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Abstract

Existing 3D mesh shape evaluation metrics mainly focus
on the overall shape but are usually less sensitive to local
details. This makes them inconsistent with human evalu-
ation, as human perception cares about both overall and
detailed shape. In this paper, we propose an analytic metric
named Spectrum Area Under the Curve Difference (SAUCD)
that demonstrates better consistency with human evalua-
tion. To compare the difference between two shapes, we first
transform the 3D mesh to the spectrum domain using the
discrete Laplace-Beltrami operator and Fourier transform.
Then, we calculate the Area Under the Curve (AUC) dif-
ference between the two spectrums, so that each frequency
band that captures either the overall or detailed shape is
equitably considered. Taking human sensitivity across fre-
quency bands into account, we further extend our metric
by learning suitable weights for each frequency band which
better aligns with human perception. To measure the perfor-
mance of SAUCD, we build a 3D mesh evaluation dataset
called Shape Grading, along with manual annotations from
more than 800 subjects. By measuring the correlation be-
tween our metric and human evaluation, we demonstrate
that SAUCD is well aligned with human evaluation, and
outperforms previous 3D mesh metrics. Our project page:
https://bit.ly/saucd.

1. Introduction
With the recent progress of 3D reconstruction and processing
techniques, 3D mesh shapes have increasing applications in
fields such as video games, industrial design, 3D printing,
etc. In these applications, assessing the visual quality of
the 3D mesh shape is a crucial task. To meet the require-
ments of various applications, a promising evaluation metric
should not only reflect the geometry measurement but also
align with human visual perception. Considering that human
beings perceive 3D meshes in both overall shape and local
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Figure 1. An example of how previous spatial domain 3D shape
metrics (Chamfer Distance [6] and UHD [47]) deviate from human
evaluation. we create Mesh A by adding a small pose error to the
ground truth mesh, and by applying a large smoothing kernel to
ground truth, we create Mesh B. Contrary to human perception,
previous spatial domain metrics evaluate Mesh B better than Mesh
A. This indicates that while they are sensitive to general shape
differences, they tend to overlook high-frequency details. Note that
different metrics use different units of measurement.

details, it is a challenging task to find an evaluation metric
that can align well with humans.

Previous metrics have the following disadvantages in this
scenario. Traditional spatial domain measurements such as
Chamfer Distance [6] which calculates the mean distance
between a vertex on one mesh and its nearest vertex on
the other mesh, can accurately measure the spatial distance.
However, it does not guarantee capturing all shape details. In
fact, such measurements in the spatial domain often overlook
finer shape details, as the details tend to get overwhelmed by
the overall shape. Fig. 1 illustrates the discrepancy between
spatial measurements and human evaluation as mesh details
change. Specifically, When we remove the wrinkles from the
ground truth mesh (resulting in Mesh B), the errors detected
by previous metrics are not as significant as when we slightly
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change the pose of the hand (Mesh A). However, humans
tend to sense a significant difference between ground truth
and Mesh B, but barely recognize the difference between
ground truth and Mesh A. To mitigate this problem, previous
works propose learning-based approaches, such as Single
Shape Fréchet Inception Distance (SSFID) [46] based on
learnable features from 3D shape. They compare the differ-
ence between the test mesh and the ground truth mesh in the
latent feature space, and the design is expected to better align
human perception. However, such learning-based methods
would require a large amount of data to train the network.
Their accuracy and generalizability are limited by the size
of the dataset, data distribution, and annotation quality, not
to mention the potential bias in collecting human perception
feedback, which could mislead the learned metrics. An an-
alytic metric that can better explain the shape difference is
thus preferred.

To address the above limitations, we design an analytic-
based 3D shape evaluation metric named Spectrum Area
Under the Curve Difference (SAUCD). Our metric measures
mesh shape differences with a balanced consideration of
both overall and detailed shape, making it better aligned
with human evaluation. To allow our metric to capture detail
variations, we leverage the 3D shape spectrum to decompose
different levels of shape details from the overall shape, with
details corresponding to higher-frequency components. The
advantage of transforming the shape signal into the spec-
trum domain is that the high-frequency details are explicitly
separated from the low-frequency overall shape. Therefore,
it provides appropriate consideration to the information in
different frequency bands, not just the low-frequency infor-
mation of the overall shape in the dominant place. Thus,
the details that human perception cares about will be better
represented. Besides, the frequency analysis method allows
the metric to be mostly analytic and better explained.

We design SAUCD following the above inspiration. To
begin with, both the test mesh and the ground truth mesh
are transformed from the spatial to the spectrum domain us-
ing the discrete Laplace-Beltrami operator (DLBO), which
encodes the mesh geometry information into a semidefinite
Laplacian matrix. Once in the spectrum domain, we compare
the regions under the two spectrums. Our Spectrum Area
Under the Curve Difference metric is defined as the area
of the non-overlapping region under the two spectrums – a
larger area indicates a greater difference. Moreover, to better
align with human evaluation, we further extend our design
by learning a spectrum weight for SAUCD. However, differ-
ent from previous learning-based approaches that use deep
networks, large datasets, and extensive learning processes,
our learning-based method requires the training of a weight
vector. This vector measures the sensitivity of human per-
ception across frequency bands, making the learned metric
better aligned with human perception. We then evaluated the

effectiveness of SAUCD on our provided user study bench-
mark dataset named Shape Grading. Using Shape Grading,
we compare our metrics with previous metrics by calculating
the correlation between each metric and human scoring. In
summary, our contributions are listed as follows.
• We design an analytic-based 3D mesh shape metric named

Spectrum AUC Difference (SAUCD), which evaluates the
difference between a 3D mesh and its ground truth mesh.
Our metric considers both the overall shape and intricate
details, to align more closely with human perception.

• We further extend our design to a learnable metric. The
extended metric explores the human perception sensitivity
in different frequency bands, which further improves this
metric.

• We build a user study benchmark dataset named Shape
Grading which is annotated by more than 800 subjects.
The provided dataset verifies that both versions of our met-
rics are consistent with human evaluation and outperform
previous methods. This dataset can also facilitate 3D mesh
metric evaluation in future research.
Our experiments show that both SAUCD and its extended

version outperform previous methods with good generaliz-
ability to different types of objects.

2. Related Works
Metrics in 3D mesh reconstruction. Chamfer Distance [6]
is a popular metric used in 3D mesh reconstruction tasks
such as those in [21, 24, 32, 35, 45, 48–50]. Other spatial
domain metrics, such as 3D Intersection over Union (IoU)
in [10, 16, 17, 27, 33, 39]. F-score in [4, 15, 40, 43], and Uni-
directional Hausdorff distance (UHD) in [47] are commonly
focused on the geometry accuracy of mesh shapes. These
metrics can provide accurate geometry measurements, but
they are not designed to align with human evaluation. Deep-
learning-based methods such as Single Shape Fréchet Incep-
tion Distance [46] are also used in 3D reconstruction. While
these metrics have the capacity to adapt from human eval-
uation, they are more like black boxes, with performances
subject to dataset size and annotation bias. Moreover, most
previous works miss out on user study validation to verify if
their metrics align with human evaluation.

3D shape generation metrics. Multiple metrics have
been used in 3D shape generation, such as Minimal Match-
ing Distance (MMD) [3], Jensen-Shannon Divergence
(JSD) [22], Total Mutual Difference (TMD) [47], Fréchet
Pointcloud Distance (FPD) [36], etc.. These metrics are
designed to measure the differences between the generated
distributions, while our task is to build a metric to compare
the shape of two meshes.

3D mesh compression and watermarking metrics. Pre-
vious works [8, 12, 23, 41] focused on evaluating mesh
errors in mesh compression and watermarking. Since com-
pression and watermarking pursue mesh errors that cannot
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Figure 2. Our SAUCD metric is designed as follows: A. We use mesh Fourier Transform to analyze the spectrums of test and ground truth
mesh. B. We compare the difference between two spectrum curves by calculating the Area Under the Curve (AUC) difference. C. We further
extend our metric by multiplying the AUC difference with a learnable weight to capture human sensitivity in each frequency band.

be detected by humans, they mainly focus on barely noticed
errors. However, our task is to build a metric that can handle
generally occurring errors that happen in 3D reconstruction
tasks and applications.

3. Proposed Method
Our task is to design a metric aligned with human evaluation
to measure the shape difference between a test triangle mesh
and its corresponding ground truth triangle mesh. Specifi-
cally, given a test mesh M̂ and its ground truth mesh Mgt,
Spectrum AUC Difference (SAUCD) can be abstracted as

d = D(M̂,Mgt). (1)

d is the distance between the test and the ground truth mesh.
In this section, we will elaborate on how the distance func-
tion D(·) is designed.

3.1. Overview

As shown in Fig. 2, our metric is calculated via the following
steps: First, we use mesh Fourier transform to analyze the
spectrums of the test and ground truth mesh (in Sec. 3.2).
Then we leverage each frequency band by calculating the
Area Under the Curve (AUC) difference of the spectrum
curves (in Sec. 3.3). Moreover, we further extended our
metric by multiplying the AUC difference with a learnable
weight to capture the human sensitivity on each frequency
band (in Sec. 3.4). We will discuss each step in detail.

3.2. Mesh spectrum analysis

In order to capture the overall shape as well as shape de-
tails, we choose to decompose the mesh signal into a spec-
trum. Considering the mesh as a function on a discretized
manifold space, we can calculate the spectrum using the
manifold space Fourier transform. In Hilbert space, the
Fourier operator is defined as the eigenfunctions of the

Laplacian operator [14]. The same definition and similar
theories are extended to continuous and discrete manifold
space by [5, 9]. The Laplacian operator on discrete manifold
spaces, i.e. mesh space in our task, is named the Discrete
Laplace-Beltrami operator (DLBO). Similar to the Laplacian
operator in image space that encodes the pixel information by
capturing the local pixel differences [20, 28, 30, 34, 38, 44],
DLBO encodes the mesh shape information by capturing
the local shape fluctuation. The “Cotan formula” defined
in [25] is the most widely used discretization, which can be
represented in matrix form as

Lij =

⎧⎨⎩
∑︁

j∈N(i)
1

2Ai
(cotαij + cotβij), i = j

− 1
2Ai

(cotαij + cotβij), i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i),
(2)

where L ∈ RN×N is the DLBO matrix, with N the vertex
number of the mesh. Lij indicates its entry in ith row and jth
column, which represents the edge weight between vertex
vi and vj . Ai is the mixed Voronoi area of vertex vi on
the mesh. As shown in Fig. 3, the vi’s mixed Voronoi area
is defined as the area of the polygon in which the vertices
are the circumcenters of vi’s surrounding faces. N(i) is the
index set of vi’s adjacent vertices. If vi and vj are adjacent,
αij and βij are the opposite angles of edge (vi, vj) in each of
the edge’s two neighbor triangle faces, respectively (shown
in Fig. 3). If not, αij and βij are not defined and Lij is 0. As
shown in Fig. 2, the DLBO matrix is used for mesh Fourier
transform to get mesh spectrum. We calculate the Fourier
operator U⊤, which is the eigenfunction of L as

L = UΛU⊤, (3)

where Λ is a diagonal matrix whose diagonal elements are
Fourier mesh frequencies.

To ensure the mesh frequencies are non-negative, we
need the DLBO matrix L to be positive semidefinite. Our
experiment in Fig. 7 gives an example of the counterintuitive
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Figure 4. Spectrum Area Under the Curve Difference. We design our metric using the AUC difference of
the spectrums. The blue curve and red curve are the test and ground truth mesh spectrum, respectively. The
purple area in the last graph is the Spectrum AUC Difference. Please find details in Sec. 3.3.

results when there are negative frequencies. However, the
Cotan formula in Eq. (2) does not guarantee to be positive
semidefinite. We provide a simple example in Supplemen-
tary Materials Sec. 3 in which L is not positive semidefinite
when the mesh is not Delaunay triangulated and the mixed
Voronoi areas are not all equal to each other. In our metric
design, we made two small changes to the original Cotan
formula to make it positive semidefinite. a) Inspired by the
symmetric normalization of the topology Laplacian matrix in
[11], we make L symmetric by changing the normalization
parameter Ai into a symmetric normalized manner A

1
2
i A

1
2
j .

b) We replace cotαij+cotβij with | cotαij+cotβij |. This
ensures all the edge weights in the Laplacian matrix to be
non-negative. Thus, our revision of DLBO is defined as

Lij =

⎧⎪⎪⎨⎪⎪⎩
1
2

∑︁
j∈N(i) A

− 1
2

i A
− 1

2
j | cotαij + cotβij |, i = j

− 1
2
A

− 1
2

i A
− 1

2
j | cotαij + cotβij |, i ̸= j ∧ j ∈ N(i)

0, i ̸= j ∧ j /∈ N(i).
(4)

We prove that our revision of the Cotan formula is pos-
itive semidefinite in Supplementary Materials Sec. 2. In
Tab. 5, our experiments show that our DLBO matrix de-
sign outperforms the origin Cotan formula in [25], and the
topology Laplacian matrix defined in [11].

Finally, we obtain the mesh spectrum by acting Fourier
operator on the mesh vertices

Fi =
√︂

G2
i,x +G2

i,y +G2
i,z, G = U⊤v, (5)

where v ∈ RN×3 indicates the 3D coordinates of N mesh
vertices. The result spectrum F ∈ RN . Fig. 5 shows an ex-
ample of the mesh spectrum (left side) and how the meshes
look in different frequency bands (right side). This pro-
vides an illustration of the information contained in different
frequency bands of the mesh spectrum.

3.3. Spectrum AUC Difference

To reduce the noise and normalize the mesh scale, we also
design noise pruning and AUC normalization procedures
before calculating the Spectrum AUC Difference.

Noise pruning. As shown in Fig. 4 process (a), we
prune a small portion of the highest frequency information

to reduce the interference of noise. From the observation
of the first two meshes (A and B) in Fig. 5, we can see
that humans can barely notice the shape differences when
the highest frequency parts are removed. Thus, if we try to
evaluate the mesh shape that aligns with human perception, it
is reasonable to remove high-frequency noise without losing
much information that humans care about. Empirically, we
choose to prune the highest 0.1% frequency information as
noise. Our experiments in Tab. 4 show that this portion is
more consistent with human perception while preserving
good mesh quality.

AUC normalization. Given a spectrum F (λ), its Area
Under the Curve (AUC) can be defined as

∫︁
∞ F (λ)dλ. AUC

normalization means using spectrum AUC to normalize the
mesh scale. If the mesh scale increases by s times in length,
the mixed Voronoi area, i.e. Ai in Eq. (4), will decrease by
s2 times. Thus, each element in the DLBO matrix L will
also decrease by s2 times. Then, according to Eq. (3), the
frequency λ will decrease s2 times to λ/s2, and according to
Eq. (5), the spectrum amplitude F will change to sF because
v is increased by s time and U⊤ is still orthonormal. Then
the area under the spectrum curve (the area boxed with red or
blue lines in Fig. 4) changes as A′ =

∫︁
sF (λ)dλ/s2 = 1

sA.
In our approach, we normalize the area under the spec-

trum curve A to 1 to resolve the scale difference, which
means s = A, λ decreases by A2 times, and spectrum am-
plitude F increases by A times (Fig. 4 process (b)). AUC
normalization fairly normalizes the scale of objects in differ-
ent shapes by only changing the scale, not shape details. It
normalizes the spectrum AUC of all mesh to 1, making the
mesh spectrums differ only in distributions. Our experiments
in Tab. 5 demonstrate this design can bring a fairer compar-
ison of the spectrums and improve the human consistency
of the metric. The experiment also demonstrates that this
design outperforms the spatial domain scale normalization.

Spectrum AUC Difference. In order to capture the differ-
ence between two mesh shapes in the spectrum domain, we
design Spectrum AUC Difference (SAUCD) on the spectrum
analysis results after noise pruning and AUC normalization:

d = D(M̂,Mgt) =

∫︂
λ

|F̂ (λ)− Fgt(λ)|dλ, (6)
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dataset Raw w/ IQR removal
number of valid scores 24304 23775
Scoring range [0, 6] [0, 6]
95% confidence interval 0.318 0.303
Relative 95% confidence interval 5.33% 5.04%

Table 1. Dataset statistics and error analysis.

where F̂ and Fgt are the test and groundtruth mesh spectrum.
As shown in Fig. 4 process (c), our metric is defined as the
AUC difference of the two spectrum curves (the purple area).
In Tab. 5, we compare our design with an alternative design
which changes the amplitude difference |F̂ (λ)− Fgt(λ)| to
energy difference |F̂ (λ)2 − Fgt(λ)

2|. The result shows our
design is more consistent with human evaluation. Besides,
experiments in Tab. 2 show our SAUCD metric aligns well
with human evaluation, and outperforms SOTA metrics un-
der multiple evaluation methods. Experiments in Fig. 8 show
SAUCD has the capability to improve mesh detail qualities
in 3D reconstruction when adapted into training loss.

3.4. Human-adjusted Spectrum AUC Difference

We also provide an extended metric version, in which we
design a learnable weight parameter along the frequency
bands. The weight parameter indicates the adjustment of
human sensitivity to each frequency band. Specifically, we
design the extended metric as

dw = Dw(M̂,Mgt) =

∫︂
λ

w(λ)|F̂ (λ)− Fgt(λ)|dλ. (7)

w(λ) is weight parameters indicating human sensitivity
along frequency bands. Our training loss is defined as

L = λpLplcc + λsrLsrocc + λrLregu, (8)

where Lplcc and Lsrocc are Pearson correlation loss and
Spearman rank order loss. They are defined the same as
Pearson’s linear correlation [29] and Spearman’s rank order
correlation [37]. Lregu = 1/N

∑︁
i(wi − 1)2 is the regu-

larization loss, which regularizes weight wi close to 1. λp,
λsr, and λr are the loss weights of Lplcc, Lsrocc, and Lregu.
More details of the loss functions can be found in Supple-
mentary Materials Sec. 1. Our experiments in Sec. 4.3 show
that after adjustment, the consistency between our metric
output and human-annotated ground truth is improved.

4. Experiments
4.1. Dataset

We build a user study benchmark dataset Shape Grading to
evaluate whether our metric is aligned with human evalua-
tion. The dataset contains the human evaluation scores for
a variety of distorted meshes. Using this dataset, we can

calculate the correlation between metric outputs and human
evaluation scores to see how aligned the test metrics are to
human evaluation.

Dataset design. We choose 12 objects as ground truth 3D
triangle mesh from public object/scene/human mesh datasets
such as [18, 26, 42] and commercial datasets such as [1, 2].
These objects are picked from different categories including
humans, animals, buildings, plants, etc.. For each object, we
synthesize 7 different types of distortions which commonly
occur in 3D reconstruction. For each distortion type we
synthesize 4 distortion levels, which gives us 7 × 4 = 28
distorted objects for every ground truth object. We rotate
and render each distorted object into 3 videos using different
materials for the mesh. In total, we generate 12 × 28 ×
3 = 1, 008 distorted mesh videos. Supplementary Materials
Sec. 4 shows the meshes and distortion types we use in our
dataset.

Human scoring procedure. We use a pairwise com-
parison scoring process similar to [31]. Each subject will
evaluate all 28 distorted objects of one ground truth object
with a certain material. The scoring follows a Swiss system
tournament principle used in [31], in which each subject
takes 6 rounds of pairwise comparison to score the distorted
meshes. After 6 rounds of scoring, the meshes are scored
from 0 to 6. 0 means the object loses in every round and
6 means it wins in every round. This process will largely
reduce the biases among subjects, since the subjects are
compelled to distribute an equal amount of points to the 28
distorted objects. The process will take about 15 minutes
for each subject, avoiding the fatigue problem in [7]. For
every object rendered with every material, we have 24 to 25
subjects scoring it. In total, we have 868 subjects (536 males,
316 females, and 16 others) who give us 868× 28 = 24304
scores. More details of the scoring procedure can be found
in Supplementary Materials Sec. 5.

Outlier detection. We use the interquartile range (IQR)
method [13] which is widely used in statistics to detect and
remove outliers. For each distorted mesh, we first find the
25 percentile and the 75 percentile of the scores. The score
range in between is called the IQR range. We remove the
scores that are 1.5IQR smaller than the 25 percentile or
1.5IQR larger than the 75 percentile. Our dataset error anal-
ysis in Tab. 1 shows, that by removing 2.2% of the scores
using IQR, we can decrease the uncertainty of the final scor-
ing result by nearly 6%.

Dataset error analysis. We analysis the average 95%
confidence interval of our dataset scores in Tab. 1. The
confidence interval of score x can be calculated as σx̄ =
z0.95 × σ/

√
N where σ is the standard derivation of x, N

is the number of valid scores, and z0.95 ≈ 1.96. We report
the average 95% confidence interval and the relative 95%
confidence interval (which is the confidence interval divided
by the scoring range). The result shows that dataset scoring
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Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [6] 0.54 0.15 -0.10 0.57 -0.06 -0.12 -0.20 0.07 0.04 0.30 -0.20 0.17 0.097
Point-to-Surface 0.45 0.19 -0.04 0.66 -0.08 -0.25 -0.32 -0.20 0.01 0.13 -0.21 -0.12 0.017
Normal Difference 0.46 0.11 0.06 0.28 0.11 0.21 0.29 0.47 0.27 0.39 0.11 0.27 0.253
IoU [16] 0.60 0.63 0.01 0.51 0.30 0.02 -0.07 0.20 0.14 0.47 -0.09 -0.01 0.225
F-score [43] 0.58 0.09 0.05 0.33 0.03 0.06 0.16 0.34 0.27 0.25 0.01 0.34 0.208
SSFID [46] 0.71 0.74 -0.04 0.74 0.39 0.24 0.13 0.32 0.25 0.64 0.25 -0.02 0.363
UHD [47] 0.29 0.22 0.11 0.15 -0.04 0.18 0.41 0.55 0.13 0.18 0.25 0.33 0.231
SAUCD (Ours) 0.73 0.21 0.60 0.63 0.31 0.51 0.83 0.65 0.77 0.80 0.69 0.08 0.567
Adjusted SAUCD (Ours) 0.79 0.19 0.56 0.64 0.36 0.54 0.79 0.76 0.75 0.77 0.67 0.36 0.598

a. Pearson’s linear correlation coefficient.

Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [6] 0.33 0.14 -0.09 0.43 -0.08 -0.06 -0.15 0.17 -0.04 0.24 -0.16 0.22 0.079
Point-to-Surface 0.42 0.39 0.14 0.59 0.11 0.05 -0.10 0.20 0.18 0.40 -0.11 0.18 0.205
Normal Difference 0.44 0.22 0.33 0.42 0.19 0.29 0.33 0.56 0.33 0.32 0.21 0.34 0.331
IoU [16] 0.57 0.61 0.28 0.50 0.36 0.21 0.12 0.31 0.262 0.56 0.03 0.30 0.342
F-score [43] 0.47 0.25 0.20 0.52 0.21 0.11 0.07 0.36 0.30 0.42 -0.01 0.35 0.27
SSFID [46] 0.63 0.81 0.28 0.70 0.33 0.23 0.10 0.33 0.32 0.65 0.16 0.34 0.407
UHD [47] 0.38 0.20 0.11 0.32 0.13 0.35 0.41 0.60 0.06 0.27 0.37 0.35 0.296
SAUCD (Ours) 0.79 0.25 0.57 0.59 0.36 0.56 0.83 0.79 0.69 0.69 0.83 0.24 0.598
Adjusted SAUCD (Ours) 0.83 0.21 0.55 0.59 0.38 0.60 0.82 0.80 0.69 0.68 0.75 0.42 0.611

b. Spearman’s rank order correlation coefficient.

Metrics
Object No.

1 2 3 4 5 6 7 8 9 10 11 12 Overall

Chamfer Distance [6] 0.25 0.14 -0.08 0.31 -0.04 -0.02 -0.09 0.15 0.013 0.19 -0.07 0.22 0.080
Point-to-Surface 0.33 0.30 0.07 0.45 0.10 0.08 -0.03 0.17 0.13 0.30 -0.01 0.16 0.171
Normal Difference 0.34 0.16 0.17 0.31 0.18 0.22 0.26 0.44 0.25 0.23 0.16 0.27 0.250
IoU [16] 0.42 0.44 0.24 0.37 0.28 0.22 0.14 0.26 0.20 0.41 0.10 0.23 0.275
F-score [43] 0.37 0.17 0.14 0.42 0.15 0.11 0.09 0.28 0.23 0.34 0.01 0.30 0.216
SSFID [46] 0.48 0.62 0.24 0.51 0.25 0.24 0.12 0.29 0.26 0.48 0.17 0.23 0.322
UHD [47] 0.27 0.13 0.07 0.22 0.09 0.26 0.29 0.42 0.048 0.19 0.28 0.24 0.209
SAUCD (Ours) 0.60 0.16 0.42 0.41 0.27 0.45 0.65 0.57 0.55 0.47 0.60 0.19 0.445
Adjusted SAUCD (Ours) 0.64 0.14 0.40 0.41 0.29 0.48 0.63 0.59 0.55 0.45 0.57 0.29 0.453

c. Kendall’s rank order correlation coefficient.

Table 2. Correlations between different metrics and human annotation. “SAUCD” is our basic version metric. “Adjusted SAUCD” is the
human-adjusted version of our metric. The ranges of all three correlation coefficients are [−1, 1], and the higher the better.

is accurate with a 5% error range with IQR outlier removal.
Evaluation methods. We use 3 different evaluation meth-

ods to evaluate the correlation between our metrics and
the human scoring (ground truth) on our Shape Grading
benchmark dataset. Pearson’s linear correlation coefficient
(PLCC) [29] is used to evaluate the linear alignment be-
tween our metric and human perception. We also used Spear-
man’s rank order correlation coefficient (SROCC) [37] and
Kendall’s rank order correlation coefficient (KROCC) [19]
to evaluate the ranking order correlation between our metric
and human perception. The possible ranges of 3 metrics
are all [−1, 1]. Higher numbers mean stronger correlations.
More details of the three evaluation methods can be found
in Supplementary Materials Sec. 1.

4.2. Implementation details

We implement our basic version metric following Eq. (6).
F̂ (λ) and Fgt(λ) in Eq. (6) are both piece-wise functions, so
we implement the integration by simply adding every piece

area together. We implement our human-adjusted version
following Eq. (7). We use a 20-dimensional weight w(λ) to
avoid overfitting. We interpolate w to all frequencies of the
ground truth and test meshes and element-wisely multiply
them to the spectrums. In spectrum weight training, SROCC
and PLCC are used as part of the loss function as Eq. (8).
KROCC is not used in training but only for testing. We use a
k-fold strategy for training the human-adjusted weight. Each
time we choose 1 object for testing and the rest 11 objects
for training, which means k = 12. More implementation
details can be found in Supplementary Materials Sec. 1.

4.3. Quantitive and qualitative results

SOTA comparison. Tab. 2 shows our results compared
to previous 3D mesh shape metrics. We evaluated the cor-
relation between each metric and the human scoring via
three different evaluation methods. We observe that a) with-
out any learning-based design, our metric outperforms the
SOTA learning-based (SSFID) and non-learning-based met-
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Figure 5. An example of mesh spectrum curve: We do mesh Fourier transform on the “Origin” mesh and show the spectrum in the left
graph. The λ-axis is the eigenvalues of the DLBO matrix, the larger the higher frequency. We also show how mesh changes when gradually
removing high-frequency information (mesh A to G). The frequency bands of the meshes are shown as the colored arrows in the left graph.

rics (Chamfer Distance, IoU, F-score, and UHD), b) our
extended version metric with learned weights has better
linearity and slightly better ranking order correction with
human evaluation, and c) our results on different objects
show that our metrics have good generalizability.

Spectrum example. We first show an example of mesh
spectrum in Fig. 5. We decompose the “origin” mesh us-
ing the Fourier Transform and get the resulting spectrum
(top-left graph). The meshes on the right (from mesh A
to G) are generated by gradually removing high-frequency
information. The frequency bands of the meshes are shown
as colored arrows in and under the graph. As we see, the
details gradually disappear as we remove high-frequency
information.

Frequency band separation. We explored the consis-
tency between human perception and the information ob-
tained from every frequency band. Specifically, we separate
the frequency band exponentially and build metrics only
using information from that frequency band. The results
are shown in Tab. 3, we find the frequency bands [0, 0.001]
and [0.01, 0.03] have the best consistency with human per-
ception. Moreover, it shows that if we put all frequencies
together, they can achieve better results.

Trained weight. We show our trained weights in Human-
adjusted metric in Fig. 6. Different lines represent different
folds, and the bold purple line is the average weight. We can
see the weights trained on each fold have similar patterns.
We also observe that the weight curves have a small peak
in the range A and two much larger peaks between A and
B, which means our extended metric relies more on the
information between A and B. We show an example of mesh
shapes in the range A, B, and C at the bottom of Fig. 6. Mesh
A obviously has fewer details than Mesh B, and the weight
curve shows that this difference is what the learning process
tries to emphasize.

Negative frequencies. In Fig. 7 we illustrate how our
revised Cotan formula DLBO in Eq. (4) improves fre-

A

B

C

A B C

Figure 6. Learned spectrum weights on all 12 folds. The name of
colorful thin lines means the test object name of that fold. The bold
purple line is the average weights of all folds. We also show some
examples of mesh shape information in different frequency bands.
Frequency band A is [0, 0.0075), B is [0, 0.03), and C is [0, 0.05).

quency analysis compared to the original Cotan formula
in Eq. (2) [25]. The first and second rows are the results of
the original Cotan formula DLBO and our revised Cotan for-
mula DLBO, respectively. The original Cotan formula can
yield negative frequencies due to its lack of positive semidef-
initeness, whereas our revision ensures all frequencies are
non-negative. For both objects in the figure, we remove dif-
ferent portions of high-frequency information and show the
remaining low-frequency parts (resulting in “Filtered mesh
1” and “Filtered mesh 2”). For the left object, notice the
counterintuitive sharp shapes in the red circle when using
the Cotan formula. The right object is a much more severe
case. Sharp shapes in low-frequency parts show improper de-
composition and high-frequency aliasing with low-frequency
shapes, making the Cotan formula unsuitable for spectral
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All frequencies are 

non-negative

The original Cotan 

formula DLBO:

Having negative 

frequencies

Filtered mesh 1Origin mesh Filtered mesh 2 Filtered mesh 1 Filtered mesh 2Origin mesh

Figure 7. Counterintuitive low-frequencies information if some of the mesh frequencies are negative. We can see if we remove the
high-frequency part of the mesh (resulting in “Filtered mesh 1” and “Filtered mesh 2”) using the original Cotan formula, the mesh’s
low-frequency parts show artifacts (sharp shapes). The red circles show the artifacts in the left object. The right object shows a case when
these artifacts occur much more often. These artifacts do not occur using our revised Cotan formula DLBO.

Frequency band PLCC ↑ SROCC ↑ KROCC ↑
[0, 0.001) 0.434 0.515 0.376
[0.001, 0.003) 0.240 0.409 0.281
[0.003, 0.01) 0.255 0.455 0.340
[0.01, 0.03) 0.421 0.528 0.391
[0.03, 0.1) 0.287 0.351 0.250
[0.1,∞) 0.318 0.192 0.155
[0,∞) 0.567 0.598 0.445

Table 3. Results when building metrics
using each frequency band separately. The
bottom row is our proposed metric.

Pruning Portion PLCC ↑ SROCC ↑ KROCC ↑
0% 0.513 0.549 0.393
0.1% 0.567 0.598 0.445
1% 0.554 0.602 0.462
10% 0.517 0.581 0.442
20% 0.503 0.587 0.445

Table 4. Results with different pruning por-
tions. The metric achieves better results
with pruning portion to be 0.1% or 1%. We
use pruning portion as 0.1% in our design.

Modules PLCC ↑ SROCC ↑ KROCC ↑
Topology Laplacian [11] 0.298 0.327 0.235
Cotan formula [25] 0.417 0.470 0.340
Energy difference 0.268 0.315 0.215
w/o normalization 0.257 0.507 0.353
Spatial normalization 0.269 0.542 0.392
Ours 0.567 0.598 0.445

Table 5. Module replacement. We replace each
module of our metric with alternative designs to
verify the design of each module.

Input Images w/ SAUCD Lossw/o SAUCD Loss Ground Truth

Figure 8. We Adapt SAUCD into a loss function and use it in
monocular-image-based 3D hand reconstruction. From left to right:
input images, reconstruction result w/o SAUCD loss, reconstruction
result w/ SAUCD loss, and ground truth mesh. We can see that the
enhancement of SAUCD loss in mesh details is clearly noticeable.

mesh comparison. In contrast, our revised formula yields
smooth low-frequency components without these artifacts.

Noise pruning portion. Tab. 4 shows our SAUCD
metric performance by changing the noise pruning portion
(Sec. 3.3). The metric achieves better results when the prun-
ing portion is 0.1% or 1%. In our proposed metric, we
choose the pruning portion to be 0.1% to best avoid possible
high-frequency information loss.

Module replacement. Tab. 5 shows our SAUCD metric
performance by replacing some modules with alternative de-
signs. First, we replace our revision of the discrete Laplace-
Beltrami operator in Eq. (4) with topology Laplacian matrix
in [11] and “Cotan formula” in [25]. Second, we change
the AUC difference defined in Eq. (6) into the energy differ-
ence, which means changing |F̂ (λ)−Fgt(λ)| in Eq. (6) into

|F̂ (λ)2−Fgt(λ)
2|. In the third experiment, we replace AUC

normalization (in Sec. 3.3) with spatial normalization, where
we normalize the meshes by their maximum range along
all 3 spatial axes. We also removed the AUC normaliza-
tion module for another comparison. Our experiments show
SAUCD has better performance than alternative designs.

Adapting SAUCD to loss function. We adapted our
metric into a loss function to enhance the visual quality of
3D mesh reconstructions, as evident from the hand recon-
struction results in Fig. 8. Details on the experiment’s imple-
mentation are available in Supplementary Materials Sec. 7.
From this experiment, we can see that the enhancement of
SAUCD loss in mesh details is clearly noticeable.

Visualized examples. We visualize examples in our
dataset and their evaluation result using different metrics
in Supplementary Materials Sec. 6.

5. Conclusions
In order to propose a 3D shape evaluation that better aligns
with human perception, we design an analytic metric named
Spectrum AUC Difference (SAUCD). Our proposed SAUCD
leverages mesh spectrum analysis to evaluate 3D shape
that aligns with human evaluation, and its extended version
Human-adjusted SAUCD further explores the sensitivity of
human perception of each frequency band. To evaluate our
new metrics, we build a user study dataset to compare our
metrics with existing metrics. The results validate that both
our new metrics are well aligned with human perceptions
and outperform previous methods.
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ius Preda. Assessing visual quality of 3-d polygonal models.
IEEE Signal Processing Magazine, pages 80–90, 2011.

[9] William L Burke, William L Burke, and William L Burke.
Applied differential geometry. Cambridge University Press,
1985.

[10] Zhiqin Chen, Vladimir G Kim, Matthew Fisher, Noam Aiger-
man, Hao Zhang, and Siddhartha Chaudhuri. Decor-gan: 3d
shape detailization by conditional refinement. In CVPR, pages
15740–15749, 2021.

[11] Fan RK Chung. Spectral graph theory. American Mathemat-
ical Soc., 1997.

[12] Massimiliano Corsini, Mohamed-Chaker Larabi, Guillaume
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