable and heterogeneous nature of prompt-
specific adversarial noises. Our approach focuses on dis-
rupting image encoder features to achieve prompt-agnostic
attacks. Intriguingly, targeted feature attacks exhibit bet-
ter transferability compared to untargeted ones, suggesting
the optimal update direction aligns with the image mani-
fold. Based on the observations, we design a novel attack
named Unsegment Anything by Simulating Deformation
(UAD). Our attack optimizes a differentiable deformation
function to create a target deformed image, which alters
structural information while preserving achievable feature
distance by adversarial example. Extensive experiments
verify the effectiveness of our approach, compromising a
variety of promptable segmentation models with different
architectures and prompt interfaces. We release the code
at https://github.com/jiahaolu97/anything-unsegmentable.

1. Introduction

The emergence of promptable segmentation models, exem-
plified by the Segment Anything Model (SAM) [23], has
demonstrated astonishing generalization capabilities across
unseen data distributions and downstream tasks. Never-
theless, while these models offer remarkable convenience,
they also introduce potential risks. They enable covert and
effortless content filching, allowing unauthorized users to
segment and misappropriate visual content with a single
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click. This is particularly concerning for artworks, digital
designs, or promotional images, as segmenting such content
can lead to commercial disputes. On the other hand, com-
bining promptable segmentation models with generative AI
techniques empowers users to perform precise in-place im-
age editing or even 3D generation with a high level of re-
alism [9, 38, 54]. Segmentations taken out of their original
context can be deceptive and may be misused, leading to
unauthorized advertising and the generation of misleading
news content, thereby posing potential societal risks.

The driving force behind this work is the need to ad-
dress the above emerging risks with a proactive technical
solution. We introduce an innovative task called “Any-
thing Unsegmentable”, which aimed at enhancing image
resistance to any promptable segmentation model, conse-
quently thwarting any unlawful attempts at image appropri-
ation or manipulation. In pursuit of this ambitious objec-
tive, we propose a new adversarial attack Unsegment Any-
thing by Simulating Deformation(UAD) emphasizing its re-
markable transferability, as the adversarial perturbations re-
main model-agnostic and prompt-agnostic. This means that
they can effectively confound segmentation foundational
models, irrespective of their specific parameterizations and
prompt formats.

While existing research has explored adversarial attacks
targeting segmentation models [1, 4, 14, 46], our problem
presents unique challenges. Firstly, it deviates from the ex-
isting approaches due to fundamental differences in input
and output spaces. Semantic and panoptic segmentation
models take images as input, producing pixel-level classi-
fication results. Conversely, SFMs generate binary masks
in response to prompts, which can be either spatial (points,
boxes, strokes) or semantic (speech, text, or exemplar refer-
ences). Due to difference in input and output spaces, we
need to devise novel attack objectives instead of encour-
aging pixel-level misclassifications. Secondly, recent stud-
ies [17, 34, 43] have demonstrated impressive robustness
against various corruptions, surpassing the capabilities of
ordinary segmentation models. Crafting attacks that can
effectively transfer across these already robust foundation
models poses a considerable challenge.
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Figure 1. Pipeline of our attack. We optimize a deformation transform as well as the adversarial perturbation, to misguide the promptable
segmentation model towards the deformed image.

We intend to present several key findings in this study.
Firstly, through an examination of a prompt-specific ad-
versarial perturbation algorithm proposed by concurrent re-
search [56], we observed that adversarial noises derived
from specific prompts typically exhibit high variance and
lack generalizability across each other. In simpler terms,
adversarial noise optimized for a specific prompt tends to
overfit to that prompt and does not readily extend to other
prompts. Secondly, we reveal that it is better to perturb
features along the image manifold than against it to cre-
ate a transferable adversarial sample. The adversarial noise
crafted to shift away from original features in source model
may be meaningless to target model and cannot arouse sig-
nificant feature change, thus limiting their transferability. In
contrast, targeted feature attacks bring similar feature dis-
turbance in source and target models. Lastly, we introduce
a novel attack UAD, which optimizes an image deforma-
tion function as well as the adversarial perturbations. With
our approach, the adversarial perturbation introduces shape
misinformation, biasing segmentation results towards that
particular deformation. Since the deformed image retains
some natural image structure, such as textures and object
parts, albeit distorted in shape, the feature distortion can be
well transferred across segmentation models. This approach
allows us to achieve prompt-agnostic and model-agnostic
attacks. Empirical results demonstrate the superior effec-
tiveness and transferability of our method compared to con-
current work and prior methods.

In brief, the contribution of this work is three-fold:

1. We introduce a new challenging task Anything Unseg-
mentable, which aims at prompt-agnostic and highly
transferable adversarial attacks.

2. We reveal interesting findings on the robustness of
promptable segmentation models, including (1) the over-
fitting nature of prompt-specific attacks and (2) targeted
feature disruptions are more transferable than untargeted
ones. The findings somehow disagree with previous ob-
servations on semantic segmentation models or classi-
fiers, indicating the essential differences of their feature
space.

3. We propose a new adversarial attack method UAD as
a progressive attempt to address the Anything Unseg-
mentable task. We utilize differentiable deformation pa-
rameters to get an optimal target deformed image, which
possess considerable structural change as well as feasi-
ble feature distance for adversarial updates. Compared
with existing and contemporary works, our approach
achieves state-of-the-art results, showing the effective-
ness of our method.

2. On the Robustness of Foundation Segmenta-
tion Models

2.1. Objective of Anything Unsegmentable Task

For a promptable segmentation model, it typically contains
an image encoder fθI , a prompt encoder hθP and a mask de-
coder gθM . The promptable segmentation task is designed
to return a valid binary mask M given an image I and a
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prompt P :

M = gθM (fθI (I), hθP (P )). (1)

The prompt P offers high flexibility, encompassing spa-
tial prompts such as foreground/background points, rough
bounding boxes as well as semantic prompts that include
high-level content descriptions like free-form text or mem-
ory prompts encapsulating prior segmentation information.

Our goal is to generate quasi-imperceptible noise r to
produce an adversarial image I+r which significantly alters
its segmentation outcome (e.g., yielding a low Intersection
over Union (IoU)) regardless of the prompt applied. Ad-
versarial perturbation (or adversarial noise) r is constrained
in a feasible set, typically within an infinity norm ball with
radius ϵ, i.e. ∥r∥∞ ≤ ϵ. The Anything Unsegmentable
task demands that the optimal adversarial perturbation r∗

is effective across various prompts and model parameters,
formally represented as a solution to the subsequent opti-
mization problem:

r∗ = argmin
∥r∥∞≤ϵ

E
{θI ,θP ,θM}

E
P

IoU(M,M ′)

= argmin
∥r∥∞≤ϵ

E
{θI ,θP ,θM}

E
P

IoU{gθM (fθI (I), hθP (P )), gθM (fθI (I + r), hθP (P ))}.

(2)

2.2. Prompt-specific Attacks Transfer Poorly

As outlined in the preceding section, the attacker’s aim is to
significantly alter the segmentation mask in response to any
prompt. A straightforward idea is to craft an attack which
deteriorates the segmentation outcome for a given prompt.
This approach was recently employed in Attack-SAM [56].
They introduced an innovative attack objective that mini-
mizes the feature responses within the masked region.

Their technique proved to be potent for the given prompt,
however we found it challenging to generalize to alterna-
tive, unseen prompts. We offer visual evidence in Fig.7
and qualitative results in Tab. 1 as evidence. Zhang et al.
[56] admitted similar findings and they introduced an im-
provement to enhance the transferability: instead of using
only a single prompt, they randomly sample numerous point
prompts, then execute the attack to invalidate the ensem-
bled prompts. While this improvement partially alleviates
the issue, their subsequent work [59] still demonstrates a
noticeable performance gap between attacked prompts and
unseen prompts. This observation highlights the challenge
of prompt-based attacks being prone to overfit and lack gen-
eralizability. We further discuss the heterogenous and over-
fitting nature of prompt-specific attacks in Appendix Sec.1.

2.3. Perturbations Pointing Inside Image Manifold
Transfer Better

To avoid the overfitting behavior of prompt-specific attacks,
we, therefore, endeavor to find an alternative approach for

prompt-agnostic attacks. Considering image encoders have
a more standardized and common functionality compared
to prompt encoders or mask decoders [15, 24, 51, 53], we
opt to launch the attack from feature space of the image
encoder.

There existed many adversarial attack works launching
attacks from feature space [8, 16, 19, 26, 44, 45, 60]. Most
of them fall into the category of untargeted feature disrup-
tion, which maximize the distance between adversarial fea-
tures and original features. The remaining fall under tar-
geted feature perturbation which brings adversarial sample
closer to a specified input within the feature space.

Figure 2. The histogram of feature similarities between adversarial
and clean image, induced by untargeted feature disruption (left)
and targeted feature disruption (right) attacks on source (blue) and
target (red) model.

Previous literature has not provided clear evidence re-
garding the superiority of targeted or untargeted feature dis-
ruption in the context of classification or semantic segmen-
tation. To our surprise, our investigation reveals that these
two approaches exhibit distinct behaviors within the context
of foundational segmentation models. We show in Fig.2
that the feature perturbations resulted by untargeted attacks
across models are significantly ineffective compared to tar-
geted ones, even when the source and target models share
similar architectural designs and training data. We selected
TAP [60] as the untargeted feature disruption attack and AA
[19] as a targeted attack. By evaluating feature similarity
(cosine similarity of vectorized features of clean samples
and adversarial samples) on the first 100 images in SAM-1B
dataset, we found that targeted feature attacks can arouse
similar level of feature disturbance on both models, while
untargeted feature attacks can hardly arouse feature shifting
on target model, suggesting the guidance from inside the
image manifold is indispensable.

We attribute this surprising phenomenon to the inher-
ent differences in tasks and their consequent effects on fea-
ture spaces. Classification or semantic segmentation models
driven by class-discriminative objectives, tend to yield fea-
ture spaces rich in class-sensitive features. Consequently,
any deviation from the original features introduces class-
sensitive features from other classes, resulting in noticeable
feature changes that lead to misclassifications. However
in our case, the task doesn’t involve category-specific in-
formation. Directions shifting away from the original fea-
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Figure 3. Adversarial examples crafted by our approach. In each row, we present, from left to right: the adversarial example, the adversarial
perturbation, the optimized deformation target, attacked segmentation results and the original segmentation results on SAM-B (using a box
prompt), SAM-H (using point prompts), and FastSAM (using a text prompt) respectively. The results demonstrate the high effectiveness
of our approach against unseen models and versatile prompts.

tures, may resemble meaningless random noise to target
model and neglected by its robustness to image corruptions
[18]. In contrast, for in-distribution target images, adversar-
ial perturbation towards them may effectively present a rec-
ognized and consistent update direction across all models.
Briefly put, the adversarial perturbations pointing inside im-
age manifold transfer better than perturbations pointing out-
side the image manifold for foundation segmentation mod-
els [27].

3. Unsegment Anything by Simulating Defor-
mation

Building upon the insights from the preceding sections,
it becomes evident that the target for feature perturbation
should be close to natural images. Nevertheless, selecting a
random target image from a population of images does not
guarantee a sufficient level of structural dissimilarity with
the original image, thus offering room for improvement.

We propose that optimization can be not limited to just
the adversarial example, it should also encompass the tar-
get image. Our approach involves the optimization of a
differentiable image deformation function applied to the
original image to create the target for feature disruption.
In essence, it drives the target to exhibit maximal shape
deformation through optimization process. Our two-stage
pipeline starts by identifying an optimal deformed image

that balances high structural dissimilarity with closeness to
natural image manifold and feasible set of adversarial sam-
ples. In the second stage, we align the features of adversar-
ial sample to features of target deformed image.

3.1. Stage One: Deformation

We aim to make an ideal target deformed image through:

Î = Dw(I). (3)

where Dw is the deformation function to be optimized and
w is the differentiable deformation parameters which con-
trols the deformation function. In practice, the design of Dw

could be highly flexible. We can adopt any form of image
transformation (e.g. rotation, translation, scaling, warping)
to apply deformation as long as it has parameters to opti-
mize.

In our implementation, we use flow fields as w to en-
able refined image deformation. The flow field wff indi-
cates a motion vector for each pixel position in the original
image I . More specifically, for each pixel position I(i,j)

in the original image, the direction of its motion is indi-
cated by flow vector in corresponding position w

(i,j)
ff =

(∆ui,∆vj), and its destination position on deformed image
is Î(i+∆ui,j+∆vj). As the flow vector (∆ui,∆vj) could be
fractional numbers and not necessarily integer, we use the
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differentiable bilinear interpolation [20] to transform input
image with flow field.

Deformation Loss
The primary objective of deformation stage is to optimize
a target image with maximal structural dissimilarity with
original image, to misguide segmentation results. Any loss
which encourages appearance deformations can serve the
purpose, for example structural similarity index measure
(SSIM) as the loss:

LD = SSIM(Î , I). (4)

In practice we found that SSIM is easy to achieve zero
loss, causing deformation to stall. To encourage greater
deformation, we devised a strategy that combines patterns
from various parts of the image. We concurrently opti-
mize multiple flow fields, generating several image distor-
tion results, and then combine them using pre-defined fil-
ter masks. Only a certain part of each deformation result
can pass the filter mask and contribute to the final outcome,
resulting a deformation that incorporates patches. This ap-
proach has proven more effective than just optimizing a sin-
gle flow field, since the resulting patch contrastive patterns
have even more significant structural differences than a sin-
gle distorted target.

Control Loss
One advantage of using a flow field lies in its flexibility, al-
lowing us ample room to customize the regulation of the de-
formation function. For instance, we can apply Total Vari-
ation Loss to the flow field to promote locally smooth spa-
tial transformations. Additionally, we can limit the variance
of flow vectors to encourage globally uniform deformation
like shifting. We employ a combination of variance loss and
total variation loss to preserve local image patterns, creating
the effect of assembling warped and shifted images:

LC = λ1LTV + λ2Lvar

= λ1

all pixels∑
p

∑
q∈N (p)

√
∥∆u(p)−∆u(q)∥22 + ∥∆v(p)−∆v(q)∥22

+λ2

all pixels∑
p

√√√√∥∆u(p)−
all pixels∑

q

∆u(q)

|q|
∥22 + ∥∆v(p)−

all pixels∑
q

∆v(q)

|q|
∥22.

(5)

Fidelity Loss

As previously noted, not all solutions with low structural
resemblance to original image are equally viable targets for
adversarial noise to simulate. Intuitively, we believe even
though there are infinitely many Î with low enough defor-
mation loss LD, their feature distances to the feasible set of
I are not evenly distributed. Some targets among others are
easier for the adversarial perturbation to approach, which
results in better disturbance effect.

We take into the explicit consideration the difficulty for
an adversarial example to approach the target deformed im-
age in the feature space. To reduce the feature distance from
the deformed target to the feasible set of adversarial exam-
ples, we introduce a ‘proxy’ adversarial sample optimiza-
tion process. This proxy sample Iproxy = I + r′ should
be close to the boundary of feasible set, so that the distance
from Î to feasible set N adv(I) can be approximated by the
distance from Î to I + r′. We impose a feature fidelity loss
as negative cosine similarity between features to regulate
the deformation:

LF (Î ,N adv(I))

≈ LF (Î , I + r′∗)

= 1− fθI (Î) · fθI (I + r′∗)

∥fθI (Î)∥2 · ∥fθI (I + r′∗)∥2

where r′∗ = argmin
r′

LF (Î , I + r′∗).

(6)

As a conclusion, our desired target deformed image is an
optimal solution to the following optimization problem:

Î∗ = argmin
Î

LD + λCLC + λFLF , (7)

where λC and λF are coefficients of each loss term. The
optimization can be practically solved by gradient descent
on differentiable deformation parameters w.

3.2. Stage Two: Feature Simulation

Once we have acquired the optimal target deformed image,
the subsequent step aligns with those previous feature per-
turbation works, to encourage the adversarial perturbation
close to a target image. We use the same feature distance
measure as Eq. 6. In order to accelerate the feature simula-
tion effect, we encourage minimizing the feature distance
between adversarial and target images, meanwhile maxi-
mizing the feature distance from original image:

r∗ = argmin
r

LF (Î , I + r)− LF (I, I + r). (8)

4. Experiment
4.1. Experiment Settings

Evaluation metrics

We use three metrics to describe the effects of adversarial
attack, which are mean Intersection over Union(mIoU), at-
tack success rate at IoU< 50% (ASR@50) and attack suc-
cess rate at IoU< 10%(ASR@10). The first metric captures
the average attack performance, and latter two capture how
many output masks are significantly destroyed by adversar-
ial noise, which serve as worst case measurements.

For robust evaluation to test the cross-prompt generaliza-
tion, for each adversarial samples, we take randomness over
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Attacks
Models

SAM-B(white-box) SAM-L SAM-H FastSAM

Evaluation metric mIoU↓ ASR@50↑ ASR@10↑ mIoU↓ ASR@50↑ ASR@10↑ mIoU↓ ASR@50↑ ASR@10↑ mIoU↓ ASR@50↑ ASR@10↑
Attack-SAM-K [56] 68.07± 28.65 24.10 6.87 77.14± 25.05 14.46 4.13 78.71± 24.02 12.93 3.51 38.13± 40.66 59.90 48.43
TAP [60] 63.49± 32.58 29.69 13.12 75.12± 27.83 16.96 6.68 77.36± 26.21 14.55 5.31 37.67± 40.89 60.53 49.45
ILPD [26] 63.21± 32.54 30.15 13.09 75.17± 27.75 16.82 6.59 77.52± 26.02 14.37 5.18 37.84± 40.84 60.30 49.02
AA [19] 61.06± 32.33 32.48 13.11 70.70± 29.74 21.49 8.67 72.87± 28.61 19.13 7.39 32.64± 39.58 65.86 55.10
PATA [59] 61.36± 32.31 32.23 13.04 70.81± 29.73 21.27 8.62 73.07± 28.49 18.66 7.30 32.74± 39.56 65.66 54.97
PATA++ [59] 61.54± 32.22 32.00 12.94 71.02± 29.55 21.16 8.38 73.16± 28.44 18.84 7.22 32.85± 39.60 65.69 54.65

UAD (ours) 51.53± 34.00 43.89 20.79 66.07± 32.04 26.44 12.27 68.96± 30.87 23.42 10.23 28.83± 38.36 69.95 59.63

Table 1. Results of our methods in comparison with prior and contemporary works. Our proposed significantly outperforms other methods
in both terms of average mask destruction (low mIoU) and number of drastically affected masks (high Attack Success Rate).

prompts and report their mean and standard deviation of
IoUs with annotated masks. For evaluating point prompts,
we randomly sample 5 times for each grount-truth mask;
for box prompts, we vary bounding box sizes for 3 times,
resizing them to 80% or 120% of their original size.

Compared baselines
We carried out the experiments of our proposed attack in

comparison with several prior or contemporary works:
1. Attack-SAM-K [56] lowers the feature response globally

given K (usually large, e.g. 400) point prompts over the
whole image;

2. Transferable Adversarial Perturbations (TAP) [60]
drives adversarial features away from original features
in Minkowski distance;

3. Intermediate-level perturbation decay (ILPD) [26] is a
refined version of TAP, keeping an effective adversarial
direction while possessing a greater magnitude;

4. Activation attack (AA) [19] minimizes the distance be-
tween the adversarial feature and a target image feature;

5. Prompt-Agnostic target attack (PATA) [59] introduces a
regularization term to boost the feature dominance of ad-
versarial image over a random clean competition image,
on the basis of AA [19].

6. PATA++ [59] is an enhanced version of PATA that ad-
dresses the conflict between increasing feature similarity
and reducing feature dominance. PATA++ alleviates the
issue by randomly pick one new competition image in
every adversarial update iteration.

Attack settings
In all the experiments, we set adversarial update steps of

final adversarial example to be 40. The results shown in Fig.
3 are adversarial examples crafted using a mild ϵ = 12/255
noise to highlight the attack results. In other experiments, if
not explicitly stated, the perturbation range ϵis set to 8/255
and perturbation step size α is set to 2/255. For our attack,
we set the proxy perturbation iterationsTf to be 4, allowing
the proxy example to approximately reach the feasible set
boundary. The deformation iteration is set to 40.

4.2. Adversarial Examples

We show the effectiveness of our method through some ad-
versarial examples in Fig.3. We have chosen art paintings1,
sculpture designs2, and personal photos3 to underscore the
practical usage of the Anything Unsegmentable task to safe-
guard digital assets, art copyrights, and portrait rights. All
the advresarial samples are crafted on SAM-B model, but
they indeed transfer to SAM-H and FastSAM models, re-
gardless of their changes in parameters or architectures.

Upon examining the results presented in Figure 3, it is
evident that our attack has a profound impact on the de-
struction of masks, regardless of whether the prompts are
spatial or semantic. In white-box scenarios where the tar-
get model is SAM-B, the alterations are most noticeable,
with the bounding box prompt highlighting little more than
meaningless ripples on the image. Even for black-box mod-
els SAM-H and FastSAM, the segmentation masks are sig-
nificantly distorted. The point prompt and text prompt,
which originally could highlight the entire foreground ob-
ject, now, due to the influence of the deformation target,
highlights disjointed parts that cannot form a valid whole
object. Importantly, we can observe clear evidence that seg-
mentation results are influenced by the deformed target. For
example, in the rightmost figure of the second row, the text
prompt ”Marble” highlights an area that was originally a
background in the clean image. Notably, this wrong seg-
mentation aligns with the deformed target image, where a
part of a marble statue is displayed.

4.3. Quantitative Evaluation

We conducted a comprehensive comparison of our approach
with all prior works in Tab. 1. All adversarial examples
were generated from SAM-B, which has the smallest pa-
rameter size among the SAM family of models. Conse-
quently, the other three models (SAM-L, SAM-H, and Fast-
SAM) are considered as black-box models. We selected the
SAM-1B dataset for evaluation [23], which includes a wide
range of diverse images close to real-world scenarios. We
conducted our study on a subset of the SAM-1B, specifi-

1Kaggle Artist dataset
2Art Images dataset
3FLICKR30K dataset
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Figure 4. Our attack show consistent superiority under different
settings of attack perturbation range ϵ.

cally the first 1000 images (sa 1.jpg to sa 1000.jpg in subset
sa 000000.tar). This subset encompasses a total of 98875
masks, which is already a large quantity of masks and has
statistical significance.

The results in Table 1 reveal several intriguing facts.
Firstly, our proposed attack achieves state-of-the-art results
and outperforms other methods by a large margin. Sec-
ondly, upon comparing different methods, we observe that
targeted feature disruption attacks (AA [19] and PATA [59])
perform significantly better than untargeted feature attacks
(TAP [60] and ILPD [26]). This aligns with our earlier
analysis, which indicated that optimizing within the fea-
ture manifold yields better results than moving away from
it. Attack-SAM-K [56] exhibits the weakest performance,
further supporting the notion that prompt-specific attacks
are less effective than feature perturbation attacks.

Interestingly, we observed that FastSAM performs no-
tably poor, exhibiting a very low mean Intersection over
Union (mIoU) and a high portion of masks with drastic
changes. This subpar performance might be attributed to
the fact that the authors of FastSAM [57] trained their model
using only 2% of the SAM-1B dataset. The limited train-
ing data likely led to a lack of robustness in their model ,
making it sensitive to out-of-distribution samples.

4.4. Ablation Studies

4.4.1 On Perturbation Budget ϵ

We conducted experiments using different values of ϵ to as-
sess the effectiveness of our proposed attack across vary-
ing perturbation ranges. Remarkably, even when operat-
ing within a small perturbation range (ϵ = 4), UAD sig-
nificantly outperforms other perturbation methods. This
demonstrates the superiority and versatility of our approach
across a wide range of scenarios.

4.4.2 On Functionality of Loss Terms

We show all loss components in our optimization process
L = LD + λCLC + λFLF are necessary and comple-

mentary. High-level speaking, first two terms controls
deformation to be structural dissimilar(LD) and locally
smooth(LC), while last term LF constrains adversarial fea-
ture distance.

(a) UAD (b) no LD (c) no LC (d) no LF

Figure 5. Deformed targets without each individual loss terms.

We visualize deformed targets in Fig. 5 for cases without
individual loss terms and illustrate the functionality of each
loss term vividly. Without LD, there would be almost no
structural change to misguide segmentation models. With-
out LC , the deformation inside each patch goes too wild to
contain valid natural shape. This will cause a target image
away from the image manifold, resulting in sub-optimal at-
tacks. Without LF the attack is less effective, which we will
further illustrate in the next subsection.

4.4.3 On Proxy Adversarial Update Steps Tf

In each deformation step, we calculate the feature distance
between the deformed target and a proxy adversarial sam-
ple as an estimation of the feature distance from deformed
target to the feasible set of adversarial images. We have
observed that increasing the number of iterations leads to a
more reachable target from the feasible set, allowing for bet-
ter control over the deformation’s development. However,
it’s essential to strike a balance between achieving finer ad-
versarial attack performance and incurring a higher compu-
tational overhead.

The ablation study on Tf presented in Fig. 6 underscore
the importance of incorporating fidelity loss. We illustrate
the changes in relative feature similarity, which is defined as
the feature similarity of I+r to Î minus the feature similar-
ity between I + r and I . Our primary focus here lies in the
last column of the plotted figure, when the deformation tar-
get has been optimized and fixed, and the final adversarial
example is obtained by T steps to simulate the deformation.
The variations in values within the last column indicate how
closely the adversarial image can approach the target by the
end of the optimization process.

When not using any proxy adversarial samples when up-
dating deformation, the relative feature similarity is obvi-
ously lower (black mark in the plot). With more proxy ad-
versarial updates integrated into the process, the final rela-
tive feature similarity increases. We found that increasing
proxy adversarial iterations has diminishing returns. Com-
pared to using the actual attack step count (Tf = T = 40)
to estimate the distance at each step, using fewer steps only
marginally reduces relative feature similarity. In practice,
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Figure 6. The development of relative feature similarity during
deformation steps. More proxy adversarial iterations result in a
closer feature distance between deformed target and adversarial
example, coming at the cost of heavier computation burden.

to avoid introducing excessive computational burden, we
choose Tf = 4 as a balanced point that maintains simu-
lation effectiveness while ensuring efficiency.

We put more ablation studies in the appendix.

5. Related Work
Promptable Segmentation Models. In recent develop-
ments of segmentation techniques, there has been a shift
from closed-set, non-interactive segmentations [2, 13, 22,
36, 37, 55] to more open-vocabulary and interactive set-
tings. This evolution allows for a wide range of interaction
forms, including clicks [3, 31, 50], bounding boxes [23],
scribbles [61], text [5, 10, 23, 48, 49], or contextual in-
formation [42, 61]. Notably, Segment Anything Model
(SAM) [23] has the most remarkable zero-shot ability due
to its massive training dataset containing 11 million im-
ages and 1.1 billion masks. Scaling up training data conse-
quently result in a highly generalized and robust model [18,
23, 35], that nowadays people call them Vision Foundation
Models. Subsequent research improved SAM in terms of
quality [21], latency [57] and semantic awareness [25].
Adversarial Attacks for Segmentation Models. While
most adversarial attack research focuses on classifiers,
some work extends these attacks to segmentation models.
[1] evaluated adversarial attacks on semantic segmentation
models, finding that these models are more robust than clas-
sifiers due to their multi-scale processing. [46] introduced
Dense Adversary Generation, encouraging incorrect recog-
nition on multiple targets simultaneously. [14] proposed
generating universal perturbations guiding networks to cre-
ate desired target segmentations. [4] discussed stealthy at-
tacks on segmentation models, altering targeted labels while
keeping non-targeted labels intact. [11] suggested an effi-
cient attack reducing the number of iterations. These meth-
ods mainly focus on closed-vocabulary, non-promptable

segmentation models for per-pixel classification. Very re-
cently, we notice there are also some work discussing the
adversarial attacks on SAM [12, 18, 35, 56, 59]. Zhang
et al. [56] designed the first adversarial attack towards SAM
which optimizes the input image to have negative feature re-
sponses in mask area. SAM-UAP [12] introduces universal
adversarial perturbations towards SAM from a contrastive
learning perspective. [59] propose Prompt-Agnostic Tar-
getted Adversarial Attacks(PATA) to generate more trans-
ferable samples. In our paper, we selected Attack-SAM and
PATA as two important baselines and show that our method
exhibits higher effectiveness and transferability.
Transferability of Adversarial Attacks. Adversarial ex-
amples often struggle to transfer successfully across various
neural networks, yielding low success rates in black-box
settings. Previous research has explored methods to craft
more transferable adversarial samples. These approaches
encompass techniques like applying gradient momentum
[6, 29, 41], input augmentation [7, 33, 39, 40, 47], feature
disturbance [8, 16, 19, 26, 44, 45, 60], and model ensem-
bling [28, 32]. For a comprehensive and up-to-date survey,
readers are referred to [58]. These research directions offer
various strategies for boosting the transferability of adver-
sarial attacks [52].

6. Conclusion
In this study, we present a novel challenge termed Anything
Unsegmentable, aimed at generating highly transferable,
prompt-agnostic adversarial examples. These examples
are designed to shield individuals from the potential risks
of copyright and privacy violations posed by foundational
promptable segmentation models. Our method Unsegment
Anything by Simulating Deformation (UAD), marks a pro-
gressive step towards addressing this challenge, outper-
forming existing and concurrent approaches. Our analy-
sis of the robustness of foundational segmentation models
uncovers two compelling insights: (1) prompt-specific at-
tacks struggle with transferability, and (2) targeted feature
perturbations towards natural-image-like samples, are sig-
nificantly more effective than untargeted perturbations that
drive features away from their original location. We hope
that our work will provide valuable perspectives on the re-
silience of these powerful vision models and inspire future
research to mitigate the societal issues they may engender.
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