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Abstract

In this paper, we explore the problem of event-based
meshflow estimation, a novel task that involves predicting
a spatially smooth sparse motion field from event cam-
eras. To start, we generate a large-scale High-Resolution
Event Meshflow (HREM) dataset, which showcases its su-
periority by encompassing the merits of high resolution at
1280×720, handling dynamic objects and complex motion
patterns, and offering both optical flow and meshflow la-
bels. These aspects have not been fully explored in pre-
vious works. Besides, we propose Efficient Event-based
MeshFlow (EEMFlow) network, a lightweight model fea-
turing a specially crafted encoder-decoder architecture to
facilitate swift and accurate meshflow estimation. Fur-
thermore, we upgrade EEMFlow network to support dense
event optical flow, in which a Confidence-induced Detail
Completion (CDC) module is proposed to preserve sharp
motion boundaries. We conduct comprehensive experiments
to show the exceptional performance and runtime efficiency
(39× faster) of our EEMFlow model compared to recent
state-of-the-art flow methods. Our code is available at
https://github.com/boomluo02/EEMFlow .

1. Introduction
Meshflow, a spatially smooth sparse motion field, repre-

sents motion vectors exclusively at mesh vertices [28, 49],

which has been widely applied in various vision applica-

tions, such as image alignment [29, 30, 34], video stabi-

lization [26, 27, 45] and high dynamic range (HDR) imag-

ing [31, 46]. This motion representation combines the ben-

efits of optical flow and global homography, effectively

reducing redundancy in motion information and computa-

tional costs, while also accommodating non-rigid motions

beyond single-plane movements. However, meshflow esti-

mation on RGB images often encounter challenges under

scenarios such as low-light and rapid motions. This is due
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Figure 1. Comparison of computational overhead and accuracy metrics.

The x-axis represents inference time, while the y-axis corresponds to the

end-point error. The size of each circle indicates the number of model

parameters. Lower values for all metrics are considered better.

to the loss of fine image texture details and motion blurs.

In contrast, event cameras are well-suited for motion

estimation under such situations [7, 11]. Equipped with

bio-inspired vision sensors, event cameras can generate se-

quences of events with microsecond accuracy triggered by

changes in log intensity. In particular, when a change is de-

tected in a pixel, the camera returns an event in the form

e = (x, y, t, p) immediately, where x, y stands for the spa-

tial location, t refers to the timestamp in microseconds, and

p is the polarity of the change, either positive or negative.

The advantages of high temporal resolution and high dy-

namic range make event cameras highly effective for ana-

lyzing dynamic scenes.

In this work, we study a new problem that estimates

meshflow from event camera data. To start, we create

a large-scale High-Resolution Event Meshflow (HREM)

dataset, which contains 20k train and 8k test samples. We

build 100 virtual scenes in Blender to render the dataset,
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which can provide accurate physically-based events along

with dense meshflow label pairs. Based on the dataset,

we further propose an Efficient Event-based MeshFlow

(EEMFlow) network to estimate high-resolution mesh-

flow from event data. Unlike recent flow networks re-

lying on recurrent refinement structure [11, 17, 42], our

network is developed on an encoder-decoder architecture

with multi-scale global optimizing scheme, which can

produce full-resolution meshflow with minimal computa-

tional overhead. Specifically, our EEMFlow achieves ef-

ficiency by employing the lightweight encoder, building

cost volume with dilated feature correlation, and using

group shuffle convolutions during decoding. We select re-

cent top-ranked flow networks, including ERAFT [11], SK-

Flow [41], KPAFlow [32], and FlowFormer [15], which is

trained on our HREM dataset. The results show that our

approach achieves state-of-the-art performance while main-

taining a fast inference speed of 142.9 FPS, outperforming

previous works by a relatively large margin (see Fig. 1).

Additionally, we empirically demonstrate that the pro-

posed new pipeline has the capability to effectively handle

various motion patterns. Its lightweight design and run-

time efficiency further contribute significantly to the field

of optical flow estimation. Specifically, we refine the op-

tical flow progressively during decoding using the coarse

to fine residual approach. A Confidence-induced Detail

Completion (CDC) module is proposed to preserve mo-

tion boundary details during flow upsampling. We also per-

form comparative experiments with recent event flow net-

works [21, 25, 33] to illustrate its superiority. The enhanced

flow network is referred to as EEMFlow+, demonstrating

impressive performance on the reputable DSEC [11] online

test benchmark, with the fastest inference speed reaching

39.2 FPS. Our contributions are summarized as:

• We build HREM, the first event-based meshflow dataset,

superior in the highest resolution at 1280× 720, dynamic

scenes, complex motion patterns, as well as physically

correct accurate events paired with meshflow and optical

flow labels.

• We propose EEMFlow, which achieves SOTA perfor-

mances when compared to top-ranked optical flow net-

works when trained on our meshflow dataset. Moreover,

it achieves inference speed of 142.9 FPS, which is 25.5 to

38.7 times faster than compared methods.

• We propose CDC, a confidence-induced detail com-

pletion module that empowers EEMFlow to make a

meaningful contribution to the optical flow community.

The upgraded model achieving SOTA performance when

compared to representative methods, while also boasting

the fastest inference speed to date.

2. Related Work
2.1. Image-based Meshflow Warping

Meshflow is a lightweight and spatially smooth sparse

motion field with motions only located at mesh ver-

tices [28]. Meshflow is different from dense optical flow,

where optical flow estimates motions of every pixel of an

image while meshflow only concentrates on the global mo-

tion, rejecting motions of any dynamic contents. Meshflow

is also different from a global homography, where local

motions from nonplanar depth variations can be well re-

flected. Mesh-based methods proofs to be effective in vari-

ous applications, such as high dynamic range (HDR) imag-

ing [46], burst image denoising [47], video denoising [38],

image/video stitching [23, 35] and video stabilization [45].

It is worth noting that directly downsampling the optical

flow may yield flow fields of the same resolution as mesh-

flow, but they differ significantly from meshflow and per-

form poorly in terms of warping effects [49]. Direct down-

sampling ignores motion outliers from different dynamic

objects and the global consistency, which can be effectively

addressed by meshflow through motion propagation.

2.2. Event-based Optical Flow Estimation

Optical flow estimation from event cameras has received

significant attention in recent years. Early approaches, such

as [1], could only estimate optical flows at the regions

where events are triggered. Recently, deep methods can es-

timate optical flows from event data, even for the regions

without triggered events. For example, EV-FlowNet [52]

learns event and flow labels in a self-supervised manner

by minimizing photometric distances of grey images ac-

quired by DAVIS [2]. Various event representations, in-

cluding EST [8] and Matrix-LSTM [3], have been ex-

plored, and different network structures, such as Spike-

FlowNet [19], LIF-EV-FlowNet [13], STE-FlowNet [5], Li

et al. [22], ERAFT [11], Yang et al. [48], EVA-Flow [50],

ADMFlow [33], E-FlowFormer [21], and TMA [25] have

been proposed to improve performances. Some methods

even use both events and images as input for flow estima-

tion, such as Fusion-FlowNet [20], Pan et al. [36], DCEI-

Flow [43] and RPEFlow [44]. In this work, we study a new

problem of event-based meshflow estimation, proposing an

efficient event-based meshflow network.

2.3. Event-based Optical Flow Dataset

Early works synthesize events by thresholding rgb im-

ages [18] and applying interpolation for high framerate [9].

However, the timestamp of synthesized events is inaccu-

rate, let alone interpolation artifacts. The DAVIS event

camera [2] can capture both images and real events, result-

ing in some event datasets: DVSFLOW [24], MVSEC [53]

and DSEC [10], based on which EV-Flownet [52] and ER-
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Table 1. Comparison of available datasets.‘Dense OF’ and Meshflow’ indicate whether the dataset has dense optical flow labels and meshflow labels.

Dataset Resolution Dynamic Objects Extreme Conditions Dense OF Meshflow Motion Pattern

DVSFLOW [24] 180×240 � � � � Rotation

MVSEC [53] 260×346 � � � � Drone

DSEC [10] 480×640 � � � � Car

MDR [33] 260×346 � � � � Car

BlinkFlow [21] 480×640 � � � � Random

Ekubric [44] 720×1280 � � � � Falling

HREM(Ours) 720×1280 � � � � Random

AFT [11] compute sparse optical flow. In this way, how-

ever, flows can only locate on sparse event regions [43]. Re-

cently, Luo et al. [33] proposed to render the MDR dataset

from graphics, but it only contains static scenes. Wan et
al. [44] synthesized the Ekubric dataset based on the Ku-

birc toolbox [12], which only includes a single falling mo-

tion pattern. Li et al. [21] considered non-rigid motions

simulating dancing but with lower resolution and without

extreme condition scenarios. None of the aforementioned

datasets involve the estimation of meshflow. In this work,

we render a comprehensive dataset that can support both

meshflow and optical flow estimation, with a higher resolu-

tion, rich dynamic scenes, as well as extreme conditions like

relatively low light and motion blur, as shown in Table 1.

3. Algorithm

3.1. High-Resolution Event Meshflow Dataset

We create the high-resolution event meshflow dataset

(HREM), consisting of 100 virtual scenes that accurately

mimic real-world environments, both indoors and outdoors.

In these scenes, we put dynamic objects to simulate in-

tricate object motions. Camera is programmed to track

these movements, ensuring a realistic portrayal of motion.

The Blender rendering engine was utilized to create high

frame rate videos and dense optical flow labels. For event

data generation, we employed three advanced simulators:

ESIM [37], V2E [14], and DVS-Voltmeter [24]. The sim-

ulator that provided the highest contrast in warped events

images was chosen for our dataset. We also process the

dense optical flow using motion propagation and median fil-

ters, enabling the generation of meshflow labels. Our com-

parisons with existing datasets is shown in Fig. 2, empha-

size the superiority of HREM in high-resolution, dynamic

scenes, complex motion patterns, and comprehensive label-

ing. Following [28], we generate meshflow from dense op-

tical flow, as depicted in Fig. 3.

Motion Propagation. Given a dense optical flow F , we

place a uniform mesh of 16×16 regular cells on its image

plane and then select the motion of the middle point p in

each cell as the local motion vp. Since the vertices of the

mesh near point p should have a similar motion to vp, we

define a rectangle that covers 3×3 cells centered at p, and

assign to all the vertices within the rectangle, ensuring the

propagation of the local motion vp across the image plane.

Median Filters. The local motions of the middle points

in all cells are propagated to their nearby mesh vertices, re-

sulting in each vertex potentially receiving multiple motion

vectors. To select the most appropriate motion vector for a

given vertex, we apply a median filter f1 to filter the candi-

date motions. The response of the filter is then assigned to

the corresponding vertex. The median filter is a widely used

technique in optical flow estimation and has been shown to

produce high-quality flow estimates [39]. Therefore, we use

the median filter for sparse motion regularization. How-

ever, due to dynamic objects, the motion field may con-

tain noise and needs to be spatially smoothed. To address

this issue, we apply another median filter f2 that covers

3×3 cells neighborhood to suppress the noise in the motion

field. This second median filter produces a spatially-smooth

sparse motion field, which is what we called as meshflow.

Ultimately, we use the meshflow (generally 16×16) as the

label, which contains global motion information. However,

we upsample the meshflow to the full image resolution for

intuitive display and alignment applications.

3.2. Estimation for Meshflow and Optical Flow

Following [11] which estimates optical flow from two

consecutive event sequences, we estimate the meshflow

MFk→k+1 and optical flow Fk→k+1 from event sequences

E(tk−1, tk) and E(tk, tk+1), and overall architecture of

our network is shown in Fig. 4. Fellow [54], we convert

the inputs E(tk−1, tk) and E(tk, tk+1) to the 3D volumns

Vk−1→k and Vk→k+1.

3.2.1 Efficient Event-based Meshflow Network

We propose EEMFlow to directly output results of the

same resolution as the ground truth meshflow MFGT for

supervised regression, fully leveraging the advantage about

low-parameter and high-motion-information of meshflow.

Overall Structure of Meshflow Estimation. Since

meshflow focuses more on global large motion rather than

local detailed motion, the EEMFlow we designed does not

require excessively deep network layers or refinement op-

erations from coarse to fine. Firstly, EEMFlow employs a

three-level pyramid feature encoder to extracting features

(V i
tk−1

)N and (V i
tk
)N from Vk−1→k and Vk→k+1, the con-

volutional layers within the i-th level share weights for

19200



MVSEC DSEC HREM(Ours)

(a)

(b)

(c)

Figure 2. Examples from MVSEC [53], DSEC [10] and our dataset. (a): Event data, (b): Optical flow, (c): Upsampled meshflow. The meshflows of MVSEC

and DSEC contain a significant number of ineffective areas due to the sparsity of optical flow. In contrast, our meshflow provides a complete global motion

field. Best viewed on a color screen in high resolution.

(a) (b) (c)

Figure 3. The process of generating meshflow from dense optical flow. (a)

Propagate the motion vector of each grid center to the grid vertices. (b)

Apply median filter f1 to multiple motion vectors of each vertex to select

the most appropriate motion for that vertex. (c) Use median filtering f2
to smooth the motion field in the mesh grid. For ease of visualization, we

present the 8× 8 grid mesh in this paper.

V i
tk−1

and V i
tk

. Secondly, EEMFlow utilizes multi-scale

feature correlation to builds the cost volumes for meshflow

estimation. Features (V i
tk−1

)N and (V i
tk
)N undergo average

pooling operation P to the same resolution (1/64 resolution

of Vk→k+1), and then use correlation to capture relative mo-

tion information and output cost volumes (Ci)N . Specifi-

cally, we employ the dilated feature correlation (DFC) to in-

crease the search area while reducing computational param-

eters. Finally, we stack the cost volumes (Ci)N and features

(V i
tk−1

)N after pooling, fuse them with a weighted-sum op-

eration, and then feed them into the decoders to regress the

meshflow MFk→k+1 at the same resolution as MFGT . In-

spiring by [51], we replace the conventional convolutions

with group shuffle convolutions, which leads to efficient

computation while maintaining high accuracy.

Dilated Feature Correlation. We use the inner product

to calculate correlation between V i
tk−1

and V i
tk

for meshflow

estimation :

Ci(u,d) = V i
tk
(u) · V i

tk−1
(u+ d)/M,d ∈ N , (1)

where u represents the spatial coordinates on V i
tk

, N rep-

resents the search grid of coordinate u in feature V i
tk−1

, M
represents the number of elements in N , d represents the

offset coordinates of the elements in N , and · represents the

inner product calculation. Many methods like [16, 40] sim-

ply define N as a square range of size (2r + 1)× (2r + 1)

and observe that increasing the radius r can reduce errors

but increase computational overhead. We propose dilated

feature correlation that samples densely around the center

and sparsely at farther distances, thereby reducing compu-

tation while enabling larger radius cost volumes, as Eq. 2:

N (dx, dy) =

{
0, if |dx|+ |dy| = 2k, k ∈ [2, r],

1, others,
(2)

where d = (dx, dy) represents the relative position coordi-

nates within the neighborhood N , where N (dx, dy) = 1 in-

dicates the computation of correlation, and N (dx, dy) = 0
signifies no computation.

3.2.2 Event-based Optical Flow Network

Based on EEMFlow, we make some improvements for

accurate estimation of optical flow Fk→k+1, upgrading it

to EEMFlow+. Since optical flow focuses more on local

motion and pays attention to object edge details, we employ

the coarse to fine residual approach to progressively refine

the flow, which can be expressed as Eq. 3.

F i+1 = Convi(C(V i
tk−1

, W(V i
tk
, F i

↑))) + F i
↑, (3)

where C(·, ·), W(·, ·) and ↑ donates our dilated feature cor-

relation, the warping operation and upsampling, respec-

tively. We employ the pyramid decoders for optical flow,

thus F i is the output flow of the i-th decoder, F i+1 and

Convi are respectively the output flow and convolutions in

the i+1-th decoder. The most noteworthy aspect is upsam-

pling F i to F i
↑. Many methods [6, 16, 40, 52] use bilinear

interpolation for upsampling, but this can lead to the mix-

ing of incorrect motions at object edges, resulting in blur-

ring. Therefore, we propose the confidence-induced detail

completion module for upsampling to enhance edge details.

Confidence-induced Detail Completion Module. We

propose the confidence-induced detail completion module
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Figure 4. Our proposed network architecture. We employ pyramid encoders to extract multi-scale features from Vk−1→k and Vk→k+1, then use dilated

feature correlation to compute the cost volume between each layer of features, followed by decoding to output the results. For meshflow estimation, we

utilize the decoders with group shuffle convolutions to output predictions MFk→k+1, upsampled to MF ↑k→k+1. For optical flow estimation, we refine

flows using a coarse-to-fine residual approach and confidence-induced detail completion module, finally outputing the optical flow Fk→k+1.
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Figure 5. The structure of CDC. CDC employs self-corrector based on a

dense convolutional network and self-correlation based on a self-attention

mechanism to correct the flow obtained from bilinear upsampling. B rep-

resents bilinear upsampling.

(CDC) to eliminate the blurring of object edges caused

by the mixing of multiple motions at the junctions of dif-

ferent movements during upsampling. The detailed struc-

ture of our CDC is shown in Fig. 5. Given a small-scale

flow F i from the i-th level, our CDC first generates an

initial flow F̄ i for the i + 1-th level through bilinear in-

terpolation, and then arranges the self-corrector and self-

correlation branches to correct it. Self-corrector is based on

a dense convolutional network with a five-layer structure. It

captures motion information within the edge neighborhood

through dense convolution from the concatenated feature

V i
tk−1

and V i
tk

, outputting the corrected flow ΔF i and the

corrected confidence map W i. Self-correlation is based on

a self-attention mechanism, using a large receptive field to

find the fine regions in features V i
tk

that are identical to the

motion of the error region in F̄ i. It outputs self-attention

weights Ai, multiplied with the initial flow F̄ i. With the

corrected flow ΔF i and self-attention weights Ai, we can

generate the fine flow F̃ i :

F̃ i = αW(F̄ i,ΔF i) + (1− α)(Ai ⊗ F̄ i), (4)

where W(·, ·) means the warping operation, ⊗ donates mul-

tiplication and α ∈ [0, 1] is the weight coefficient. We iden-

tify error-prone object edge areas based on the corrected

confidence map W i, as weights to fuse the initial flow F̄ i

and the fine flow F̃ i, obtaining the final corrected flow F i
↑:

F i
↑ = W i � F̄ i + (1−W i)� F̃ i, (5)

where � donates the element-wise multiplier.

3.2.3 Loss Function

For both meshflow and optical flow estimation, we use

L1 loss for supervised regression during training. Our

EEMFlow, used for estimating meshflow, directly outputs

results at the same resolution as the meshflow GT, allowing

for direct loss calculation. Similarly, the results outputted

by our EEMFlow+ for optical flow estimation are at the

same resolution as the network input, enabling direct cal-

culation with the optical flow GT.

4. Experiments
4.1. Implementation Details

4.1.1 Datasets

Our HREM dataset includes 100 indoor and outdoor

scenes, with a resolution of 1280 × 720. We randomly se-

lect 70 scenes for training and reserve the remaining 30 for

testing. The training set comprises 20, 000 samples, while

the test set contains 8, 000 samples. Additionally, we fur-

ther divide the test set by scene type (outdoor vs. indoor)

and camera motion speed during rendering, resulting in four

sub-sequences (outdoor slow, outdoor fast, indoor slow, in-

door fast), with mean motion magnitudes ranging from,

0 − 30, 30 − 100, 0 − 20 and 20 − 100 pixels, respec-

tively. Moreover, similar to [52], we employ two data in-

put modes: dt = 1 and dt = 4. dt = 1 uses the event

sequence between two consecutive frames of RGB images

as input, with a meshflow generation frequency of 60 Hz,

while dt = 4 uses the event sequence between four con-

secutive frames of RGB images as input, with a meshflow

19202



Table 2. Quantitative comparison of our EEMFlow with other advanced flow networks on our HREM dataset. The evaluation metric used is End-Point Error

(EPE). ”Parameters” and ”Time” respectively indicate the network parameter count and inference time. ΔP and ΔT represent the change in parameter

count and inference time relative to ERAFT [42] for other networks. Smaller values are desirable for all metrics. We highlight the best results in red and the

second-best results in blue.

Method Parameters Time Outdoor Indoor
Avg

dt = 1 (M) (ms) Slow Fast Slow Fast

EVFlownet [52] 38.2 46 3.55 16.16 2.93 11.65 8.57

PWCNet [40] 3.36 42 3.91 14.49 2.86 11.89 8.29

ERAFT [11] 5.27 93 4.15 13.32 2.91 10.34 7.68

SKFlow [41] 6.28 145 3.76 11.78 7.24 8.81 7.24

GMA [17] 5.89 108 2.18 12.07 2.02 9.34 6.40

KPAFlow [32] 6.00 184 2.03 12.25 1.95 9.02 6.31

FlowFormer [15] 9.87 281 2.06 11.71 1.88 8.66 6.08

EEMFlow(Ours) 1.24 7 2.42 9.09 2.00 8.46 5.50

Method ΔP ΔT Outdoor Indoor
Avg

dt = 4 (M) (ms) Slow Fast Slow Fast

EVFlownet [52] +624% +51% 18.25 49.32 16.16 47.19 32.73

PWCNet [40] -36% -55% 16.40 46.17 14.49 40.90 29.49

ERAFT [11] 0% 0% 15.21 40.83 13.32 39.61 27.24

SKFlow [41] +19% +56% 14.93 39.24 11.71 39.22 26.28

GMA [17] +11% +16% 14.13 38.89 12.07 37.68 25.69

KPAFlow [32] +14% +99% 14.04 38.03 12.25 37.20 25.38

FlowFormer [15] +88% +202% 13.89 38.55 10.77 38.53 25.44

EEMFlow(Ours) -76% -92% 13.97 37.33 12.09 34.39 24.45

Image Overlaid EVFlownet ERAFT KPAFlow Ours Meshflow(GT)

Figure 6. Subjective results of image registration using meshflow estimated by other methods and ours. We estimate meshflow from the event sequences and

then warp image It1 onto image It2 for fusion, showcasing the fused result. The fewer blue or red ghosting artifacts indicate better alignment performance.

generation frequency of 15 Hz. DSEC [10] is a commonly

used dataset for event-based optical flow estimation, which

consists of real-world data captured by real event cameras

mounted on cars. We also conduct experiments on DSEC to

compare the performance for optical flow estimation.

4.1.2 Training details

We conduct experiments using the PyTorch framework

on two NVIDIA 2080Ti GPUs. We train all networks with

the same parameters on our HRDM dataset. We employ the

AdamW optimizer and OneCycle policy with a learning rate

of 5×10−4, weight decay of 5×10−5, and other default pa-

rameters set to β1 = 0.9, β2 = 0.99, ε = 1×10−4. We train

all networks up to 100k iterations to reach convergence.

4.1.3 Evaluation metrics

Following EV-FlowNet [52], we use the average End-

point Error (EPE) as the metric. When evaluating meshflow,

we upsample both the prediction and the ground truth to the

input resolution to calculate metrics. In addition, the DSEC

dataset uses NPE to measure the percentage of flow errors

higher than N pixels in magnitude (e.g., 3PE, 2PE, 1PE) for

flow outliers analysis, and employs the Angular Error (AE)

to assess the directional accuracy.

4.2. Comparison with State-of-the-Arts

4.2.1 Results for Event-based Meshflow Estimation

In Table 2, We train and test our EEMFlow on

our HREM dataset, compared with some advanced net-

works, e.g., EVFlownet [54], ERAFT [11], PWCNet [40],

SKFlow [41], GMA [17], KPAFlow [32], and Flow-

Former [15]. Since these networks are all structured to

output prediction with the same resolution of input, we up-

sample the groud truth MFGT to supervise these networks

during training. However, EEMFlow can directly output

prediction aligned MFGT in resolution. But for fair com-

parison, we upsample the predictions of all networks to a

uniform resolution during evaluation. We train and test all

networks using two input modes (dt = 1 and dt = 4), and
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Reference EVFlownet ERAFT KPAFlow Ours Meshflow(GT)

Figure 7. Qualitative comparison of our proposed EEMFlow with other advanced flow networks on our HREM dataset. The subjective images of events and

dense optical flow on the left side serve as references. The areas enclosed by red rectangles are zoomed in.

Table 3. Results on DSEC dataset. All networks are trained and tested on

the DSEC dataset for optical flow esimation.

Methods FPS↑ 1PE↓ 2PE↓ 3PE↓ EPE↓ AE↓
MutilCM [39] - 76.6 48.5 30.9 3.47 14.0

EV-Flownet [52] 22.3 55.4 29.8 18.6 2.32 8.12

OF-EV-SNN [4] - 53.7 20.2 10.3 1.71 6.34

EVA-Flow [50] - 15.9 - 3.20 0.88 3.31

ERAFT [11] 11.4 12.7 4.74 2.68 0.79 2.85

ADMFlow [33] 9.88 12.5 4.67 2.65 0.78 2.84

EFlowformer [21] - 11.2 4.10 2.45 0.76 2.68

TMA [25] 7.55 10.9 3.97 2.30 0.74 2.68

EEMFlow+(Ours) 39.2 11.4 3.93 2.15 0.75 2.67

present their performance metrics in four test sub-sequences

(outdoor slow, outdoor fast, indoor slow, indoor fast). In

addition, we average the metric scores across all four test

sub-sequences as shown in the “Avg” column.

Table 2 shows that our EEMFlow achieves the lowest

EPE score for both input modes dt = 1 and dt = 4
in the “outdoor fast” and “indoor fast” test sub-sequences,

demonstrating its superior performance on high-speed and

large-movement sequences. EEMFlow also exhibits great

potential to outperform other flow networks on the “out-

door slow” and “indoor slow” test sub-sequences. Notably,

EEMFlow achieves the lowest EPE scores in the “Avg” col-

umn for both input modes dt = 1 and dt = 4. Besides, we

also achieves the least number of parameters and the fastest

inference speed. Compared to ERAFT [11], our EEM-

Flow reduces the parameter count by 76% (from 5.27M to

1.24M), reduces the inference time by 92% (from 93ms to

7ms), and improves average EPE in dt = 4 by 8% (from

27.24 to 25.18). EEMFlow achieves comparable EPE per-

formance to FlowFormer [15] but exhibits a 38.7× increase

in inference speed.

Reference EVFlownet ERAFT OursTMA

Figure 8. Qualitative comparisons on the DSEC test set. We visualize the

dense predictions and zoom in the areas where are apparent differences.

In Fig. 7, we qualitatively compare our proposed EEM-

Flow with other flow networks, e.g., EVFlownet [54], ER-

AFT [11], and KPAFlow [32]. To facilitate comparison,

we upsample the meshflow estimation and ground truth to

the same resolution of input and zoom in on the areas with

the apparent differences. EVFlownet shows the worst per-

formance, with many holes and color mixing. ERAFT and

KPAFlow would exhibit block artifacts and appear coarse in

nature. In contrast, our EEMFlow results are smoother with

more natural color transitions and greater similarity to the

upsampled ground truth. In Fig. 6, we present the subjec-

tive results of these networks for image registration. We es-

timate and upsample meshflow prediction from the event se-

quences E(t1, t2) and then warp image It1 onto image It2 .

We also zoom in on the challenging areas of alignment in

the registered results, clearly demonstrating that our EEM-

Flow achieves excellent image registration performance.
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Image FlowFormer (Optical Flow) EEMFlow+ (Optical Flow)

EEMFlow (Meshflow)FlowFormer (Meshflow)Events Meshflow (GT)

Optcial Flow (GT)

Figure 9. Visualization for meshflow and optical flow results.

Table 4. Results of meshflow and optical flow on HREM for dt = 1.

Task Method
Outdoor Indoor

Avg
Slow Fast Slow Fast

Optical FlowFormer 6.20 16.06 5.99 15.27 10.88

Flow EEMFlow+ 3.88 11.02 4.03 10.92 7.46

Mesh- FlowFormer 5.99 15.12 5.74 14.95 10.45

flow EEMFlow 2.42 9.09 2.00 8.46 5.50

4.2.2 Results for event-based optical flow estimation

Table 3 presents the comparative results on DSEC datset

of our optical flow estimation network, EEMFlow+, against

other event-based optical flow estimation networks. EEM-

Flow+ achieves state-of-the-art performance in the 2PE,

3PE, and AE metrics, and is on par with the best in the

EPE metric. Notably, EEMFlow+ still maintains a signifi-

cant advantage in inference speed. Compared to TMA [25],

our EEMFlow+ increases the inference speed by 419%

(from 7.55FPS to 39.2FPS). Fig. 8 displays the qualita-

tive results of our optical flow estimation on the DSEC

test set, compared with other advanced methods, including

EVFlownet [52], ERAFT [42], and TMA [25]. By zooming

into the object areas, it is clearly observable that our results

exhibit more regular shapes and clearer boundaries, high-

lighting the detail enhancement capability of our proposed

CDC module.

4.3. Ablation Studies

4.3.1 The Advantages of Event-Meshflow Estimation

According to the ERAFT [42], image-based approaches

face challenges in handling difficult images due to the

limited dynamic range of image sensors. As shown in

Fig. 9, even advanced image-based techniques like Flow-

Former struggle, while our event-based methods (EEM-

Flow, EEMFlow+) exhibit notably superior performance.

Additional quantitative comparisons are provided in Ta-

ble 4, our network of event-based meshflow estimation

EEMFlow achieves the lowest EPE scores in HREM dat-

set for the dt = 1 input mode, which demonstrates the re-

markable efficiency of our EEMFlow makes it suitable for

real-time applications such as online video stabilization and

autonomous driving.

Table 5. Ablation studies about CDC of EEMFlow+. CDC consists of two

branches, the self-corrector and self-correlation.

Model
Self- Self-

FPS↑ 3PE↓ EPE↓ AE↓
corrector correlation

(a) � � 60.4 3.52 0.89 3.11

(b) � � 55.6 2.77 0.81 2.92

(c) � � 46.3 2.65 0.79 2.78

(d) � � 39.2 2.15 0.75 2.67

4.3.2 Experiments for CDC of EEMFlow+

In Table 5, we also conduct ablation experiments on the

CDC module of EEMFlow+ used for optical flow estima-

tion, including its two branches, the self-corrector and self-

correlation. We train and evaluate all models using the

same settings on the DSEC dataset to show the individ-

ual impact of each branch in CDC module. Comparison

of (a)&(b) demonstrates that the CDC with only the self-

corrector branch can bring a significant increase in accuracy

with a minimal loss in speed. Comparison of (b)&(c) shows

that self-correlation, compared to self-corrector, can lead to

a higher increase in accuracy, albeit at a further reduction in

inference speed. Finally, the comparison of (a)&(d) shows

that the CDC composed of both the self-corrector and self-

correlation branches significantly improves the accuracy of

optical flow estimation with an acceptable loss in speed.

5. Conclusion

In this work, we develop the first event-based mesh-

flow dataset, termed HREM, where 100 indoor and out-

door virtual scenes with rich scene contents are rendered

using Blender. Our HREM possess physically correct ac-

curate events and meshflow label pairs with so far the high-

est resolution. Furthermore, we propose an efficient event-

based meshflow network (EEMFlow), which achieves state-

of-the-art performance on HREM dataset while maintain-

ing high efficiency. Based on EEMFlow, we propose a

confidence-induced detail completion module to upgrade it

as EEMFlow+ for optical flow estimation, achieving SOTA

results on DSEC dataset with the fastest inference speed.

The integration of optical flow and depth data allows

for the extension of the proposed framework to address 3D

scene flow. Subsequently, our future work will involve ex-

panding this methodology on the HREM dataset by inte-

grating scene flow annotations and investigating scene flow

estimation using event cameras.
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Davide Scaramuzza. Video to events: Recycling video

datasets for event cameras. In Proc. CVPR, pages 3586–

3595, 2020. 2

[10] Mathias Gehrig, Willem Aarents, Daniel Gehrig, and Davide

Scaramuzza. Dsec: A stereo event camera dataset for driv-

ing scenarios. IEEE Robotics and Automation Letters, 6(3):

4947–4954, 2021. 2, 3, 4, 6

[11] Mathias Gehrig, Mario Millhäusler, Daniel Gehrig, and Da-
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