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Abstract

Traditional online class incremental learning assumes
class sets in different tasks are disjoint. However, recent
works have shifted towards a more realistic scenario where
tasks have shared classes, creating blurred task boundaries.
Under this setting, although existing approaches could be
directly applied, challenges like data imbalance and vary-
ing class-wise data volumes complicate the critical coreset
selection used for replay. To tackle these challenges, we
introduce DECO (Dual-Enhanced Coreset Selection with
Class-wise Collaboration), an approach that starts by es-
tablishing a class-wise balanced memory to address data
imbalances, followed by a tailored class-wise gradient-
based similarity scoring system for refined coreset selection
strategies with reasonable score guidance to all classes.
DECO is distinguished by two main strategies: (1) Col-
laborative Diverse Score Guidance that mitigates biased
knowledge in less-exposed classes through guidance from
well-established classes, simultaneously consolidating the
knowledge in the established classes to enhance overall sta-
bility. (2) Adaptive Similarity Score Constraint that relaxes
constraints between class types, boosting learning plastic-
ity for less-exposed classes and assisting well-established
classes in defining clearer boundaries, thereby improving
overall plasticity. Overall, DECO helps effectively identify
critical coreset samples, improving learning stability and
plasticity across all classes. Extensive experiments are con-
ducted on four benchmark datasets to demonstrate the ef-
fectiveness and superiority of DECO over other competitors
under this online blurry class incremental learning setting.

1. Introduction
Online class incremental learning (OCIL) [25, 37] presents
a practical challenge that a model needs to acquire new
knowledge while retaining previously learned information,
using most of the stream data only once. Recent works [6,
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Figure 1. Illustration of the data distribution under blurry setting.
All classes are shared and the major classes vary across all tasks.

20] point out that traditional OCIL, with disjoint class distri-
bution across tasks, ignores the real-world scenarios where
classes are shared across tasks and major classes vary across
tasks. To mimic such scenarios, an online blurry class incre-
mental learning (OBCIL) setting [6] is proposed. We show
this setting in Figure 1 and follow it for further research.

Among the existing OCIL methods that can be directly
applied to the OBCIL scenario, rehearsal-based methods are
predominant due to their effective sample selection for re-
play. Most rehearsal-based methods concentrate on buffer
management and buffer usage. For buffer management, the
reservoir sampling [11], the mean prototype selection [29],
and the coreset selection [34, 39] provide different insights
into sampling and updating the buffer. In terms of buffer
usage, works vary among selecting the interfered sam-
ples [3, 14], adopting contrastive learning [14, 24] as aug-
mentation, and designing new training paradigm [28]. In
our work, we follow previous works [6, 28] that adopt the
two-stage training paradigm for buffer usage due to their
success on OBCIL, but mainly focus on devising a consid-
erable and effective buffer management method.

While the concept of OBCIL was introduced by [6], the
critical challenges within this setting remain inadequately
addressed. Concretely, we identify two main challenges in
OBCIL: (1) Data imbalance within tasks, which is exacer-
bated when replaying with the imbalanced buffer. Although
balanced buffers are proposed in some works [6, 29], they
often fall short of practical online learning principles due
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to the reuse of all stream data [20]. (2) Varying class-wise
data volume across tasks, which presents two clear pat-
terns. One pattern is a reduction in data volume for classes
that were initially major (much-to-less change), while the
other involves an increase for classes that become major
later on (less-to-much change). The latter, unique to OBCIL
and often overlooked, poses a significant challenge. Classes
experiencing this increase are less represented initially, re-
sulting in underdeveloped and biased learning. Thus, both
buffer updates and model training in later tasks are affected.

In light of the two challenges in the OBCIL setting, we
methodically design novel DECO (Dual-Enhanced Core-
set Selection with Class-wise Collaboration) to improve
model performance. To address data imbalance, we pro-
pose a class-wise balanced memory that dynamically ad-
justs candidate update samples and their classes, maintain-
ing a real-time class-wise balanced buffer. Then, drawing
from the successes and drawbacks of recent coreset selec-
tion work [39], we devise a class-wise gradient-based scor-
ing system grounded in class balance memory. This system
facilitates the assessment of the applicability of each score
guidance to the coreset selection set for each class when
facing the two challenges and enables tailored coreset se-
lection strategies to meet the unique needs of each class.
With this class-wise gradient-based scoring system, we de-
vise two strategies to optimize the score guidance through
class-wise collaboration: (1) Collaborative Diverse Score
Guidance that mitigates biased knowledge in less-exposed
classes through guidance from well-established classes, si-
multaneously consolidating the knowledge in these estab-
lished classes to enhance overall stability. (2) Adaptive
Similarity Score Constraint that relaxes constraints between
class types, boosting learning plasticity for less-exposed
classes and assisting well-established classes in defining
clearer boundaries, thereby improving overall plasticity. Fi-
nally, all these designs form our novel DECO, which selects
critical samples for coreset and enhances both stability and
plasticity for the model. We compare our DECO with other
representative coreset selection and rehearsal-based meth-
ods and ablate the effectiveness of each design in DECO.
Extensive experiment results on four benchmark datasets
show that our DECO reaches the SOTA performance.

Overall, the main contributions of this paper are four-
fold: (1) We propose a real-time class-wise balanced mem-
ory, CBM, as a new baseline to mitigate data imbalance in
the OBCIL setting. (2) We establish a class-wise gradient-
based scoring system that facilitates the assessment of di-
verse score guidance and enables tailored strategies for dif-
ferent classes. (3) We optimize coreset selection with two
strategies driven by class-wise collaboration, forming our fi-
nal method, DECO, which dually enhances the stability and
plasticity of the model in all classes. (4) Extensive results
demonstrate the superiority of our method.

2. Related Work

2.1. Rehearsal-based OCIL

In the online class incremental learning problem, the
rehearsal-based methods show obvious superiority over the
other methods due to the buffer replay. Generally, these
methods focus on three aspects: buffer management, buffer
usage, and additional modifications. Among all works re-
lated to buffer management, [11, 30, 36] propose reservoir
sampling, which assigns each sample in the buffer the same
but gradually decreasing chance of being replaced. In [29],
the balanced buffer is set up with the class-wise mean proto-
types but only updated after each task. Recent work [6] bal-
ances and diversifies the buffer by reusing all stream sam-
ples after each task for measurement with the final model.
In terms of buffer usage, most works [2, 3, 8, 9, 24] fol-
low the way [11] of combining buffer samples and stream
samples in each mini-batch for training. In [28], the
buffer is used to retrain a model from scratch for evalua-
tion. In [3, 14], the authors select the maximum interfered
buffer samples to train with the stream data. Besides, con-
trastive learning is also introduced by [14, 24] to diversify
all the training samples. In other directions, some methods
combine buffer replay with regularized-based constraints
like [2, 10, 40] to consolidate the past knowledge. More-
over, some works focus on solving the score bias problem
by retraining the model on a balanced subset [38] and adopt-
ing split cross-entropy loss for new data [9]. In our work,
we focus on buffer management and propose a real-time
balanced buffer update way with a dual-enhanced coreset
selection method where most stream data only use once.

2.2. Coreset Selection

Coreset selection [7, 15, 17, 18] focuses on identifying the
most informative samples from a dataset to create a smaller,
representative subset for tasks like classification. Tradi-
tional methods in coreset selection primarily deal with the
current data. The geometric-based approaches [1, 12, 32,
33] select representative, non-redundant samples based on
feature space distances. Besides, the gradient-based meth-
ods [19, 26] choose samples that closely approximate the
gradients of the entire dataset. Another category is loss-
based methods [5, 13, 23, 27, 35], prioritizing samples that
contribute most to learning and memorizing dataset knowl-
edge. In addition, some works focus on continual learn-
ing scenarios. In [4], the diversity of replay samples is ex-
panded in terms of parameter gradients. In [34], samples
with the highest gradient-matching degree are selected and
weighted used. Yoon et al. [39] propose different gradient-
based similarity scores to select the informative and diverse
samples for the OCIL scenario. In this paper, we propose a
class-wise scoring system to facilitate the design of diverse
coreset selection strategies with class-wise collaboration.
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3. Method
3.1. Preliminary

Under the OBCIL setting, we consider the model learns
on stream data {Dt}Nt=1, where N denotes the total task
number. The samples in each Dt are represented as
{(xi

t, y
i
t)}

|Dt|
i=1 , where |Dt| denotes the total number of sam-

ples in Dt, xi
t and yit denote the i-th image and label in

the t-th task Tt, respectively. Let C = {c1, c2, ..., cK} be
the whole set of classes, where K denotes the total num-
ber of classes. According to the definition of OBCIL in [6],
all the K classes are shared across the T tasks. Thus, we
have Ct = C (1 ≤ t ≤ N), where Ct denotes the set of
classes in task Tt. The main difference between tasks lies
in the variety of major classes in each Ct. For discussion
convenience, we split the Ct into three subsets and have
Ct = {CP

t , CC
t , CF

t }, where CC
t denotes the current major

classes set for task Tt, CP
t denotes the past major classes for

tasks set {Tp}t−1
p=1, and CF

t denotes the future major classes
for tasks set {Tj}Nj=t+1. In each task, the samples of cur-
rent major classes CC

t take the dominant ratio of all the |Dt|
samples at (100 − Q)%, while the samples of past major
classes CP

t and future major classes CF
t take the minor ratio

of all the |Dt| samples as Q%. In our experiments, we set
Q with 10, 20, and 30 for extensive ablation.

In this paper, we adopt the two-stage training paradigm
following [6, 28] for our method and all the other competi-
tors. Let {Mt}Nt=1 be the set of memory buffer, where Mt

denotes the memory of task Tt. The model learns both on
Dt and Mt in the first stage. The objective is written as:

argmin
θ

(
∑

(x,y)∈Dt

l(fθ(x), y) +
∑

(x,y)∈Mt

l(fθ(x), y)), (1)

where θ denotes parameters of the model, fθ(x) denote the
predicted logits score of x, and l(·) denotes the cross en-
tropy loss. The memory buffer Mt is only updated before
the second stage. In the second stage, the model is only
retrained on the fixed memory buffer with the objective:

argmin
θ

∑
(x,y)∈Mt

l(fθ(x), y). (2)

3.2. Class-wise Balanced Memory

Existing rehearsal-based methods usually follow the classic
experience replay [11] method and keep the data distribu-
tion in the buffer almost the same as that in the stream data.
Under the OBCIL setting, adopting such a buffer manage-
ment method tends to leave the data and class imbalance in
the buffer. The imbalanced buffer reused in the second stage
further severe the bias problem when it is replayed, leaving
the less-exposed classes with worse initial learning ability.

Although some works [6, 29] try to set up a class-wise
balanced buffer, they usually require a review of the stream

data once again. We point out that such methods are im-
practical for online incremental learning. Therefore, we
propose a simple real-time class-wise balanced memory
(CBM). Concretely, we record the number of saved samples
{qci}Ki=1 for all the classes, where qci denotes the number
of saved samples for class ci. Once the buffer M is ful-
filled, we retrieve the label of stream data and compare the
corresponding qci with the average buffer size m

K for each
class in M. If the arriving stream data is of the less-than-
average class, we randomly replace a sample from one of
the more-than-average classes with it. In reverse, we ap-
ply the class-wise reservoir (CW RSV ) update within its
class. The pseudocode is presented in Algorithm 1 and the
detail of the class-wise reservoir is in Algorithm 2 in the
supplementary material. With the CBM, the buffer can eas-
ily keep real-time balance among classes and reach a better
performance than experienced replay [11] under OBCIL.

3.3. Class-wise Scoring System

Although the CBM achieves real-time class-wise balance, it
relies on the suboptimal random sample replacement. Con-
sidering data imbalances and varying class volumes, a more
complete system to evaluate and select samples in each class
is essential. In recent coreset selection work [39], gradient-
based similarity score (S), diversity score (V), and affinity
score (A) are proposed to assess sample importance. How-
ever, S and V , calculated within mini-batches or batch can-
didates, are skewed by class imbalances. In addition, the
limited ranking scope of these three scores to current task
data overlooks updates to previously saved coreset samples,
leading to ineffective class-wise assessments. To address
these, we introduce a class-wise scoring system based on
CBM that thoroughly evaluates all samples in each class.

We denote the class-wise gradient-based similarity score
as CW S. When a stream data (x, y) ∈ Bt arrives, we
identify its target class ck via CBM, then calculate scores
for each sample sckj ∈ Mck

t , where 1 ≤ j ≤ |Mck
t | and

Mck
t ⊂ Mt. For stream data in the more-than-average

class, ck is its own class and it is added to Mck
t before the

score calculation. Mathematically, CW S is written as:

CW S(sckj |Mck
t ) =

G(sckj )G(Mck
t )⊤

∥G(sckj )∥ · ∥G(Mck
t )∥

, (3)

where G(sckj ) denotes the function of retrieving the gradient
vector of sckj in fc layer, G(Mck

t ) denotes the average gra-
dient vector of samples in Mck

t . Similarly, we denote the
class-wise diversity score as CW V , which is written as:

CW V(sckj |Mck
t ) = − 1

Nk

Nk∑
p ̸=j

G(sckj )G(sckp )⊤

∥G(sckj )∥ · ∥G(sckp )∥
, (4)

where sckp ∈ Mck
t denotes the other samples in Mck

t except
sckj and Nk = |Mck

t | − 1.
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Figure 2. Overview of the DECO. DECO is based on CBM and optimizes the random buffer update in CBM. DECO adopts the DSG and
ASC strategies for score calculation of different classes and finally updates the corresponding coreset by removing the data with the lowest
score. We illustrate three cases where the target class is c1 ∈ CP , ci ∈ CC , and cm ∈ CF in this figure. We here only show the situation
that the buffer has reached a balanced state. In an unbalanced state, DECO adopts no CW RSV to remove the lowest-score sample.

When calculating the class-wise affinity score, CW A,
we first consider the guidance from previously accumulated
knowledge in each class. There’s a concern that in less-
exposed classes, the coreset samples might not accurately
represent the true class distribution, potentially leading to
misleading guidance. To address the concern, we intro-
duce a ranking system for affinity guidance that prioritizes
classes with more reliable coreset samples. As detailed
in Section 3.1, we distinguish the classes in task Tt into
three groups based on the variation of major classes and
their exposure level: CP

t , CC
t , and CF

t . We hypothesize that
the reliability of the coreset samples for providing affinity
guidance decreases from CP

t to CF
t . Thus, the system as-

signs higher-ranking guidance to classes where the coreset
samples are deemed more representative of their respective
classes. Mathematically, the system defines CW A as:

CW A(sckj |MΩ
t ) =

G(sckj )G(MΩ
t )

⊤

∥G(sckj )∥ · ∥G(MΩ
t )∥

, (5)

where Ω =

{
CP
t ∪ CC

t , if ck ∈ CF
t

CP
t , otherwise

. Note that in task T1

there is no CP
1 , so we only calculate the CW S and CW V

for sample selection in ck when ck ∈ CC
1 in task T1.

To distinguish the classes into CP
t , CC

t , and CF
t without

previous knowledge of class distribution in the current task.
We use one dictionary to record the total samples encoun-

tered for each class, categorizing those with above-average
counts into CP

t after every task, and another monitors the
class-wise sample count within each task, identifying the
classes belonging to CC

t ; the remaining classes fall into CF
t .

With all these class-wise gradient-based scores, we com-
plete the class-wise scoring system which facilitates the as-
sessment of score guidance in each class, enabling the de-
velopment of tailored coreset selection strategies that are
more responsive to the unique needs of each class.

3.4. Coreset Selection with Diverse Score Guidance

In our class-wise scoring system, the CW S and the CW V
provide intra-class scores guidance for coreset selection.
This means the guidance’s effectiveness largely depends on
the class’s learning progress and the quality of its existing
coreset samples. For well-established classes in CP

t , which
are already familiar as past major classes, the intra-class
score guidance is reliable. Therefore, we adopt all three
scores for coreset selection strategy in CP

t , denoted as:

STG− P = {CW S + CW V + CW A} (6)

Differently, the score guidance provided by of CW S
and CW V may be doubtful for classes in CC

t and CF
t . For

the classes in CF
t , the class exposure is lacking. Besides,

the distribution of seen samples is possibly biased from the
real distribution and inconsistent across tasks. Therefore,
the initially learned knowledge for these classes is possibly
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Figure 3. Validation results of adopting diverse score guidance and the adaptive score constraint.“All score” denotes always adopting all
class-wise scores. We show the results after task Tt in: (a) knowledge converting ratio ϕt, (b) average accuracy of CC

t , (c) average accuracy
change of CP

t ∪ CC
t , and (d) average accuracy change of CF

t on CIFAR10 to validate the enhanced stability and plasticity.

poor and the intra-class guidance is unreliable and incon-
sistent across tasks. Therefore, we abandon the intra-class
guidance scores CW S and CW V , only adopting CW A
to guide the coreset selection in CF

t . The strategy of coreset
selection for classes in CF

t can be denoted as:

STG− F = {CW A} (7)

The reasons behind this modification are (1) The score
guidance from well-exposed classes in CP

t and CC
t with

CW A is more reasonable and consistent. Thus, the learn-
ing in CF

t is more effective and the learned knowledge, as
a good initialization, can be well-retained and utilized by
later learning. (2) With CW A as the only coreset selection
guidance for CF

t , the coreset samples in CF
t are more bene-

ficial to the old knowledge retention in CP
t . Therefore, such

class-wise collaboration enhances the stability in all classes.
For CC

t classes, which are less exposed before task Tt but
have numerous samples in Tt, we combine the CW RSV
with CW A for coreset updates. This strategy ensures a
gradual update process, aiding in solidifying the model’s
knowledge in CC

t . The coreset selection strategy for classes
in CC

t can be written as:

STG− C = {CW RSV + CW A} (8)

Note that there are two special cases for this strategy: First,
in task T1, without the guidance of well-established classes,
we only use CW RSV for STG − C. Second, when we
need to balance the buffer by removing a sample in CC

t , we
only adopt CW A for STG−C to find the sample with the
lowest score. Overall, all these three strategies compose our
diverse score guidance (DSG) for coreset selection.

To validate the effectiveness of each detail in our design,
and to confirm our analytical reasoning, we first introduce
the knowledge converting ratio ϕt which is calculated as:

ϕt =
Perf(CC

t , t)

Perf(CC
t , t− 1)

, (9)

where t > 1 and Perf(CC
t , t) represents the model’s per-

formance on the classes in CC
t after task Tt. It measures

the performance change in CC
t between before and after

task Tt. We assume that ϕt is positively related to the
quality of the learned knowledge of these classes saved
in the less-exposed stages. In Figure 3 (a), only adopting
CW A as score guidance achieves higher ϕt than all scores
strategy, which validates the improved knowledge quality
and learning consistency in less-exposed classes. Besides,
combining CW RSV further improves the ϕt which val-
idates the effectiveness of CW RSV in assisting learning
on plenty of stream data. For direct comparison, we also
show the accuracy of CC

t with different strategies just af-
ter task Tt in Figure 3 (b), which again verifies their ef-
fectiveness. In Figure 3 (c), the stability enhancement in
well-established classes (CP

t ∪ CC
t ) is also validated by the

higher accuracy when adopting only CW A and combining
CW RSV . Overall, the DSG is validated to effectively en-
hance the model’s stability across all classes. More ablation
results within DSG are provided in the supplement.

3.5. Selection with Adaptive Score Constraint

In our class-wise scoring system, the affinity similarity in
CW A(sckj |MΩ

t ) is calculated using the full gradient vector
of the FC classifier layer between samples in MΩ

t and sckj .
However, the affinity measurement with such a full gradient
vector may not be optimal. Considering the exposed degree
of different classes, we divide this full gradient vector into
two parts which correspond to classes in Ω and that in the
rest C\Ω, which are retrieved by GΩ(·) and GC\Ω(·).

Since the classes in C\Ω are less-exposed, we sup-
pose the gradient guidance from GC\Ω(·) contributes less
to knowledge consolidation, and calculating affinity score
with this part may also hinder the plasticity in C\Ω. To
address this, we introduce a split class-wise affinity score,
CW ASP , with adaptive gradient score constraint (ASC):

CW ASP(sckj |MΩ
t ) =

GΩ(sckj )GΩ(MΩ
t )

⊤

∥GΩ(sckj )∥ · ∥GΩ(MΩ
t )∥

(10)

This relaxed gradient constraint continues the guidance
from Ω to the coreset selection of C\Ω while also enabling
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the learning plasticity in C\Ω, leading to a more diverse
coreset. This diverse coreset in turn helps classes in Ω estab-
lish better boundaries, enhancing the model’s overall plas-
ticity. In Figure 3 (d), the effectiveness of ASC in enhancing
plasticity in CF

t is verified with the improved accuracy. Be-
sides, the collaboratively improved knowledge quality and
the learning plasticity in previous classes are demonstrated
by the improved (highest) performance shown in Figure 3
(a)-(c), respectively. Overall, we denote the final class-wise
coreset selection strategy, the core idea of DECO, as:

STG−X=


{CW S+CW V+CW A}, X=P

{CW RSV + CW ASP}, X=C

{CW ASP}, X=F

(11)

With this comprehensive strategy, the coreset selection
is guided by a class-wise collaboration score. As shown in
Figure 2, we remove the sample in the target class with the
lowest score to get new coreset for replay in later training.

4. Experiment
4.1. Datasets and Metrics

Datasets. Following previous work [6], we evaluate our
method and other competitor methods on four commonly
used benchmark datasets: MNIST [22], CIFAR10 [21], CI-
FAR100 [21], and ImageNet [31]. Following [4, 6], we
denote the blurry setup as “BlurryQ” where Q indicates
the portion of the samples in shared classes across all the
tasks. In each task, the major classes samples account for
(1 −Q)% and the shared classes samples account for Q%.
The class distribution of shared classes is balanced in each
task. We split the datasets following the way in [6]. In
MNIST and CIFAR10, we split them into 5 tasks with 2
major classes in each task. In CIFAR100 and ImageNet, we
split them into 10 tasks with 10 and 100 major classes in
each task, respectively. More details can be referred to [6].
Metrics. Following [6], we adopt the Final Average Accu-
racy and Final Forgetting as the metric. Assuming ati as the
top-1 accuracy of model Mt on the i-th task after training
on task Tt, the FAA is formally written as:

FAA =
1

n

n∑
i=1

ani , (12)

where n denotes the total number of tasks. The Final For-
getting indicates the forgetting on previous (n− 1) tasks of
the final model. Under the OBCIL, the forgetting refers to
the gap between the best performance and the final perfor-
mance of the model on the major classes of each task during
the whole training. the FF is formally written as:

FF =
1

n− 1

n−1∑
j=1

fj , s.t. fj= max
l∈{1,...,n−1}

µl
j −µn−1

j , (13)

where µl
j denotes the accuracy on CC

j in task Tl.

4.2. Baselines and Implementation Details

We compare our method with various competitive
rehearsal-based methods. In terms of buffer management,
we adopt ICARL [29], ER [11], Gdumb [28], OCS [39],
and RM [6] as the competitors, where OCS is the represen-
tative gradient-based coreset selection method. Note that
although RM takes advantage of the reuse of all the stream
data [20] for buffer selection after each task and is thereby
impractical under the online setting, we still include it in the
final comparison to illustrate the superiority of our method.
Besides, we also adopt strong baselines related to buffer us-
age like MIR [3], SCR [24], and DVC [14], and those re-
lated to bias correction like BIC [38] and ER-ACE [8].

We adopt the same network architecture as [6], where
MLP400, ResNet18, Resnet32 and ResNet34 [16] are
adopted for MNIST, CIFAR10, CIFAR100, and ImageNet,
respectively. For DVC, we add Q-net in network architec-
ture following the original requirement. For other hyperpa-
rameters, we set the batch size as 16 on MNIST, CIFAR10,
and CIFAR100 which is the same with [6] and the batch
size of 128 on ImageNet. We adopt the cosine annealing
learning rate from 0.0005 to 0.5 on MNIST, CIFAR10, and
CIFAR100, and from 0.001 to 0.1 on ImageNet. The to-
tal epoch in the second stage is 256 for all methods. All
these are the same with [6, 28]. We ran the experiments
on three randomly generated tasks split on MNIST and CI-
FAR10/100 and one task split on ImageNet, following [6].
For reproduction, We adopt the public codes provided by [6]
for ICARL, BIC, Gdumb, and RM, and reproduce the other
methods under the OBCIL setting with their official codes.

4.3. Main results

For a clear comparison, we first show the upper bound (joint
training) results on each dataset in Table 1. Further, we
compare the results of all competitors and our proposed
method under the ‘Blurry10’ setting for overall evaluation.
From Table 1, we have the following observations.

In terms of final average accuracy, our proposed DECO
outperforms all the other methods on all the four datasets.
The performance gap among these methods becomes more
obvious on CIFAR10 and ImageNet, where our DECO out-
performs all the other methods by 3.08% and 1.45% under
fair comparison (i.e., except RM), respectively. Particularly,
our DECO even beats the strongest competitor RM regard-
less of their reuse of the stream data. On MNIST and CI-
FAR100, although the performance gap among methods is
smaller, our method still has the leading performance than
any other method by almost 1%. Note that compared to all
the gradient-based coreset selection methods, our method
shows a remarkable difference over all the datasets under
the OBCIL setting. All these observations provide direct
evidence that our proposed DECO is effective in solving the
special challenges in this setting and successfully enhances

24000



Table 1. Comparative results on Final Average Accuracy (FAA) and Final Forgetting (FF) between our DECO and other competitor
methods. |M | denotes the buffer size. The method with † takes advantage of reusing stream data for buffer sample selection.

Methods MNIST (|M |=500) CIFAR10 (|M |=500) CIFAR100 (|M |=2000) ImageNet (|M |=20000)
Upper bound 98.39 95.05 72.21 89.64
Buffer size FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
ICARL [29] 78.26 ±0.45 6.70 ±0.37 45.31 ±2.89 4.75 ±1.92 17.84 ±0.78 5.38 ±0.55 17.52 1.94
BIC [38] 77.62 ±1.47 7.95 ±1.05 42.06 ±2.03 1.34 ±2.35 13.21 ±0.19 4.16 ±0.33 37.59 1.83
Gdumb [28] 88.66 ±0.51 2.31 ±0.30 49.41 ±0.69 1.47 ±2.02 26.58 ±0.56 7.17 ±0.70 21.52 4.07
ER [11] 88.06 ±0.70 9.20 ±0.23 52.60 ±2.43 19.57 ±3.71 32.08 ±1.86 12.55 ±1.57 34.37 17.28
MIR [3] 88.76 ±0.62 6.30 ±0.41 54.03 ±2.82 14.40 ±1.97 33.06 ±0.83 13.58 ±0.95 37.21 14.56
SCR [24] 88.82 ±0.88 9.33 ±0.55 53.37 ±2.77 16.37 ±1.31 32.78 ±0.60 15.26 ±1.12 38.18 13.83
OCS [39] 89.12 ±0.37 5.90 ±0.85 55.37 ±1.26 13.15 ±0.87 32.48 ±0.89 12.13 ±0.64 38.99 12.97
ER-ACE [9] 89.25 ±0.53 6.20 ±1.03 56.08 ±2.99 12.73 ±1.02 32.83 ±1.27 11.03 ±1.30 41.13 12.80
DVC [14] 88.90 ±0.65 6.93 ±0.92 56.95 ±1.07 11.20 ±1.92 32.98 ±1.02 13.97 ±0.82 41.11 11.28
RM† [6] 90.24 ±0.64 1.02 ±1.17 58.14 ±1.96 -0.12 ±0.42 32.89 ±1.22 3.59 ±0.53 41.29 1.41
DECO 90.89 ±0.53 0.72 ±0.93 60.03 ±1.37 -1.96 ±1.15 33.93 ±0.71 3.35 ±0.66 42.58 1.03

Figure 4. Visualized results of accuracy changes of the model during the sequential training under online Blurry10 setting on (a) CIFAR10,
(b) CIFAR100, (c) ImageNet. We only select the results of some competitive methods and our DECO for comparison.

Figure 5. Comparison between DECO and MIR on the average
accuracy of the model in task-wise major classes on CIFAR10.

the stability and plasticity of the learned model.
In terms of the final forgetting, the methods with a bal-

anced memory buffer (i.e., ICARL, BIC, Gdumb, RM, and
our DECO) show much better performance in mitigating the
catastrophic forgetting problem. Among these methods, our
DECO still shows obvious advantages on all datasets and
even achieves negative final forgetting. We point out that it
is because our DECO help model continually learns in each
class with enhanced stability and plasticity. To directly il-
lustrate the huge difference in final forgetting, we show the
task-wise results on the major classes CC

t of each task Tt

on CIFAR10 in Figure 5 for an example. Although in early
tasks (i.e., T1−3), MIR reaches higher initial results on the

corresponding major classes (i.e., CC
1−3), the performance

on these results quickly drops in the latter tasks and finally
fall behind the performance of our methods on all the major
classes. In reverse, we can observe that our DECO, though
achieves relatively lower initial performance for the early
major classes, keeps helping the model learn in these classes
and the performance in all the classes continually improves
during the training and finally reaches higher accuracy in
all classes than MIR does. Besides, it can be observed that
our DECO also provides reasonable guidance for the less-
exposed future major classes in the early stage and this in-
deed helps the model learn consistent knowledge in these
classes, which benefits the learning in later tasks. For more
task-wise performance of the other methods, please refer to
the supplementary material.

In addition to the final performance of the methods, we
also show the changing average performance on CIFAR10,
CIFAR100, and ImageNet throughout the whole training in
Figure 4. It could be observed that our DECO consistently
reaches the best performance on each of the datasets. More-
over, our DECO keeps the best performance throughout the
whole training. All these observations again validate that
DECO enhances the stability and plasticity of the model.

Overall, all these comparisons provide evidence of the
superiority of our DECO as an effective coreset selection
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Table 2. Ablation results on Final Average Accuracy (FAA) and Final Forgetting (FF) by combining different strategies in our DECO.
“CBM”, “DSG”, and “ASC” denote class-wise balanced memory, diverse score guidance, and adaptive score constraint, respectively.

Strategies MNIST CIFAR10 CIFAR100 ImageNet
CBM DSG ASC FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓

88.06 ±0.70 9.20 ±0.23 52.60 ±2.43 19.57 ±3.71 32.08 ±1.86 12.55 ±1.57 37.15 16.28
✓ 89.71 ±0.67 2.12 ±1.05 56.19 ±1.21 0.77 ±0.85 32.18 ±1.09 6.57 ±0.80 37.60 6.01
✓ ✓ 90.20 ±0.47 1.17 ±0.68 57.36 ±0.92 0.51 ±1.03 33.07 ±1.22 4.40 ±0.67 41.13 2.01
✓ ✓ ✓ 90.89 ±0.53 0.72 ±0.93 60.03 ±1.37 -1.96 ±1.15 33.93 ±0.71 3.35 ±0.66 42.58 1.03

Table 3. Average ablation results of our method and other com-
petitors with different buffer sizes on CIFAR10.

|M | = 200 |M | = 500 |M | = 1000
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
Gdumb [28] 35.85 1.67 49.47 1.44 64.26 1.12
ER [11] 38.18 22.05 52.60 19.57 66.58 13.71
MIR [3] 39.80 21.30 54.03 14.40 67.75 12.55
OCS [39] 40.35 20.17 55.37 13.15 68.02 13.19
ER-ACE [9] 38.13 18.03 56.08 12.73 68.04 13.28
DVC [14] 41.17 19.95 56.95 11.20 68.29 14.72
RM† [6] 44.01 0.90 58.14 -0.12 68.78 -1.09
DECO 45.61 -0.31 60.03 -1.96 69.07 -1.23

method for online continual learning. It enhances the model
both in stability and plasticity to finally achieve state-of-the-
art performance under the OBCIL setting.

4.4. Ablation Study

Our proposed DECO is composed of three strategies: (1)
A real-time class-wise balanced memory buffer CBM. (2)
Stability-enhanced class-wise collaboration with diverse
score guidance (DSG) for coreset selection. (3) Plasticity-
enhanced class-wise collaboration with adaptive score con-
straint (ASC) for coreset selection. In Table 2, we ablate on
these three strategies to prove their effectiveness. Since a
balanced memory is crucial and fundamental for class-wise
coreset selection, we validate the latter strategies with the
CBM adopted. We can observe that: (1) Compared with
reservoir coreset selection [11], adopting CBM improves
the FAA on all datasets and greatly decreases the final for-
getting degree. That validates the necessity of a real-time
balanced memory buffer and its effectiveness in mitigat-
ing the scores bias [8] which is one of the main reasons
for the high final forgetting (This can also be observed in
Figure 5). (2) With the DSG strategy adopted, we find fur-
ther improvements in the FAA and decreases in FF, which
indicate that our diverse score guidance achieves success in
enhancing the stability of the model. (4) By adopting ASC,
the final performance again achieves improvement and all
the combined strategies help the model reach the highest
FAA and the lowest FF, which proves that all strategies can
collaborate well for consistent final improvement. Overall,
all these observations provide evidence for the effectiveness
and rationality of our proposed method.

In addition, we also ablate on the buffer size and the
blurry extent of the setting. To ablate on the buffer size,

Table 4. Average ablation results of our method and other com-
petitors under different blurry extent settings on CIFAR10.

Blurry10 Blurry20 Blurry30
Methods FAA ↑ FF ↓ FAA ↑ FF ↓ FAA ↑ FF ↓
Gdumb [28] 49.47 1.44 48.82 0.88 47.78 1.37
ER [11] 52.60 19.57 54.81 15.54 53.04 17.53
MIR [3] 54.03 14.40 54.96 14.02 53.87 17.98
OCS [39] 55.37 13.15 56.07 14.31 55.81 13.68
ER-ACE [9] 56.08 12.73 57.19 15.02 56.53 12.22
DVC [14] 56.95 11.20 58.15 14.73 56.09 13.31
RM† [6] 58.14 -0.12 58.71 -0.52 59.82 2.97
DECO 60.03 -1.96 60.13 -0.95 60.66 1.11

we compare the performances of all methods with differ-
ent buffer sizes of 200, 500, and 1000 on CIFAR10. (The
ablation results on other datasets are provided in the sup-
plementary material.) In Table 3, we can observe that our
DECO always keeps the leading performance regardless of
the variation of the buffer size. To ablate the blurry degree
of the setting, we set the ratio of the shared class data as
10%, 20%, and 30% and show the results on CIFAR10 in
Table 4. It can be observed that our DECO consistently
reaches the best performance under the settings of differ-
ent blurry extents. Overall, all these observations provide
evidence that our method keeps its superiority regardless of
the variation of key hyperparameters and changes in setting,
which further proves the effectiveness of our method.

Moreover, we also conduct experiments with different
augmentation strategies applied to all methods to find that
our method still reaches the best performance. Please refer
to the supplementary material for detailed results.

5. Conclusion
In this paper, we focus on exploring the OBCIL setting. We
first identify the two key challenges in this setting: data im-
balance and varying class-wise data volume. To address
them, we propose a novel dual-enhanced coreset selection
method called DECO. It has two novel components, i.e.,
class-wise collaboration with devised diverse score guid-
ance and adaptive score constraint strategies, to enhance
both stability and plasticity across all classes. Finally, we
conduct extensive experiments to show the superiority of
DECO over other methods under the OBCIL setting.
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