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Abstract

Recently, Vision-Language Model (VLM) has greatly ad-
vanced the Human-Object Interaction (HOI) detection. The
existing VLM-based HOI detectors typically adopt a hand-
crafted template (e.g., a photo of a person [action] a/an
[object]) to acquire text knowledge through the VLM text
encoder. However, such approaches, only encoding the
action-specific text prompts in vocabulary level, may suffer
from learning ambiguity without exploring the fine-grained
clues from the perspective of interaction context. In this
paper, we propose a novel method to discover Syntactic
Interaction Clues for HOI detection (SICHOI) by using
VLM. Specifically, we first investigate what are the essen-
tial elements for an interaction context, and then establish
a syntactic interaction bank from three levels: spatial rela-
tionship, action-oriented posture and situational condition.
Further, to align visual features with the syntactic interac-
tion bank, we adopt a multi-view extractor to jointly aggre-
gate visual features from instance, interaction, and image
levels accordingly. In addition, we also introduce a dual
cross-attention decoder to perform context propagation be-
tween text knowledge and visual features, thereby enhanc-
ing the HOI detection. Experimental results demonstrate
that our proposed method achieves state-of-the-art perfor-
mance on HICO-DET and V-COCO.

1. Introduction
Human-Object Interaction (HOI) detection aims to localize
humans and objects from a given image, and also predicts
the semantic relationships between them. A HOI instance
can be represented as a triplet <human, action, object>. In
recent years, HOI detection has attracted enormous atten-
tion, due to its significant role in a wide range of high-level
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Figure 1. Comparison between previous VLM-based HOI detec-
tors and our SICHOI. (a) Previous VLM-based methods adopt a
handcrafted template to acquire action-specific knowledge in vo-
cabulary level. (b) Our SICHOI model establishes a syntactic
bank from three levels: spatial relationship, action-oriented pos-
ture and situational condition, which can provide informative and
clear clues to distinguish different interactions.

computer vision tasks, such as video analysis [8], human
action recognition [37] and image retrieval [50].

The existing HOI detection methods can be roughly di-
vided into one-stage and two-stage methods. The early one-
stage ones try to perform object detection and interaction
classification simultaneously, and then introduce additional
auxiliary priors, e.g., interaction points [29, 49] and union
boxes [20] to group HOI pairs. The recent transformer-
based methods [43, 65, 69] directly predict HOI triplets
without explicitly modelling human-object context, but
may suffer from insufficient exchange between contextual
clues [39]. Contrarily, the two-stage methods [11, 14, 61]
first perform object detection and then explicitly infer the
semantic relationships between each pair of human and ob-
ject. They usually adopt off-the-shelf object detectors, e.g.,
DERT [3] to obtain object detections, and pay more atten-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

28212



tion on extracting interaction context from HOI pairs. De-
spite a lot of efforts, the HOI detection performance can’t
be further improved by only considering visual features.

Recent researches [9, 36, 62] have found that Vision-
Language Model (VLM) [27, 41] has excellent performance
in addressing open-vocabulary problem, due to its success
in unifying visual representation and linguistic/text knowl-
edge. Inspired by this, some methods [55–57, 63] apply the
VLM to HOI detection and have achieved significant im-
provement. However, the existing VLM-based HOI detec-
tors typically adopt a hand-crafted template (e.g., a photo of
a person [action] a/an [object]) to acquire text knowledge,
and they may suffer from learning ambiguity by only en-
coding the action-specific text prompt in vocabulary level.

As shown in Fig. 1(a), the VLM-based method encodes
visual feature and text prompt separately, and then con-
ducts cross-modal learning for HOI classification. Here, the
HOI text prompt is generated by only using “action” and
“object”, which may cause learning ambiguity for similar
interactions, e.g., “a person sitting a bed”, “a person lying a
bed” and “a person sitting a chair”. The three text prompts
have high similarity in the embedding space, and can’t pro-
vide discriminative guidance for the visual encoder. Thus,
we first investigate what are the essential elements for an in-
teraction context, and then establish a syntactic interaction
bank from three levels: spatial relationship, action-oriented
posture and situational condition, as shown in Fig. 1(b). For
the learning ambiguity, the interaction bank can provide in-
formative and clear clues to distinguish different interac-
tions. E.g., for “a person sitting a bed”, the spatial rela-
tionship supplies preposition prompt “a person on a bed”,
the action-oriented posture offers posture prompt “a per-
son sitting with bent leg”, and the situational condition pro-
vides the environment prompt “a person in the bedroom”.
To align visual features with the syntactic interaction bank,
we also propose a multi-view extractor to jointly aggregate
visual features from instance, interaction, and image levels
accordingly. Besides, we introduce a dual cross-attention
decoder to facilitate context propagation and exchange be-
tween prior text prompts and the visual features.

Thus, in this paper, our motivation is to discover the
most valuable text prompts to enhance the HOI detection.
First, we adopt different well-designed templates to gener-
ate HOI text prompts from three levels for a specific inter-
action: spatial relationship (“a person [preposition] a/an
[object]”), action-oriented posture (“a person [action] with
[action-oriented posture]”) and situational condition (“a
person in the [environment]”). Unlike the previous meth-
ods, our work aims to exploring fine-grained text clues from
the perspective of interaction context. It minimizes the rep-
resentation gap between visual feature and text knowledge,
and thus can promote the HOI detection. To summarize, our
contributions are four-fold:

• To eliminate the learning ambiguity of handcrafted text
prompt, we establish a syntactic interaction bank from
three levels: spatial relationship, action-oriented pos-
ture and situational condition.

• Guided by the syntactic interaction bank, we introduce
a multi-view extractor to jointly aggregate visual fea-
tures from instance, interaction, and image levels ac-
cordingly.

• We propose a dual cross-attention decoder to facilitate
context propagation and exchange between prior text
prompts and the visual features, thereby enhancing the
HOI detection.

• We evaluate our proposed SICHOI on two public
benchmarks: V-COCO and HICO-DET, and it can
achieve superior performance than other state-of-the-
art methods (V-COCO of 71.1, HICO-DET of 45.04).

2. Related Work
2.1. CNN-Based HOI Detection

Early HOI detection methods are typically relied on CNN
architectures, which can be divided into one-stage and two-
stage methods. The early one-stage methods [20, 29, 49, 52]
attempt to perform object detection and interaction classifi-
cation simultaneously, by introducing auxiliary priors. E.g.,
UnionDet [20] groups the pairs of humans and objects by
a union region, while PPDM [29] additionally predicts the
interaction point to regularize the human and object detec-
tion. In other hand, the two-stage ones [1, 10, 11, 14, 23,
34, 45, 47, 54, 64] firstly localize humans and objects, and
then reason the semantic relationships between each pair of
human and object. To learn discriminative interaction fea-
ture for HOI detection, they further explore spatial relation-
ship [34], human pose [14], gaze attention [54] and seman-
tic feature [1, 11, 23, 34, 64] with extra branches. Addition-
ally, VSGNet [45] adopts Graph Convolutional Network
(GNN) [42] to aggregate interaction feature by regarding
humans/objects as nodes and their actions as edges. In con-
trast, CHGN [47] models different humans and objects as
different kinds of nodes, and incorporates interactions both
from intra-class nodes and inter-class nodes, respectively.

2.2. Transformer-Based HOI Detection

Transformer [46], with a good capability of capturing
the long-range dependency, has advanced many computer
vision tasks. Similar to the CNN-based counterparts,
the transformer-based HOI detectors can also be catego-
rized into one-stage [2, 19, 24, 31, 43, 66, 69] and two-
stage methods [22, 33, 53, 59]. For one-stage ones,
HOIFormer [68] pioneeringly predicts the HOI triplets in an
end-to-end manner where a quintuple matching loss is pro-
posed to enable a unified supervision. HOTR [21] designs
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Figure 2. The pipeline of SICHOI model. It mainly includes three components: Multi-View Visual Extractor, Syntactic Bank and Dual
Cross-Attention Decoder. Firstly, an input image I is fed into CNN and transformer to obtain the human and object bounding boxes,
and then the visual features are extracted from instance, interaction and image levels, respectively. Meanwhile, we generate the syntactic
prompts by asking ChatGPT three well-defined questions, which are then encoded into textual features. Finally, a Dual Cross-Attention
Decoder is introduced to facilitate context propagation between visual and textual features to enhance HOI detection.

two parallel decoders: the instance decoder responsible for
object detection, while the interaction decoder focuses on
the interaction representations. However, such end-to-end
methods may suffer from insufficient exchange between
contextual clues, leading to inferior performance. Thus,
MUREN [24] proposes a multiplex relation network to per-
form context exchange between three decoder branches by
modelling relations of human, object and interaction fea-
tures. As for the two-stage methods, they usually utilize
pre-trained detectors to obtain object detections, and pay
more attention on extracting interaction context from can-
didate HOI pairs. E.g., STIP [61] first produces candidate
HOI pairs, and then exploit structure-aware priors to fur-
ther enhance HOI detection. However, this method ignores
the cross-triplet correlations. To enrich HOI features, ER-
Net [31] uses a multi-scale deformable transformer to re-
fine instance and interaction tokens, respectively, and then
adopts a post-processing to group HOI triplets.

2.3. VLM-Based HOI Detection

Recently, breakthroughs in VLM exhibit promising transfer
ability for many downstream tasks. Existing VLM-based
methods can be classified into three categories based on
their ways to leverage VLM. One category is to only adopt
the image encoder of VLM to extract visual knowledge.
E.g., ViPLIO [39] replaces the traditional CNN extractor
with the VLM image encoder due to its inherent advantage
in language-image alignment. Besides, HOICLIP [38] uti-
lizes a query-based retrieval to transfer prior visual knowl-
edge from CLIP to visual feature map via a cross-attention
mechanism. In contrast, the approaches [19, 40, 44, 51,

56, 57, 63] only utilize the VLM text encoder to inte-
grate linguistic prior knowledge for HOI detection. E.g.,
EoID [51] transfers distribution of action probability from
CLIP to the visual classification through knowledge dis-
tillation, and thus it can perform zero-shot HOI detec-
tion. AGER [44] uses textual prior to guide the learning
of the instance encoder by enforcing a similarity between
the textual representation and the instance token representa-
tion. Recently, some methods [7, 26, 30] apply both image
and text encoders together to HOI detection. Specifically,
ADA-CM [26] constructs a balanced concept-guided mem-
ory that jointly leverages domain-specific visual knowledge
and domain-agnostic text knowledge to adaptively inject in-
stance knowledge.

Though the VLM-based HOI detectors have achieved
significant progress, such approaches typically encode a
hand-crafted template to acquire prior interaction knowl-
edge, which may suffer from learning ambiguity. To ad-
dress the problem, we introduce a syntactic interaction bank
containing fine-grained text prompts, to provide discrimina-
tive and clear interaction clues for HOI detection. Further-
more, we introduce a multi-view extractor to jointly aggre-
gate visual knowledge and a dual cross-attention decoder to
facilitate context propagation.

3. Method
3.1. Overall Architecture

The overall architecture of our proposed SICHOI is illus-
trated in Fig. 2. Firstly, for a given image I , we uti-
lize ResNet [15] as backbone to obtain a spatial image
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Table 1. Examples of fine-grained prompts in the syntactic bank.
AOP, SP and SC represent the action-oriented posture, the spatial
relationship and the situational condition respectively.

HOI AOP SR SC

<ride, skis> Bent leg On a skis Snowfield
<lie , bed> Horizontal body On a bed Bedroom
<sit , bed> Bent leg On a bed Bedroom

<lift up, fork>
Straight arm

Clenched hand A fork in hand ✗

<point, laptop> Finger towards A laptop near ✗

<kick, sports ball> Swinged leg Foot next to
a sport ball Sports field

<wave, bus> Swinged arm A bus near Street

feature Fv , followed by a transformer to localize humans
Bh ∈ RNh×4 and objects Bo ∈ RNo×4 (i.e., the DETR de-
tector), where Nh and No represent the number of humans
and objects, respectively. We then generate instance-level
image Iin and interaction-level image Iun with Bh, Bo and
I . The image encoder of BLIP [27] is subsequently adopted
to jointly aggregate visual knowledge from instance, inter-
action and image levels, forming multi-view visual features
Fmul. The fine-grained interaction Query Qmul is thus ob-
tained through imposing a Feed Forward Networks (FFN)
on Fmul. Secondly, we apply the text encoder of BLIP
to encode the text prompts from the syntactic text bank,
and generate the contextual features Tc. The dual cross-
attention decoder is then introduced to facilitate context
propagation between Tc and the whole image patch tokens
Fp to obtain T̂c and F̂p. Finally, we perform interaction
recognition through a decoder using the fine-grained Qmul

as the query, while considering T̂c, F̂p and Fv collectively
as the key and value.

3.2. Syntactic Interaction Bank (SIB)

The existing VLM-based HOI detectors typically adopt a
hand-crafted template (e.g., a photo of a person [action]
a/an [object]) to obtain text knowledge. However, such ap-
proaches, only encoding the action-specific text prompt in
vocabulary level, may suffer from learning ambiguity when
two interactions closely resemble each other (e.g., “a person
sitting a bed” and “a person lying a bed”). In this work, we
find that spatial relationship, action-oriented posture and
situational condition are three main factors for a HOI con-
text. Thus, we aim to explore the syntactic interaction clues
rather than the simple action prompt for HOI detection.
Generation of Syntactic Prompts. By analyzing a large
number of HOI triplets, we believe that the occurrence of
an interaction depends on three factors: spatial relationship,
action-oriented posture and situational condition. Besides,
we ask ChatGPT* “How to judgement whether “a person
action a/an object” in an image from visual perspective”,
and the response can also be summarized as the above three

*https://chat.openai.com

Figure 3. Distance distributions for simple prompts and syntactic
prompts, respectively. On HICO-DET dataset, we calculate the
cosine distances between different HOI textual features for each
kind of text prompts.

factors. Thus, for each HOI category, we design three inde-
pendent question templates accordingly:
Q1: When a person [action] a/an [object], what is the spa-

tial relationship between the person and the object?
Q2: How to judgement whether a person [action] a/an

[object] from human posture perspective?
Q3: What is the situational condition for a person [action]

a/an [object]?
Through ChatGPT’s answers, we can achieve syntac-

tic and fine-grained text prompts from spatial relationship,
action-oriented posture and situational condition, respec-
tively. In Tab. 1, we list some typical interactions. Taking
the triplet < human, ride, skis > for example, the syntac-
tic text prompt can be summarized as “a person riding on
a skis with bent leg in the snowfield” that considering all
the three factors, and this is different from the handcrafted
prompt “a photo of a person riding a skis”. Each HOI cate-
gory can generate a syntactic text prompt, and thus forming
a Syntactic Interaction Bank on the whole dataset.
Fine-Grained Interactive Priors. For a given syntac-
tic interaction bank, it consists of syntactic text prompt
for each HOI category, and we denote it as Pb =(
p1b , p

2
b , · · · pib · · · , p

Nb

b

)
, where pib represents the text

prompt of the ith HOI category, and Nb is the number
of HOI instances in a given dataset. We apply the text
encoder TextEnc (·) of BLIP to extract text knowledge
Te =

(
t1e, t

2
e, · · · tie · · · , tNb

e

)
from Pb, where tie represents

the text embedding of the ith HOI category. Then, we fur-
ther project Te with a linear projection layer Proj (·) to ac-
quire the contextual features Tc =

(
t1c , t

2
c , · · · tic · · · , tNb

c

)
as follows:

Te = TextEnc (Pb) , (1)

Tc = Proj (Te) . (2)

For HICO-DET [4] dataset, we first generate the hand-
crafted prompts and the syntactic prompts for all the HOI
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categories, respectively. Then, we calculate the distances
between different HOI textual features for each kind of text
prompts. As shown in Fig. 3, the average cosine distance
for syntactic prompts is about 0.7, which is larger than that
of simple prompts (the average distance is about 0.4). This
implies that the syntactic prompts are powerful to discrim-
inate each HOI category, and thus can eliminate learning
ambiguity for similar interactions.

3.3. Multi-View Visual Extractor (MVVE)

For the syntactic prompts, their interactive priors are from
three levels: spatial relationship, action-oriented posture
and situational condition. To align the visual features with
the textual features, we adopt a multi-view extractor to ag-
gregate visual knowledge from instance level, interaction
level and image level accordingly. Specifically, we intro-
duce SAM [25] to recognize instance segmentation for hu-
mans and objects within I to generate instance-level image
Iin. Then, the BLIP image encoder ViEnc(·) encodes Iin to
extract the spatial relationship for each human-object pair.
In addition, the interaction-level image Iun is the union box
that covers a candidate pair of human box and object box,
which contains interaction clues, and can be used to extract
action posture features. Further, to obtain the situational
condition features, we take the image-level image I as in-
put to ViEnc(·), undertaking whole scene understanding.

Finally, we adopt a FFN to jointly fuse the three-level
visual knowledge as follows:

Fmul = Contact(ViEnc(Iin),ViEnc(Iun),ViEnc(I)),
(3)

Qmul = FFN(Fmul), (4)

where Contact denotes the concatenation operator, and
Qmul is the human-object interaction query from the multi-
view visual features.

3.4. Dual Cross-Attention Decoder (DCAD)

Dual Cross-attention Propagation. To facilitate context
propagation between text knowledge and the visual fea-
tures, we introduce a dual cross-attention decoder to per-
form bidirectional attentions for mutual enhancement of the
two modalities. As shown in Fig. 4, from the multi-view
visual extractor, we can also generate two regional image
masks: instance mask Mm and union mask Mu, which
can be used to strengthen the awareness of image potential
structures. For each dual cross-attention block, we perform
text-to-image cross attention by

T̂c = Softmax
(
TT
c (Fp + ϕm(Mm) + ϕu(Mu))√

d

)
Fp,

(5)
where the contextual features Tc and the image patch to-
kens Fp = ViEnc(I) are taken as queries and values, respec-
tively, and the image patch tokens with regional embeddings

Figure 4. The architecture of dual cross-attention decoder.
For each dual cross-attention block, we simultaneously conduct
text-to-image and image-to-text cross attention using patch im-
age tokens Fp, contextual features Tc and regional embeddings
ϕm(Mm) and ϕu(Mu).

Fp + ϕm(Mm) + ϕu(Mu) are used as keys. Here, ϕm and
ϕu denote the instance mask projection and the union mask
projection, respectively. Meanwhile, we can also conduct
image-to-text cross attention by

F̂p = Softmax
(
(Fp + ϕm(Mm) + ϕu(Mu))

TTc√
d

)
Tc,

(6)
where the image patch tokens with regional embeddigns
Fp + ϕm(Mm) + ϕu(Mu) are regarded as queries, and the
contextual features Tc are applied as both keys and values.
Interaction Decoder. Finally, we perform interaction
recognition through a decoder using the fine-grained Qmul

as queries, while considering the image patch tokens F̂p,
contextual features T̂c and image features Fv from ResNet
jointly as the keys and values. The final interaction scores ŷ
can be obtained as follows:

ŷ = Decoder(Qmul,Concat(T̂c, F̂p, (Fv + Pos))), (7)

where Pos indicates the position embeddings for feature
map Fv . To train this network, we apply the following Focal
Loss (FL):

Lsic =
1∑N

i=1

∑C
c=1 yi,c

N∑
i=1

C∑
c=1

FL(ŷi,c, yi,c), (8)

where N is the number of candidate human-object pairs, C
is the number of interaction classes, yi,c ∈ {0, 1} in y indi-
cates whether the groundtruth of the i-th human-object pair
contains the c-th interaction class and ŷi,c is the correspond-
ing predicted probability from the interaction decoder.
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Table 2. Performance comparison on HICO-DET and V-COCO datasets. The best result is marked with bold and the second best result is
underlined. For results on HICO-DET, we follow commonly used experimental setting to finetune the object detector on its training set.

HICO-DET V-COCO

Method Backbone
Default Known Object

Full Rare Non-Rare Full Rare Non-Rare AP#1
role AP#2

role

CNN-based methods
InteractNet [12] R50-FPN 9.94 7.16 10.77 - - - 40.0 48.0
UnionDet [20] R50-FPN 17.58 11.72 19.33 19.76 14.68 21.27 47.5 56.2
IP-Net [49] HG-104 19.56 12.79 21.58 22.05 15.77 23.92 51.0 -
GPNN [67] R50 19.42 13.98 20.91 22.01 15.73 22.80 50.4 -
ACP [23] R152 20.59 15.92 21.98 - - - 53.2 -
Transformer-based methods
HOI-Trans [69] R101 26.61 19.15 28.84 29.13 20.98 31.57 52.9 -
AS-Net [5] R50 28.87 24.25 30.25 31.74 27.07 33.14 53.9 -
QPIC [43] R50 29.07 21.85 31.23 31.68 24.14 33.93 58.8 61.0
PhraseHOI [28] R50 29.29 22.03 31.46 31.97 23.99 34.36 57.4 -
MSTR [22] R50 31.17 25.31 32.92 34.02 28.83 35.57 62.0 65.2
DT [65] R50 31.75 27.45 33.03 34.50 30.13 35.81 66.2 68.5
CDN [58] R50 31.78 27.55 33.05 34.53 29.73 35.96 62.3 64.4
CATN [6] R50 31.86 25.15 33.84 34.44 27.69 36.45 60.1 -
STIP [61] R50 32.22 28.15 33.43 35.29 31.43 36.45 66.0 70.7
UPT [59] R50 31.66 25.94 33.36 35.65 31.60 36.86 59.0 64.5
ParMap [52] R50 35.15 33.71 35.58 37.56 35.87 38.06 63.0 65.1
ERNet [31] EfficientNetV2-XL 35.92 30.12 38.29 - - - 64.2 -
CQL [53] R101 36.03 33.16 36.89 38.82 35.51 39.81 66.5 69.9
RmLR [2] R101 37.41 28.81 39.97 38.69 31.27 40.91 64.2 70.2
PViC [60] R50 34.69 32.14 35.45 38.14 35.38 38.97 62.8 67.8
PViC [60] Swin-L 44.32 44.61 44.24 47.81 48.38 47.64 64.1 70.2
VLM-based methods
OpenCat [63] R101+ViT-B/16 32.68 28.42 33.75 - - - 61.9 63.2
GEN-VLKT [30] R50+ViT-B/16 33.75 29.25 35.10 36.78 32.75 37.99 62.4 64.5
RLIPv2 [57] Swin-T 33.66 40.07 38.60 - - - 68.8 70.8
HOICLIP [38] R50+ViT-B/32 34.69 31.12 35.74 37.61 34.47 38.54 63.5 64.8
DiffHOI [55] R50+ViT 34.41 31.07 35.40 37.31 34.56 38.14 61.1 63.5
AGER [44] R50 36.75 33.53 37.71 39.84 35.58 40.23 65.7 69.7
ViPLO [39] R50+ViT-B/16 37.22 35.45 37.75 40.61 38.82 41.15 62.2 68.0
ADA-CM [26] R50+ViT-L 38.40 37.52 38.66 - - - 58.6 64.0
DiffHOI [55] Swin-L+ViT 41.50 39.96 41.96 43.62 41.41 44.28 65.7 68.2
SICHOI (Ours) R50+ViT-B/16 41.79 42.38 41.61 44.27 43.64 44.46 67.9 72.8
SICHOI (Ours) R101+ViT-L/16 45.04 45.61 44.88 48.16 48.37 48.09 71.1 75.6

4. Experiments
4.1. Experimental Setting

Datasets. V-COCO [13] is a subset of MS-COCO [32],
consisting of 5,400 images in the trainval set and 4,946 im-
ages in the test set. It has 259 HOI categories over 29 ac-
tions and 80 objects. HICO-DET [4] consists of 38,118 im-
ages in training set and 9,658 in test set, and has 600 HOI
categories over 117 actions and 80 objects. The 600 HOI
categories are split into 138 Rare and 462 Non-Rare based
on the number of instances.
Evaluation Metric. Following the standard metric, we
use the mean Average Precision (mAP) to evaluate the
model performance for the two benchmarks. A HOI triplet
is considered as true positive if it localizes the human and
object accurately (i.e., the Interaction-over-Union (IOU) be-
tween the predicted bounding boxes and ground truth is
greater than 0.5) and also predicts the action correctly.
Implementation Details. We take the DETR for object

detection, and leverage the pre-trained BLIP [27] on its of-
ficial data as the VLM. We keep the external models (i.e.,
DETR and VLM) fixed during training, and other parts of
the SICHOI model are trained on four Nvidia 3090 GPUs in
an end-to-end way, with a batch size 16. The AdamW [35]
optimizer is used for training with 30 epochs, where the
starting learning rate is 5× 10−5, and then decays with the
Cosine annealing training strategy.

4.2. Comparisons with the State-of-the-Arts

We report the quantitative results in terms of AP on HICO-
DET and V-COCO dataset, respectively.

Tab. 2 shows the performance comparison of SICHOI
and other state-of-the-art methods on HICO-DET dataset.
It can be observed that SICHOI outperforms all existing
methods. Specifically, SICHOI achieves 45.04 mAP in the
default full setting, obtaining a performance gain of 0.72
mAP (relatively 1.62%) compared to the most recent ap-
proach PViC [60]. Also, compared with DiffHOI [55] and
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RmLR [2], which are the state-of-the-art VLM-based and
transformer-based methods, our model achieves a signifi-
cant performance gain of 3.54 (relatively 8.53%) mAP and
7.63 mAP (relatively 20.40%), respectively. The results val-
idate the superiority of our SICHOI. HOICLIP [38] and
ViPLO [39] only employ the visual encoder of CLIP to
encode the image features, but leave the textual informa-
tion that contains semantic knowledge unexplored. ADA-
CM [26] and DiffHOI [55] integrate the visual and text
knowledge into one framework and facilitate the knowledge
propagation between different modalities. However, they
solely encode the action-specific text prompts in vocabu-
lary level, e.g., “a photo of a person [action] a/an [object]”,
and may suffer from learning ambiguity without exploring
the fine-grained clues from the perspective of interaction
context. For our SICHOI, it establish syntactic interaction
descriptions from three levels: spatial relationship, action-
oriented posture and situational condition. Further, to align
visual features with the syntactic interaction bank, we adopt
the multi-view visual extractor to aggregate visual knowl-
edge from instance, interaction and image level accordingly,
and thus can enhance the HOI detection performance.

For V-COCO dataset, as reported in the right part of
Tab. 2, SICHOI also performs the best among all the state-
of-the-art methods. E.g., SICHOI works better than two
recent HOI detectors RLIPv2 [57], and CQL [53] (AP#1

role

of 71.1 vs 68.8 and 66.5). It is noted that AP#2
role is signif-

icantly improved by the SICHOI (4.8 higher than RLIPv2),
and the improvement may be attributed to our model’s abil-
ity to fully utilize scene semantics to infer missed or oc-
cluded information. E.g., when certain parts of humans
or objects are occluded, SICHOI can rely on the context
knowledge from the syntactic interaction bank to infer miss-
ing information or predict the likely actions.

In Tab. 3, we further conduct zero-shot comparison with
the state-of-the-arts on HICO-DET dataset, following the
experimental settings [30, 51]. Using ResNet50 as back-
bone, the proposed SICHOI model achieves gains of 6.61
mAP (relatively 23.92%) and 2.11 mAP (relatively 6.51%)
on the two zero-shot settings, respectively, compared to the
best performing approach ADA-CM [26]. The SICHOI can
be further enhanced when it is equipped with ResNet101
as backbone (E.g., for NF, mAP is improved from 35.75 to
39.07). These improvements demonstrate the good general-
ization ability of our model for detecting HOIs belonging to
unseen combinations. It is worth noting that under the Rare
First setting, our model shows great superiority on unseen
samples, which are corner cases that are challenging to be
detected, over other methods. This proves that our syntactic
interaction bank is very helpful when encountering the rare
and unseen samples.

Table 3. Zero-shot comparison on HICO-DET. This table com-
pares our model with state-of-the-art methods on the Zero-shot
setting of HICO-DET. RF: Rare First. NF: Non-rare First.

Method Backbone Type Unseen Seen Full
VCL [16] R50 RF 10.6 24.28 21.43
ATL [17] R50-FPN RF 9.18 24.67 21.57
FCL [18] R50 RF 13.16 24.12 22.01
THID [48] ViT-B/16 RF 15.53 24.32 22.96
RLIPv1 [56] R50 RF 19.19 33.35 30.52
GEN-VLKT [30] R50+ViT-B/16 RF 21.36 32.91 30.56
HOICLIP [38] R50+ViT-B/32 RF 25.53 34.85 32.99
RLIPv2 [57] Swin-T RF 26.95 39.92 37.32
ADA-CM [26] R50+ViT-B/16 RF 27.63 34.35 33.01
SICHOI R50+ViT-B/16 RF 34.24 41.58 40.11
SICHOI R101+ViT-L/16 RF 36.27 44.71 43.02
VCL [16] R50 NF 16.22 18.52 18.06
ATL [17] R50-FPN NF 18.25 18.78 18.67
FCL [18] R50 NF 18.66 19.55 19.37
RLIPv1 [56] R50 NF 20.27 27.67 26.19
RLIPv2 [57] Swin-T NF 21.07 35.07 32.27
GEN-VLKT [30] R50+ViT-B/16 NF 25.05 23.38 23.71
HOICLIP [38] R50+ViT-B/32 NF 26.39 28.10 27.75
ADA-CM [26] R50+ViT-B/16 NF 32.41 31.13 31.39
SICHOI R50+ViT-B/16 NF 34.52 36.06 35.75
SICHOI R101+ViT-L/16 NF 36.44 39.73 39.07

4.3. Ablation Studies

In this subsection, we explore how the Syntactic Interac-
tion Bank, Multi-View Visual Extractor, and Dual Cross-
attention Decoder affect the HOI detection performance.
For simplicity, we adopt R50 as backbone, and all the ab-
lation studies are conducted on HICO-DET and V-COCO
datasets.

To evaluate the effect of each component of SICHOI, we
create a baseline mode (denoted as “Base”) by only using
plain DETR and transformer (i.e., without SIB, MVVE and
DCAD). As summarized in Tab. 4, each component of our
SICHOI can significantly advance the baseline model. E.g.,
SIB can improve the baseline model by 3.63 mAP and 1.81
mAP in the Full category of HICO-DET and AP#1

role of V-
COCO, respectively. In the following subsections, we will
conduct in-depth analysis of the impact for each component
on the model performance.

4.3.1 Syntactic Interaction Bank

We design the Syntactic Interaction Bank (SIB) to elimi-
nate the learning ability of handcrafted text prompt. It is
composed of three levels of prompts: Action-Oriented Pos-
ture (AOP), Spatial Relationship (SR), and Situational Con-
dition (SC). As shown in Tab. 5, we explore the effects
of employing different prompts to provide textual knowl-
edge. For fair comparison, all the variants are based on the
“Base+MVVE” model in the first row. As observed, using
each level of syntactic prompts performs better than using
the simple prompt (denoted as “+SP”). E.g., the Action-
oriented Posture (“+AOP”) achieves gains of 1.16 mAP and
0.31 mPA on HICO-DET and V-COCO, respectively. The
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Table 4. Performance contribution of each component in our SI-
CHOI. SIB: Syntactic Interaction Bank. MVVE: Multi-View Vi-
sual Extractor. DCAD: Dual Cross-Attention Decoder.

Method
HICO-DET (Default) V-COCO

Full Rare Non-Rare AP#1
role AP#2

role

Base 35.71 33.19 36.46 64.72 69.81
+SIB 39.34 39.03 39.44 66.53 71.12
+MVVE 38.54 36.33 39.20 66.37 70.65
+SIB+MVVE 40.57 40.45 40.61 67.37 72.29
+SIB+MVVE+DCAD 41.79 42.38 41.61 67.93 72.83

Table 5. Performance comparison of different text prompts. SP:
Simple Prompts. AOP: Action-oriented Posture. SR: Spatial Re-
lationship. SC: Situational Condition.

Method
HICO-DET (Default) V-COCO

Full Rare Non-Rare AP#1
role AP#2

role

Base+MVVE 38.54 36.33 39.20 66.37 70.65
+SP 39.66 38.14 40.11 66.90 71.75
+AOP 40.82 40.45 40.93 67.21 72.19
+SR 40.43 40.17 40.51 67.12 72.04
+SC 40.27 39.72 40.43 67.02 71.96
+AOP+SR+SC 41.79 42.38 41.61 67.93 72.83

performance can be further enhanced from 39.66 to 41.79
on HICO-DET and from 66.90 to 67.93 on V-COCO by in-
tegrating all the syntactic prompts from three levels, demon-
strating the effectiveness of syntactic prompts.

4.3.2 Multi-View Visual Extractor

To evaluate the effectiveness of Multi-View Visual Extrac-
tor (MVVE), we create variants on “Base+SIB+DCAD”
by using different visual features (i.e., instance, inter-
action and image level). As reported in Tab. 6, vi-
sual feature at each level works better than the base-
line model “Base+SIB+DCAD”. Among the three lev-
els, the instance one performs the best, and it can improve
“Base+SIB+DCAD” from 39.95 to 41.25 in the Full cate-
gory of HICO-DET. The reason is that the instance segmen-
tation implicitly contains information of spatial relation and
human posture. Also, the background noise can be sup-
pressed with INS. The result of “+INS+INT+IMG” indi-
cates that it is essential to align the visual features with the
text knowledge from the syntactic interaction bank.

4.3.3 Dual Cross-Attention Decoder

In SICHOI, we introduce the Dual Cross-Attention De-
coder (DCAD) to facilitate context propagation between vi-
sual and textual features. To evaluate the effectiveness of
DCAD, we also create variants on “Base+SIB+MVVE”, by
using different cross-attention strategies. E.g., V→L indi-
cates that the visual feature and linguistic feature are treated
as query and value in the cross-attention decoder, respec-
tively, and vice versa. As summarized in Tab. 7, the dual
cross-attention mode (+V→L+L→V) performs the best on

Table 6. Performance comparison of different visual features.
INS, INT, and IMG indicate that the visual features are from In-
stance, Interaction, and Image levels, respectively.

Method
HICO-DET (Default) V-COCO

Full Rare Non-Rare AP#1
role AP#2

role

Base+SIB+DCAD 39.95 39.67 40.04 66.87 71.56
+INS 41.25 41.72 41.11 67.45 72.08
+INT 41.14 41.67 40.98 67.36 72.16
+IMG 40.94 41.21 40.86 67.15 71.98
+INS+INT+IMG 41.79 42.38 41.61 67.93 72.83

Table 7. Effect of dual cross-attention decoder. V→L indicates
that the vision feature and linguistic feature are treated as query
and value, respectively, and vice versa.

Method
HICO-DET (Default) V-COCO

Full Rare Non-Rare AP#1
role AP#2

role

Base+SIB+MVVE 40.57 40.45 40.61 67.37 72.29
+V→L 41.17 41.32 41.12 67.56 72.56
+L→V 41.35 41.57 41.29 67.69 72.80
+V→L+L→V 41.79 42.38 41.61 67.93 72.83

the two datasets, which implies that the context propagation
between the visual and contextual features is important to
improve the HOI performance.

5. Conclusion

In this paper, we propose the SICHOI to discover the fine-
grained prompts for HOI detection. Different from the ex-
isting VLM-based methods, the proposed model establishes
a syntactic bank to explore text knowledge from three lev-
els: spatial relationship, action-oriented posture and sit-
uational condition. To ensure alignment to the textual
features, we adopt a multi-view extractor to aggregate vi-
sual features from instance, interaction and image levels
accordingly. Also, a dual cross-attention decoder is de-
signed to facilitate context propagation between visual fea-
ture and textual features. Experimental results indicate that
our proposed SICHOI can achieve state-of-the-art results on
HICO-DET and V-COCO datasets.
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