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Abstract

Neural implicit representation of geometric shapes has

witnessed considerable advancements in recent years.

However, common distance field based implicit represen-

tations, specifically signed distance field (SDF) for water-

tight shapes or unsigned distance field (UDF) for arbitrary

shapes, routinely suffer from degradation of reconstruc-

tion accuracy when converting to explicit surface points

and meshes. In this paper, we introduce a novel neural

implicit representation based on unsigned orthogonal dis-

tance fields (UODFs). In UODFs, the minimal unsigned

distance from any spatial point to the shape surface is de-

fined solely in one orthogonal direction, contrasting with

the multi-directional determination made by SDF and UDF.

Consequently, every point in the 3D UODFs can directly

access its closest surface points along three orthogonal di-

rections. This distinctive feature leverages the accurate re-

construction of surface points without interpolation errors.

We verify the effectiveness of UODFs through a range of re-

construction examples, extending from simple watertight or

non-watertight shapes to complex shapes that include hol-

lows, internal or assembling structures.

1. Introduction

Neural implicit representation (NIR) of three-

dimensional (3D) shapes has emerged as a noteworthy area

of research in computer vision and graphics. Currently,

the most prevalent NIR for 3D shapes is based on signed

distance field (SDF), utilized in various applications such

as shape reconstruction [6, 12, 24, 26, 29–32], or new view

synthesis [22, 36, 37, 39, 41]. For any 3D shape, the SDF

value of each spatial point reveals two properties: (1)

whether the point is inside the shape (indicated by the SDF
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sign); (2) the minimal distance among all directions from

this point to the shape surface (depicted by its absolute

value). Despite the advantages offered by SDF based

NIR in multiple contexts, there still exist several scenarios

where SDF is not applicable.

The first scenario arises when 3D shapes are not water-

tight or contain internal structures. In such instances, as-

signing an SDF sign to 3D points might be challenging or

inaccurate. To address this limitation and cater to different

types of 3D shapes, researchers have proposed the unsigned

distance field (UDF) based NIR [8, 10, 14, 20, 35, 40]. Los-

ing the sign, a point’s UDF value represents the minimal

distance traversing all directions to the shape surface, irre-

spective of the point being inside or outside the model.

The second scenario to consider is the accurate recon-

struction of surface points from the NIR of a 3D shape. A

common approach for reconstructing surface points from

SDF or UDF is the marching cubes (MC) algorithm [23].

This process is illustrated in the upper part in Fig. 1 (a). A

neural network makes a prediction of the SDF or UDF val-

ues at grid (cube) corners, affected by fitting errors. The MC

algorithm applicable to SDF then estimates grid edge points

(GEP) through linear interpolation (see the zoom-in grids

for detail). However, this approximation can be inaccurate

for non-linear local shapes due to interpolation errors. As

a result, while employing SDF based NIR, the reconstruc-

tion of surface points suffers from these two types of errors.

Similar fitting and interpolation issues are also encountered

in deep UDF methods, such as those detailed in [8, 14, 35],

where the MC algorithm is extended in various ways to in-

corporate the sign in the UDF at grid corners. Furthermore,

in downstream tasks like 3D object classification and part

segmentation (see [15, 27, 28, 38]), shapes are often repre-

sented by 1024 surface points. The implicit representation

and reconstruction of surface points at this scale requires

large grids in the MC algorithm, further amplifying the in-

terpolation error.
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Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

20551

https://github.com/cscvlab/UODFs


Figure 1. Overview of unsigned orthogonal distance fields (UODFs) based NIR. Unlike SDF or UDF based NIR, which suffers from inter-

polation errors in surface point reconstruction, UODFs directly estimate surface points and mitigate fitting errors by averaging predictions

for each GEP. The upper zoom-in grids illustrate the inaccuracies in traditional methods, where the middle grid edge point (colored purple)

is approximately estimated with the distance values (denoted by two dotted circles) of two grid corners. This estimated GEP is far from its

true position (colored red) which is jointly predicted by values of our UODFs (two red arrows), as shown in the lower zoom-in grids.

In this paper, we propose the unsigned orthogonal dis-

tance fields (UODFs) based NIR. Compared with conven-

tional SDF and UDF, the most distinguishable feature of

UODFs is that the minimal distances to the shape surface

are defined along three orthogonal directions in 3D space.

This means every point in UODFs can directly access its

closest surface points along three orthogonal directions,

when they exist. Fig. 1 (a) depicts how SDF (or UDF) and

UODFs based NIR work in surface points reconstruction.

All predicted distance values denoted by ̂...DF (s) at grid

corners are affected by the fitting error of neural network.

However, in contrast to SDF or UDF, the estimation of GEP

for UODFs does not introduce interpolation errors. Instead,

the fitting error can be mitigated through averaging multi-

ple predictions for each GEP. Therefore, UODFs based NIR

naturally leverages accurate reconstruction for diverse 3D

shapes, three of which are shown in Fig. 1 (b).

The key contributions of this paper are as follows:

• UODFs based NIR is proposed, which allows for the

representation and reconstruction of diverse 3D shapes

(such as watertight, non-watertight, multi-layer, or as-

sembling models) in a unified manner.

• UODFs based NIR enables the direct estimation of

surface points from multiple distant sample points

along three orthogonal directions, facilitating the

interpolation-free reconstruction of grid edge points.

• UODFs based NIR significantly outperforms tradi-

tional SDF or UDF based NIR in terms of reconstruc-

tion accuracy, especially for open shapes or when re-

constructing small point clouds.

2. Related Works
The focus in this paper lies in the neural distance

field representation of 3D shapes, which could be broadly

grouped into three categories for review: SDF based NIR,

UDF based NIR, and other types of neural distance field.

2.1. SDF based Neural Implicit Representation
Signed distance field (SDF), which implicitly represents

a 3D shape as the zero level-set of spatial positions, is popu-

lar in the domain of neural implicit representation. A num-

ber of methods, including but not limited to DeepSDF [26],

IGR [13], SAL [1], FFN [31], SIREN [29], NI [12], and

GC [3], generally use a multi-layer perceptron (MLP) net-

work to globally fit SDF of 3D shapes. Another kind of

methods adopts a local fitting strategy aimed at learning

finer shape details, such as OctField [32], DeepLS [6],

NGLOD [30] and Instant-NGP [24]. The marching cubes

(MC) algorithm is conventionally employed to extract the

zero isosurface of the SDF, enabling simultaneous compu-

tation of grid edge points and meshing. In addition, SDF

is also adopted to implicitly represent geometric shapes

in the task of new view synthesis, such as NeuS [36],

MonoSDF [41], and VOXURF [39]. These SDF based

methods come with the limitation that they can only rep-

resent models that are watertight.

2.2. UDF based Neural Implicit Representation
Unsigned distance field (UDF) based neural implicit

methods are proposed to represent arbitrary shapes, such

as NDF [10], CSP [34], GIFS [40], DeepCurrents [25],

3PSDF [8], NDC [9], MeshUDF [14], and HSDF [35].

Within the context of new view synthesis, there also ex-

ist works to learn UDF from multi-view images, such as

NeUDF [20] and Neural UDF [21]. Although all these ap-

proaches represent open shapes, the prediction and meshing

processes possess unique distinctions. For instance, NDF

firstly obtains discrete points from the predicted UDF, and

then employs the ball-pivoting algorithm [4] (BPA) to ac-

complish meshing; NeUDF follows a similar process but

uses SPSR [18] for meshing surface points. MeshUDF clas-

sifies the signs of grid corners utilizing the UDF gradient,

unlike HSDF that predicts the signs and UDF values of grid

corners simultaneously. Both methods extend MC [23] for
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Figure 2. Sketch of UODFs. For understanding the three orthogonal components, 1D derivative, and possible discontinuity between

adjacent rays of UODFs, refer to the three characteristics concluded in Sec. 3.2.

reconstructing surface points and meshing from UDF, and

thus suffer from the fitting error of neural network and the

interpolation error of adjacent corners, as shown in Fig. 1.

2.3. Other Types of Distance Field
A traditional distance field representation, named di-

rected distance fields (DDFs) [19], was proposed in 2001

to better extract surface points on sharp edges. DDFs are

calculated explicitly and used for subsequent contour re-

construction by extending the MC algorithm. Although our

proposed UODFs based NIR relates to DDFs in terms of

distance field definition, the focal points of our study in-

volve fitting UODFs using neural networks and reconstruct-

ing GEP, which distinguishes our work from [19].

There exist some works [2, 17] studying deep distance

fields along arbitrary directions for 3D shape representa-

tion. While these approaches exhibit flexibility in recon-

structing surface points, the accuracy does not match the

levels achieved by SDF or UDF based NIR.

3. Method
3.1. Definition of UODFs

The unsigned orthogonal distance of a point is defined

as the closest distance from this point to the shape sur-

face, along one orthogonal direction. The term ‘unsigned’

means the distance value can never be negative, and there is

no distinction between the inside and outside of the shape.

In 3D space, there are three orthogonal directions, denoted

by ‘left-right (LR)’, ‘front-back (FB)’ and ‘up-down (UD)’

respectively. Therefore, UODFs portray each shape as a

combination of three distance fields along these orthogonal

directions, which are denoted by UODFLR, UODFFB and

UODFUD, respectively. The ground truth values of UODFs

can be computed by ray stabbing along the three orthogonal

directions. For a normalized model A, its surface is denoted

by S . UODFs are limited in the normalized cube space R
(R∈ [−1, 1]3). Denote the ray crossing a point p along one

orthogonal direction X by ray(p,X) (X∈{LR,FB,UD}).

The subset D(p,X) denotes all intersections of the surface

S with ray(p,X). UODFs of p is expressed by

UODFs(p) = {UODFLR(p), UODFFB(p), UODFUD(p)} (1)

where each UODF of the point is defined by

Figure 3. One slice from the UODFUD of the 3D model ‘Dragon’.

Discontinuity between adjacent ‘UD’ rays occurs when there is a

change in intersection with the surface. The grayscale areas denote

undefined UODFUD in ground truth calculation and our prediction.

UODFX(p) = argmin
q∈D(p,X)

(|p− q|), if D(p,X) ̸=∅ (2)

If D(p,X) is empty, indicating ray(p,X) does not in-

tersect with S , UODFX(p) is not defined by a specific value.

3.2. Characteristics of UODFs
UODFs possess several characteristics that significantly

distinguish them from SDF or UDF.

Characteristic 1. UODFs consist of three unsigned dis-

tance fields along orthogonal directions. Any ray in an or-

thogonal direction corresponds to a 1D unsigned distance

field. Thus, UODFX can be seen as a collection of 1D un-

signed distance fields for all parallel rays in the orthogo-

nal direction X . Fig. 2 depicts three orthogonal rays (red,

green, and blue) of a point, their intersections with the shape

(two surface points for each ray), and their 1D unsigned dis-

tance fields. Here rays and sample points (hollow circles)

locate at grid corners, which will be explained in detail in

Sec. 3.4 and Sec. 3.5.

Characteristic 2. The absolute value of 1D derivative of

each UODF for each point is equal to 1. Fig. 2 also demon-

strates that the UODF values of equally-spaced points on

one side of the surface point form an arithmetic sequence.

Each line segment in the 1D UODF diagrams is at an angle

of ±45 degrees. This characteristic can be utilized to miti-

gate estimation errors of surface points from UODF predic-

tions of multiple sample points.

Characteristic 3. UODFX may display discontinuity be-

tween adjacent parallel rays, which distinguishes it from the

SDF or UDF that is continuous everywhere. Fig. 3 depicts
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Figure 4. Network architecture and processing pipeline. Each UODF is individually regressed using a UODF and mask network. The grid

edge points in one orthogonal direction can be estimated from its UODF, followed by points fusion to form final reconstruction results.

a slice of UODFUD from the 3D model ‘Dragon’. It is ev-

ident that the UODFUD values of two neighborly points on

adjacent rays can differ greatly. This unique characteristic

mirrors the behavior observed in laser sensors and facilitates

the direct and accurate prediction of fine details.

In summary, these three characteristics of UODFs are

beneficial to the accurate estimation of surface points, es-

pecially for diverse complex shapes or small point clouds.

Since each UODF is defined on parallel rays, the UODFs

in the non-occluded outside regions are basically equivalent

to the depth maps captured from six facets of a unit cube.

However, UODFs additionally manage the occluded outside

and inside regions of 3D models in a unified manner.

3.3. Network Architecture and Processing Pipeline

Fig. 4 depicts the proposed network architecture and

processing pipeline. Parallel rays are defined on each or-

thogonal plane. For a spatial point, its 2D coordinates

on one orthogonal plane are employed to extract a 42-

dimensional feature via position encoding (‘P. E.’ mod-

ule). This ray feature, combined with the 3D coordinates,

forms the 45-dimensional input for a multi-layer perceptron

(MLP) network to regress the UODF in this orthogonal di-

rection. Meanwhile, to avoid regressing the UODF of non-

intersected rays which are not defined in Eq. 2, the ray fea-

ture is utilized to regress a 2D mask on this orthogonal plane

(see the area in each silhouette). Subsequently, the surface

points in this orthogonal direction can be estimated from

rays that intersect the shape, which is illustrated in Sec. 3.5.

The networks to regress the UODF and the mask in each

orthogonal direction are a 10∗256 MLP and 3∗256 MLP,

respectively. The supervised mask values are set to be ‘0’

and ‘1’, denoting the outside and inside of the silhouette

respectively. The loss function of UODFX is composed of

three component loss terms:

Lall = λ1 ∗ Lvalue + λ2 ∗ Lder + λ3 ∗ Lpred. (3)

where the weights are experimentally set to: λ1 = 3000,

λ2=50, and λ3=1000.

For any point p, the term Lvalue means that its predicted

UODF value ÛODFX(p) should be equal to the ground truth

UODFX(p), which is formulated as

Lvalue = | ÛODFX(p)− UODFX(p) |. (4)

According to ‘Characteristic 2’ analyzed in Sec. 3.2, the

term Lder denotes the absolute value of UODF derivative

for any point should be equal to 1, which is expressed by

Lder = | |UODF
′

X(p)| − 1 |. (5)

Inspired by the recent works [3, 35], the term Lpred is

extra added to constrain the UODF value of the predicted

surface point of p, which is expressed by

Lpred = | UODFX( p−sign(UODF
′

X(p))∗UODFX(p) ) |. (6)

where sign(UODF
′

X(p)) denotes the direction of derivative.

Consequently, p− sign(UODF
′

X(p))∗UODFX(p) represents

the predicted surface point based on p and UODFX .

3.4. Sampling During Inference and Training

The sampling process entails two steps: rays sampling

upon orthogonal planes and points sampling along rays.

During inference, both rays and points sampling are dis-

cretized. For the sake of comparison with MC [23] and

MeshUDF [14], rays and points are sampled at grid corners

with equal intervals in our experiments. However, UODFs
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also facilitate an arbitrary 2D and 1D pattern for rays and

points sampling, respectively.

During training, due to the possible discontinuity be-

tween adjacent rays analyzed as ‘Characteristic 3’ in

Sec. 3.2, rays sampling is retained as discrete. We densely

sample each ray on three orthogonal planes with a reso-

lution 257*257. For points sampling along rays, we uni-

formly sample 256 points per 10 epochs. This accommo-

dates the continuous nature of 1D UODF along each ray,

allowing for any given point on the ray to accurately predict

its closest surface point.

3.5. Surface Points Estimation for Each Ray

Although points sampling along rays in inference could

be random for UODFs, we sample points with equal inter-

vals in alignment with MC’s resolution. Subsequently, sur-

face points along each ray are estimated from these equally

spaced sample points. Fig. 5 illustrates how the surface

points along a ray are estimated. Three intersection points,

labelled ‘A’, ‘B’, and ‘C’, are represented by solid circles

along this ray. The lower part of the figure depicts the 1D

UODF along this ray, with nine equally spaced points (hol-

low) sampled. Unlike SDF or UDF, each sample point di-

rectly predicts its nearest surface point. As a result, our

UODFs based NIR can potentially estimate a surface point

from several sample points exhibiting consistent gradients.

For instance, the nine sample points on this ray are di-

vided into four segments, each of which estimates one sur-

face point by averaging the predictions of all sample points

within this segment. Both segments ‘S1’ and ‘S2’ estimate a

surface point ‘A’. If the distance between the two estimated

points is smaller than a threshold τ (with τ=1/512 in our

experiments), these two estimated points will be averagely

merged into a new one. For segments ‘S3’ and ‘S4’, if the

distance between their estimation points is greater than τ ,

both the surface points ‘B’ and ‘C’ are reconstructed, al-

though they are on the same grid edge. This phenomenon

occurs when two closed models are close together or a thin

plate model is represented by two planes. However, the MC

algorithm is limited to estimating at most one intersection

point on each grid edge, accompanying the introduction of

the interpolation error. In contrast, our UODF based estima-

tion can reconstruct two intersection points on one gird edge

and smooth out the predictions of multiple sample points,

influenced by the fitting error of the network.

Although the surface point estimation in UODFs makes

use of distance values from sample points on a ray, it is quite

different from another point estimation technique suitable to

SDF and UDF known as sphere tracing [16]. Sphere tracing

adopts a conservative strategy, only permitting ray stepping

in accordance with the unsigned distance from the current

position. On the contrary, one point in UODFs directly pre-

dicts the closest point in an orthogonal direction, irrelevant

to the ray tracing scheme.

Figure 5. Surface points estimation along a ray.

After estimating surface points in three orthogonal

edges, a fusion operation is engaged to derive the final GEP,

as shown in Fig. 4. Specifically, if there are estimated points

on at least 3 adjacent edges, those points are retained. Oth-

erwise, they will be deleted. This strategy is similar to MC

and allows for the effective filtering of isolated points.

3.6. Mesh Extraction

In the aforementioned processing pipeline, UODFs

based NIR reconstructs surface points for arbitrary shapes

in a unified manner. If required, an additional meshing al-

gorithm can be applied to extract mesh from surface points.

We apply a masked Poisson method for mesh extraction

from UODFs, as recommended by NeUDF [33]. Specif-

ically, the screened Poisson surface reconstruction (SPSR)

technique [18] is used to extract a watertight mesh, followed

by masking out the spurious triangles that have a consider-

able distance from the reconstructed points.

Despite the SPSR method, without the fine-tuning of the

default hyper-parameters, generates superior mesh results

in our experiments, we explore another way for simultane-

ous GEP reconstruction and mesh extraction, based on the

MeshUDF [14] algorithm. These findings are preliminary

and will be refined in subsequent research.

4. Experiments

4.1. Dataset and Metrics

Dataset. Over 50 models from a variety of datasets are

used to verify the reconstruction accuracy of diverse shapes.

Specifically, 36 shapes come from Thingi10K [42], includ-

ing 32 shapes in the Thingi32 subset, which is used in

NI [12] and NGLOD [30]. Other shapes come from the

Stanford 3D Scanning Repository [11], ShapeNet [7], the

MGN dataset [5], and our own self-generation.

Metrics. The reconstruction accuracy of grid edge points

(GEP) is evaluated by a L2 Chamfer distance (CD), abbre-

viated as ‘GEP-CD’. For mesh, a L2 CD and normal consis-

tency (NC) of 100, 000 evenly distributed points are mea-

sured, abbreviated as ‘Mesh-CD’ and ‘Mesh-NC’ respec-

tively. For the sake of fair comparison, all reconstructed

meshes from tested NIR methods employ predicted distance
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values of 2573 grid corners, except the experiments with

multiple grid resolutions as shown in Sec. 4.6.

4.2. Reconstruction of Watertight Shapes

The first experiment is to verify the reconstruction accu-

racy of watertight shapes, of which the SDF sign is typically

computed with high accuracy.

Table 1 exhibits the reconstruction metrics on the

Thingi32 dataset, with comparative baselines established

by SIREN [29] and NGLOD [30]. For SIREN, the nor-

mal information is not utilized to make the same supervi-

sion signal across all methods. For NGLOD, we test two

levels of detail: LOD3 and LOD5, each with prior octree

knowledge at maximum resolutions of 163 and 643, respec-

tively. In both CD metrics, UODFs outperforms the SOTA

NGLOD5, even though it has the advantage of locally fit-

ting SDF. From the table, it is also evident that the mesh-

ing technique significantly amplifies the CD, resulting in a

decrease in reconstruction accuracy, whether using the MC

algorithm used by NGLOD or the masking Poisson method

employed in our work.

Fig. 6 visualizes the reconstructed meshes for one

Thingi32 shape “Nandi the Bull’ and one Stanford Scanned

shape ‘Dragon’. Except the three SDF based methods, the

NIR method GIFS [40] dealing with arbitrary shapes also

participates in the comparison. The zoom-in figures indi-

cate that our UODFs based NIR can accurately reconstruct

the fine details of these watertight shapes, but the UDF

based GIFS fails.

4.3. Reconstruction of Nonwatertight Shapes

In this subsection, we evaluate the reconstruction perfor-

mance on non-watertight shapes. The comparison involves

three UDF based methods, including NDF [10], HSDF [35],

GIFS [40]. For the training of the UDF of individual shapes,

2M spatial points are sampled. Table 2 shows the metrics of

10 representative garments from the MGN dataset. The per-

formance of the proposed UODFs based method substan-

tially surpasses the other UDF based methods. It is worth

noting that the accuracy metrics of the non-watertight mod-

els reconstructed by us are on the same level as those of the

watertight models shown in Table 1. However, compared

with the SOTA SDF based NGLOD, UDF based methods

generally perform unsatisfactorily, due to different fitting

strategies and the introduction of additional errors. For ex-

ample, HSDF utilizes the shape feature extracted by 3D

CNN to globally fit UDF and additionally requires to clas-

sify the inside and outside of grid corners.

As displayed in Fig. 7, we show the reconstructed

meshes for the model ‘Bunny’ from the Stanford dataset,

which is unclosed at its bottom. Although the three UDF

based methods reconstruct the complete model without sig-

nificant holes that should not exist, only our method is ca-

pable of reconstructing finer details. The NGLOD5 method

Table 1. Average reconstruction accuracy on Thingi32 dataset.

Metric

Method SDF UODFs

SIREN NGLOD3 NGLOD5 Ours

CD-GEP (*105) ↓ 149 0.684 0.432 0.378

CD-Mesh (*105) ↓ 147 2.99 2.83 2.69

NC-Mesh ↑ 92.3 98.0 98.5 98.4

Table 2. Average reconstruction accuracy on MGN10 dataset.

Metric

Method UDF UODFs

NDF HSDF GIFS Ours

CD-GEP (*105) ↓ 128 13.0 4.95 0.227

CD-Mesh (*105) ↓ 128 14.4 6.1 1.93

NC-Mesh ↑ 90.8 88.0 92.0 99.6

dealing with watertight models also participates in this com-

parison. However, as the SDF sign is incorrectly calculated

near the bottom of the model, there exist obvious artifacts.

4.4. Reconstruction of Complex Shapes

The shapes in the above two subsections are structurally

simple even though they have rich surface details. In this

subsection, we test various shapes with complex structure.

Reconstruction results of two complex shapes as examples

are shown in Fig. 8. The first one is ‘Hilbert Cube’ from the

Thingi10K dataset. Although this shape is watertight, the

topology is challenging since it contains cavities on a large

scale. Moreover, the SDF values may be calculated incor-

rectly in local areas. The second shape is an assembling

model we generate, consisting of the internal multi-layer

non-watertight fish and the external hollow yet watertight

box. It can be seen from the zoom-in views that the three

UDF based methods reconstruct the rough surface of these

two complex shapes. NGLOD5 reconstructs the details of

the watertight shape, but fails for the internal multi-layer

fish. Our UODFs significantly outperforms the others, dis-

playing its superiority.

4.5. Ablation of Loss Function

An ablation study is conducted for the proposed loss

function. Specifically, we use three distinct shapes, which

are the watertight ‘Nandi the Bull’ (in Fig. 6), the non-

watertight ‘Bunny’ (in Fig. 7), and the complex ‘Hilbert

Cube’ (in Fig. 8), to evaluate the reconstruction accuracy

under varying loss configurations. Table 3 reveals that most

results differ slightly, mainly because the loss term Lvalue

plays a most important role in our supervised training.

4.6. Reconstruction at Multiresolution Grids

In this subsection, we conduct reconstructions at vary-

ing grid resolutions, ranging from 323 to 2563. Fig. 9

separately displays the reconstructed meshes and grid edge

points (GEP) of a T-shirt. To demonstrate the superior re-

construction accuracy of our UODF-based NIR, we com-

pare it with MeshUDF [14], which is an extended marching

cube algorithm designed for UDF. MeshUDF is employed

to use ground truth UDF values and gradients at grid cor-
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Figure 6. Reconstructed meshes for two watertight shapes.

Figure 7. Reconstructed meshes for the non-watertight ‘Bunny’.

Table 3. Ablation study of loss function on three shapes. The

metrics in each cell are CD-GEP(*105) ↓, CD-Mesh(*105) ↓, and

NC-Mesh ↑, respectively.

Loss

Shape
‘Nandi the Bull’ ‘Bunny’ ‘Hilbert Cube’

All 0.228 / 2.77 / 98.5 0.170 / 2.73 / 99.2 0.00532 / 12.0 / 92.1

w/o Lder 0.238 / 2.79 / 98.5 0.161 / 2.93 / 99.1 0.00663 / 12.0 / 92.0

w/o Lpred 0.297 / 2.79 / 98.4 0.152 / 2.93 / 99.2 0.256 / 12.3 / 91.9

ners as input. It is worth noting that in this scenario, the

reconstruction results of MeshUDF do not suffer from fit-

ting errors of neural network, but are only affected by inter-

polation errors. For this non-watertight shape, our method

consistently outperforms MeshUDF at all tested grid res-

olutions, even though MeshUDF uses ground truth UDF

as input. Additionally, MeshUDF tends to create spurious

meshes around the edge of the clothing, particularly notice-

able at lower resolutions. We present the GEP reconstruc-

tion results in the lower part of the figure. The metric values

shown, along with the zoomed-in views (located in the mid-

dle and right areas), clearly illustrate that our reconstructed

GEP are in closer proximity to the model surface.

4.7. Discussion and Limitation

Additional experimental results are available in the sup-

plementary material, where UODFs based NIR continues

to exhibit exceptional reconstruction performance. This

achievement can be attributed to several key factors dis-

cussed below:

1) Each UODF enjoys a similar working mechanism to

a planar laser, capable of accurately measuring distances to

the closest surface points along a direction. Notably, UODF

further works within occluded or internal regions.

2) It is verified by us that a discontinuous UODF can be

fitted well by an MLP network. This discovery challenges

the traditional belief that only continuous fields (e.g., SDF)

are suitable for neural network fitting.

3) Interpolation-free estimation of GEP in one orthog-

onal direction, as well as the fusion of points across three

directions, is robust to any model tested. If a mesh is re-

quired, the adopted masked SPSR also performs robustly.

A notable limitation of UODFs is the necessity of three

neural networks, each needed to fit one UODF. This re-

quirement leads to a relatively large number of parameters

in neural networks at present. While certain correlation

has been observed between distance fields in different di-

rections, the prospect of fitting three fields within just one

neural network is an area of interest for future exploration.

5. Conclusion
In this paper, we propose unsigned orthogonal distance

fields (UODFs) based NIR for accurate reconstruction of

diverse 3D shapes. UODFs diverge from conventional

SDF and UDF in their unique characteristics, which in-

clude combining each UODF across three orthogonal direc-

tions, estimating surface points directly from distant sample

points, and exhibiting discontinuities between rays. Conse-

quently, specific neural networks are required for UODFs

regression, along with post-processing methods for surface

points reconstruction. Thorough experiments on more than

50 diverse shapes validate that UODFs consistently outrank

all competitors in a unified reconstruction manner. UODFs

could even outperform traditional meshing methods that use

ground truth SDF or UDF input data. In the future, we plan

to explore more applications of UODFs, such as in real-time

rendering of shapes. The feasibility of fitting UODFs within

a single neural network is also worth pursuing.
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Figure 8. Reconstructed meshes for two representative shapes with complex structure. The metrics from left to right below each shape are

CD-GEP(*105) ↓, CD-Mesh(*105) ↓, and NC-Mesh ↑, respectively.

Figure 9. Reconstruction results at various resolutions of grids. The metrics from left to right below each mesh are CD-Mesh(*105) ↓ and

NC-Mesh ↑ respectively. The metric below each GEP result (along with red ground truth model) is CD-GEP(*105) ↓. The zoom-in views

in the middle highlight the spurious GEP results of MeshUDF. The zoom-in 3D views in the right draw local grids and ground truth GEP

(red spheres), demonstrating the deviation of GEP reconstruction caused by the interpolation error (highlighted by black dotted boxes).
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