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Figure 1. Qualitative Results of PnP-OVSS + BLIP. Images are from Pascal Context and COCO stuff. The right columns and bottom
rows show the ground-truth (GT); the rest are our results. Note accurate results even on complex (trees) and small objects (last column).

Abstract

From image-text pairs, large-scale vision-language mod-
els (VLMs) learn to implicitly associate image regions
with words, which prove effective for tasks like visual
question answering. However, leveraging the learned as-
sociation for open-vocabulary semantic segmentation re-
mains a challenge. In this paper, we propose a simple,
yet extremely effective, training-free technique, Plug-and-
Play Open-Vocabulary Semantic Segmentation (PnP-OVSS)
for this task. PnP-OVSS leverages a VLM with direct
text-to-image cross-attention and an image-text matching
loss. To balance between over-segmentation and under-
segmentation, we introduce Salience Dropout; by iteratively
dropping patches that the model is most attentive to, we
are able to better resolve the entire extent of the segmen-
tation mask. PnP-OVSS does not require any neural net-
work training and performs hyperparameter tuning without
the need for any segmentation annotations, even for a val-
idation set. PnP-OVSS demonstrates substantial improve-
ments over comparable baselines (+29.4% mIoU on Pascal
VOC, +13.2% mIoU on Pascal Context, +14.0% mIoU on
MS COCO, +2.4% mIoU on COCO Stuff) and even outper-
forms most baselines that conduct additional network train-
ing on top of pretrained VLMs. Our codebase is at https:
//github.com/letitiabanana/PnP-OVSS.

1. Introduction

The classic task of semantic segmentation [20, 22] aims to
classify pixels to their object types. Traditional supervised
methods require dense pixel-level annotations and are re-
stricted to recognizing a predefined set of objects. To relax
these constraints, open-vocabulary semantic segmentation
[8, 17, 21, 41, 44, 46, 48, 74, 76, 77, 80, 84] aspires to iden-
tify arbitrary object categories, whereas weakly supervised
techniques [9, 11, 15, 25, 31, 36, 53, 55, 65, 75, 90] can
acquire pixel-level localization capabilities from coarse su-
pervision, e.g., image labels or boxes.

Large-scale vision-language models (VLMs) pretrained
on image-text pairs [1, 37, 38, 40, 60, 78, 85] achieve un-
precedented performance on multimodal tasks, such as de-
scribing arbitrary images and answering free-form, open-
ended questions about them (either with [37, 38, 60] or
without finetuning [1, 19, 62, 70]). These tasks apparently
involve some ability to localize objects. For example, to
answer the question “what objects appear on the table?”,
the model would have to first localize the table in the im-
age and identify the objects on it. Hence, it is reasonable to
conjecture that the VLM network learns to perform open-
vocabulary localization from image-text pretraining. How-
ever, distilling the localization capability from the VLMs
remains an open challenge.

Most existing methods for open-vocabulary semantic
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Figure 2. Segmentation masks for elephant and train using (a) off-
the-shelf cross-attention, (b) cross-attention + GradCAM, and (c)
cross-attention + GradCam + Salience DropOut (§3.2). The naive
cross-attention masks are too inclusive whereas GradCAM is too
exclusive.

segmentation (OVSS) from VLMs usually obtain single
vector encodings for the visual and text inputs respectively
[43, 44, 51, 52, 73, 74]. However, pooling every token into a
single vector likely discards information about detailed po-
sitions of objects and words. We investigate the use of pre-
trained cross-attention layers for OVSS, which retain finer-
grained correspondence between text and image patches.

Nevertheless, a naive application of cross-attention be-
tween the class name and the image patches lead to overly
broad segmentation masks that include irrelevant parts of
the image (i.e., over-segmentation, see Fig. 2 (b)). To allevi-
ate this, [62] employs gradient information from the image-
text matching loss, GradCAM[57]-style, to sharpen the
attention-based masks for the purpose of guiding caption
generation. However, this results in masks that capture only
the most discriminative regions of an object, such as the
head of an elephant (i.e., under-segmentation, Fig. 2 (c)).
To acquire complete object masks, we propose Salience
DropOut, which iteratively drops the image patches with
high GradCAM attention scores, forcing the model to at-
tend to less discriminative but relevant object parts.

Another important consideration is the cross-attention
layer and the attention head to extract the masks from.
These hyperparameters have enormous influence on the fi-
nal results and are traditionally tuned on a validation set
with pixel-level mask annotations. To eliminate the need
for dense annotations, we propose an weakly-supervised re-
ward function based on CLIP [49]. On a validation set with
images as well as object class names, the technique con-
trasts the extracted object regions with a blank image. If,
according to CLIP, the former is more similar to the corre-
sponding class name than the latter, we increment the re-
ward. All hyperparameter tuning of our technique is per-
formed with a simple random search with this reward, lead-
ing to high performance.

In summary, we propose Plug-and-Play Open-vocabulary
Semantic Segmentation (PnP-OVSS), an extremely simple
and training-free framework to extract semantic segmenta-
tions from VLMs. At zero extra training cost, PnP-OVSS
can be used with any pretrained VLM with text-to-image
cross attention layer and an image-text matching loss. It
has zero reliance on pixel-level annotations, including a val-
idation set for hyperparameter tuning. At the same time,
PnP-OVSS delivers excellent performance. It not only beats
the training-free baseline with remarkable margins (+29.4%
mIoU on Pascal VOC, +13.2% on Pascal Context, +14.0%
on MS COCO, +2.4% on COCO Stuff), but also outper-
forms most recent techniques within the past two years that
require extensive finetuning on top of the VLM pretraining.

With this paper, we make three contributions:
• We propose to combine text-to-image attention, GradCAM,

and Salience DropOut to iteratively acquire accurate seg-
mentation of arbitrary classes from pretrained VLM.

• We replace the densely annotated validation set for hyper-
parameter tuning, which is needed by most existing meth-
ods, with a contrastive reward function based on CLIP.
This reward function, coupled with random search, finds
a good set of hyperparameters for OVSS.

• The proposed method, PnP-OVSS, is simple to use, re-
quires no extra finetuning, and delivers high performance.
Its success hints at a new direction for open-vocabulary
segmentation tasks leveraging large VLMs.

2. Related Work

2.1. Large-Scale Vision-Language Model

Large-scale vision-language models (VLMs), trained on mil-
lions of image-text pairs, have become the foundation for
many multimodal tasks. Architecturally, the straightforward
approach to training such methods involves aligning visual
and textual latent representations via a simple dot product
[24, 49]. However, this is insufficient for complex struc-
tured tasks like visual question answering or image cap-
tioning, which require specialized approaches that employ
separate encoders before cross-attention between modali-
ties [33, 35, 37, 78, 79] or self-attention networks over all
tokens from both modalities [10, 27, 39, 40, 60]. Another
design dimension when training VLMs is the loss func-
tion. Commonly used losses include image-text contrastive
learning [34, 35, 37, 50, 60, 81], image-text matching (ITM)
[27, 34, 35, 37, 60, 72, 78, 81, 82], prediction of masked to-
kens or patches [34, 60, 78, 81], and language modeling
[1, 7, 34, 37].

This work utilizes models with unimodal encoders fol-
lowed by cross-attention fusion [34, 35, 37, 72, 78, 81, 82],
as they work with high-level features, and accurately attend
to the appropriate image patches. Additionally, we utilize
the gradient from the ITM loss in the GradCAM step (§3.1)
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Method PT Data Size FT data size

Requires finetuning on image-text pairs
OVSegmentor [74] - 4.3M
Vil-Seg [43] 400M 412M
GroupVit* [73] - 3.4M
GroupVit [73] - 26M
CLIPpy [51] - 134M
SegClip [44] 400M 3.4M
ViewCo [52] - 26M
TCL [6] 400M 15M
PACL [46] 400M 30M

Requires finetuning but not image-text pairs
MaskClip w/ ST [89] 400M 1.2M
ZeroSeg* [8] 400M 3.4M
ZeroSeg [8] 400M 1.2M

Requires no finetuning
MaskClip[89] 400M 0
Reco[58] 400M 0
PnP-OVSS (Ours)

+ BLIP 129M 0
+ BridgeTower 400M+ 4M 0

Table 1. Training data of current Zero-shot semantic segmentation
methods with only text supervision. PT stands for pretraining with
image-caption data, FT stands for fine-tuning with image-caption
data. ST stands for self training. We list only the image-caption
data used for pretraining and all type of data for finetuning. For hy-
perparameter tuning, our method uses CLIP-L/14 pretrained with
400M data to calculate the reward.

to sharpen segmentation masks.

2.2. Zero-shot Semantic Segmentation

Zero-shot semantic segmentation predicts a dense segmen-
tation mask for any object class described by a given text
prompt, with only prior exposure to class-agnostic image-
level supervision. This contrasts with weakly supervised
semantic segmentation [3, 13, 23, 26, 28, 30, 54, 61, 69, 69,
83, 86, 87], which relies on class-specific annotations, and
unsupervised object discovery [12, 14, 56, 59, 63, 64, 67,
68], which identifies the sole object in the foreground.

Traditional methods [4, 18, 47, 71] train a classifier
to distinguish between seen and unseen visual features,
wherein the unseen visual features are obtained from a gen-
erative model, trained on pairs of seen class image-text em-
beddings. Recently, methods additionally leverage knowl-
edge from VLMs to attain better matching of visual and tex-
tual features [17, 32, 41, 76, 89]. Concretely, they train the
segmentation network with dense annotations, while replac-
ing a part of the framework with components from VLMs.

Recently, methods have explored the use of additional
supervision to further reduce the need for pixel level anno-
tations. Prior work is compared in Table 1.

Models Finetuned on Image-Text Pairs. Methods pro-
posed in [6, 43, 44, 46, 51, 52, 73, 74] require paired image-
text annotations to adapt to the zero-shot segmentation task.
Specifically, approaches in [43, 44, 51, 52, 73, 74] cluster
semantically similar pixels by contrasting grouped region
embeddings with textual embeddings, usually via the use
of contrastive and self-supervised losses. PACL [46] mod-
ifies the constrastive loss to operate over aggregated patch
embeddings (instead of image embeddings) to encourage
better alignment between image patches and text. TCL [6]
achieves a similar patch-text alignment by introducing an
additional module to extract text-grounded image regions.

Models Finetuned on Pseudo-labels. Methods in [8, 89]
do not require additional image-text supervision, but in-
volve additional fine-tuning to adapt to the segmentation
task. ZeroSeg [8] attempts to match its own group em-
beddings with multi-scaled segment embeddings obtained
from CLIP [49]. MaskClip w/ ST [89] modifies the global
attention pooling layer within CLIP to output segmentation
masks, which are used as pseudo-labels to train a segmen-
tation network.

In comparison, our proposed PnP-OVSS does not re-
quire any fine-tuning or additional paired image-text an-
notations. It can directly distill high quality open vocab-
ulary semantic segmentations from any VLM with direct
text-to-image cross-attention and an image-text matching
loss [34, 35, 37, 72, 78, 81, 82]. Compared to approaches
in [58, 89] that perform zero-shot open vocabulary seman-
tic segmentation under a similar no training and no addi-
tional annotations paradigm, PnP-OVSS achieves consider-
ably superior performance.

3. Method

PnP-OVSS has four major steps. First, we extract a cross-
attention salience map per object class from a VLM. Sec-
ond, we sharpen the salience map by weighing it with the
ITM gradient in the style of GradCAM. Third, we apply
Salience DropOut that iteratively completes the salience
maps. Fourth, we apply Dense CRF [29] for fine-grained
adjustment. The process is illustrated in Fig. 3 and Fig. 4.

In the first step, we feed an image and a text prompt to
the pretrained VLM and extract cross-attention maps. The
text prompt is “A picture of [class 1] [class 2] ...
[class K]”, which includes all K class names of interest
in the dataset. The image is divided into P×P patches. The
text prompt and the image first go through the modality-
specific encoders respectively, followed by a cross-attention
fusion module. In the cross-attention layers, the text encod-
ings serve as query vectors and the image patche encodings
are as key and value vectors.

We extract an attention map for each text token to the
image patches from a particular cross-attention layer and an
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Figure 3. The first iteration with cross-attention + GradCAM + Salience DropOut. The text prompt contains K class names and the
image contains P × P patches. From a cross-attention layer and an attention head in the pretrained VLM, we obtain K attention score
maps of size P × P , which are sharpened by GradCAM using gradients from the image-text-matching (ITM) loss. To get more complete
predictions, we perform Salience Dropout, which repeatedly zero out image patches of the highest average scores and feeds the remaining
patches to the image encoder again, forcing the model to attend to other less discriminative patches. We show example salience maps from
all iterations in Fig. 4.

attention head. Note that different layers and heads lead to
drastic performance differences, and the choices are hyper-
parameters, tuned using the procedure in §3.4. We exclude
attention maps for the first three tokens “A”, “picture”, “of”,
which do not describe semantic classes. If a class name con-
tains two or more tokens, we take the mean attention map.
This procedure yields an attention tensor of size K×P×P .

With the correct layer and attention head, we observe
that this attention map, when normalized by softmax along
the first dimension K, can provide passable semantic seg-
mentations. However, it tends to include many patches
unrelated to the class being segmented, leading to over-
segmentation. Hence, we introduce two refinement steps,
GradCAM and Salience DropOut, explained in §3.1 and
§3.2. After these steps, we acquire aggregate salience maps
for every class. Finally, we conduct local polish to the resul-
tant salience maps using Dense CRF, as described in §3.3.

3.1. Map Sharpening with GradCAM

The off-the-shelf attention maps tend to also cover many
patches unrelated to the class name (See Fig. 2 (b)). Prior
works [35, 62] further sharpen the attention maps and fo-
cus them on class-discriminative regions using a variant of
GradCAM [57], which is originally proposed for convolu-
tional networks, but applicable to attention maps. It is worth

noting that [35, 62] use the technique for purposes other
than semantic segmentation.

The GradCAM method requires a gradient. Here we
leverage the image-text matching (ITM) loss, which trains
the VLM to classify if an image-text pair match each other
or not. Computing the ITM loss requires a label. We use
“matching” (as opposed to “not matching”) as the label and
compute the gradient of the loss with respect to the attention
score. This is equivalent to asking: which attention scores
contribute the most to the decision that the image-text pair
is matching? Formally, we denote a P×P attention map for
class k as M (k) and the ITM loss as LITM. The GradCAM
class salience map is computed as

M̃ (k) = max

(
0,

∂LITM

∂M (k)

)
⊗M (k), (1)

where ⊗ denote the component-wise multiplication and
max(·) is also applied component-wise.

3.2. Salience DropOut

As illustrated in Fig. 2 (c), segmentations generated by the
GradCAM-style re-weighting of cross-attention are often
narrowly focused on the most discriminative regions for a
given class. However, the less discriminative regions are
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Figure 4. An illustration of Salience DropOut, showing GradCAM
salience values after each iteration. Black squares in the images
indicate dropped patches. We obtain the final result by summing
the salience maps from all iterations and applying thresholding,
Gaussian blur, and Dense CRF.

still important for the completeness of masks. To compel
the VLM to attend to these regions, we propose an iterative
technique called Salience DropOut.

Since our task is zero-shot and open-vocabulary, we do
not have prior knowledge of the classes present in the im-
age. Hence, we sum up the salience maps M̃ (k) over all
classes k, yielding a class-agnostic salience map U (t) for
the tth Salience DropOut iteration, U (t) =

∑K
k=1 M̃

(k,t),

where M̃ (k,t) is the GradCAM salience map for class k af-
ter the tth iteration. Next, we zero out the 50% of image
patches with the highest values in U (t). On the remaining

image, we compute the GradCAM salience maps M̃ (k,t+1)

and their sum, U (t+1). Any image patch previously zeroed
out will always receive zero salience in later iterations.

Formally, the set of remaining image patches S(t) ⊆
{1, . . . , P}2 after the tth dropout iteration is defined as

S(t) = S(t−1) \ {(i, j) | U (t)
ij ≥ η}, (2)

η = median
(
{U (t)

ij | (i, j) ∈ S(t−1)}
)
, (3)

where U
(t)
i,j denotes the aggregate salience value of the im-

age patch at row i and column j. Additionally, note that the
input to the first dropout iteration S0 = {1, . . . , P}2 is the
set of all image patches.

We stop at four rounds of dropout, as almost all (93.75%)
patches are removed beyond that point. The final output for
each class k is the sum over all salience maps across the
four dropout iterations, M̂ (k) =

∑4
t=1 M̃

(k,t).

3.3. Gaussian Blur and Dense CRF

The salience dropout procedure generates k continuous-
valued salience maps, one per object class. To filter out
small random noise in the salience values, we subsequent
apply a straightforward thresholding operation at a prede-
fined value T on the salience values and obtain binary seg-
mentation masks. Nonetheless, the hard thresholding cre-
ates jagged segmentations with sharp edges that often do
not coincide with object boundaries. One common strat-
egy in zero-shot segmentation is to apply Dense Conditional
Random Field (CRF) [29], which makes fine-grained ad-
justments to the estimated masks by enforcing consistency
between nearby image pixels with similar colors.

However, we find that the hard 0/1 labels in the binary
masks do not work well as pixel unary potentials for Dense
CRF. Hence, we smooth them using a Gaussian kernel with
a preset variance σ, which results in a better initialization
for unary terms and accounts for uncertainty of exact seg-
mentation boundary along the patch boundaries.

3.4. Hyperparameter Tuning

Three hyperparameters in PnP-OVSS have the strongest in-
fluence on the result, the cross-attention layer L, the at-
tention head H , and the binary threshold T . Traditionally,
tuning these hyperparameters requires a validation set with
pixel-level labels. However, since our goal is to perform
zero-shot open-vocabulary semantic segmentation, this re-
quirement could potentially limit the applicability of the
technique. Instead, we propose a weakly supervised reward
function for hyperparameter tuning, which only requires a
set of images and the class names appearing in each image.

The reward for an image I is calculated as follows. We
start with a set of classes present in the image, denoted as
K(I). For each class k ∈ K(I), we obtain a segmentation
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mask M (k) (which can be the GradCAM mask, the Salience
DropOut mask, or the Dense CRF mask). Next, we ap-
ply the mask to the image I and input the extracted regions
M (k) ⊗ I into a pretrained neural network f , which takes
an image and a textual class name as input and produces
a similarity score. We calculate the normalized probability
that the masked image M (k)⊗I belongs to the ground-truth
class k and contrast with a completely black image 0.

Reward =
∑

k∈K(I)

1[Pr(M (k) ⊗ I, k) > Pr(0, k)], (4)

Pr(I, k) =
exp(f(I, k))∑

k′∈K(I) exp(f(I, k
′))

, (5)

where 1(·) is the indicator function. Intuitively, a reward of
1 is assigned if and only if the image features pulled with
the estimated mask for class k bears higher similarity to the
class name of k than a black image (which can be inter-
preted as the prior probability of class k).

We sum up the reward for all validation images as the
total reward. The best hyperparameters, including the cross-
attention layer, the attention head, the threshold T , and the
variance in the Gausian blur kernel, are determined using a
simple random search.

4. Experiments
4.1. Datasets and Implementation Details

Following the previous work for zero-shot semantic seg-
mentation, we adopt validation sets of Pascal-VOC 2012
[16], Pascal Context [45], COCO Object [42], COCO Stuff
[5], and ADE20K [88] that contain, respectively, 20 object
classes, 59 object and stuff classes, 80 object classes, 171
object and stuff classes, and 150 object and stuff classes
to evaluate our framework. To verify its versatility, we ap-
ply PnP-OVSSto two high-performance VLMs, BLIP [37]
and BridgeTower [78], which have the ITM loss and text-to-
image cross-attention. More details are in the supplemen-
tary material.

Hyperparameter tuning. We use CLIP VIT-L/14 to cal-
culate the reward. The input resolution is 336×336. The
search spaces of the random search and results are shown in
Tab. 2. For computation efficiency, we tune the layer, the
head, and the threshold with GradCAM masks. With the
first three hyperparameters fixed, we tune the Gaussian vari-
ance on masks before Dense CRF. We directly adopt Dense
CRF hyperparameters from CutLER [66] without tuning.

Baselines. We adopt recent papers on zero-shot open-
vocabulary semantic segmentation as baselines. The only
baselines strictly comparable to our work are MaskClip
[89] and Reco [58], which do not perform any finetun-
ing on pretrained VLMs and do not perform hyperparam-
eter tuning on dense annotations. We call these Group

Hyperparameters Start End Step Solution

BLIP
Layer 1 12 1 8
Head 1 12 1 10
Attention Threshold 0.05 0.5 0.1 0.15

BridgeTower
Layer 1 6 1 2
Head 1 16 1 8
Attention Threshold 0.05 0.5 0.1 0.15

Gaussian Blur
Standard Deviation 0.01 0.11 0.02 0.05

Table 2. Search space for hyperparameters

3. To further expand our scope, we also include two
other groups of baselines. Group 2 finetunes VLMs but
does not require image-text pairs, including MaskClip with
self-training (ST) [89] and ZeroSeg [8]. We include Ze-
roSeg, trained with ImageNet1K, and ZeroSeg*, trained
with CC3M+COCO. Group 1 contains baselines that re-
quire training on image-text pairs. For completeness, we
also compare against supervised techniques since 2019. To
maintain the zero-shot setting, we test them on classes not
observed during training. For more details, we refer readers
to the the supplementary material.

4.2. Main Results

We show the main results in Tab. 3. As input resolution may
influence results and cause unfair comparisons, we label the
resolution used by each method. PACL [46] uses an 224
resolution but changes the stride for image patchification
from 16 to 4, hence introducing overlapping patches.

PnP-OVSS exhibits excellent performance. Compar-
ing with MaskClip [89] and Reco [58], the two methods
that require no additional training and ground truth for hy-
perparameter tuning, on an equal-resolution basis, we at-
tain +29.4% mIoU on Pascal VOC, +13.2% mIoU on Pas-
cal Context, +14.0% mIoU on COCO Object, and +11.4%
mIoU on ADE-20K. Further, PnP-OVSS surpasses all base-
lines in Group 2. On an equal-resolution basis, we achieve
+13.7% mIoU on Pascal Voc, +9.6% on Pascal Context,
+9.5% on COCO Object, +11.6% on COCO Stuff, and
+12.8% on ADE-20K.

When compared to Group 1, PnP-OVSS still outper-
forms most. On the Pascal datasets, under equal resolu-
tions, PnP-OVSS + BLIPFlickr outperforms 6 out of 10 base-
lines on Pascal VOC, and 8 out of 9 baselines on Pascal
Context. For the COCO datasets, under equal resolutions,
PnP-OVSS + BLIPFlickr beats 5 out of 8 baselines on COCO
Object, and all baselines except PACL [46] on COCO Stuff.
The two Pascal datasets share many images, and the two
COCO datasets use exactly the same images, but they have
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Method
Finetuning

VLMs
HT on Dense

Labels
Short-side
Resolution

Pascal
VOC-20

Pascal
Context-59

COCO
Object-80

COCO
Stuff-171

ADE
20K-150

Group 1: Methods that require weakly supervised finetuning on image-text data

ViL-Seg† [43] ✓ ✓ - 37.3 18.9 - 18.0 -
CLIPpy [51] ✓ ✓ 224 52.2 - 32.0 25.5⋆ 13.5
SegClip [44] ✓ ✓ 224 52.6 24.7 26.5 - -
GroupVit (by [51]) ✓ ✓ 224 28.1 14.8 12.9 - 6.2
GroupVit (by [6]) ✓ ✓ 448 50.4 18.7 27.5 15.3 9.2
GroupVit [73] ✓ ✓ 448 52.3 22.4 24.3 - -
ViewCo [52] ✓ ✓ 448 52.4 23.0 23.5 - -
OVSegmentor [74] ✓ ✓ 448 53.8 20.4 25.1 - -
TCL [6] +PAMR [2] ✓ ✓ 448 55.0 30.4 31.6 22.4 17.1
PACL [46] ✓ ✓ 224×4 72.3 50.1 - 38.8 31.4

Group 2: Methods that require finetuning but not real image-text data

MaskClip w/ ST [89] ✓ ✓ 336 - 31.1 - 18.0 -
MaskClip w/ ST (by [6]) ✓ ✓ 448 38.8 23.6 20.6 16.4 9.8
ZeroSeg [8] ✓ ✓ 448 40.8 20.4 20.2 - -

Group 3: Methods that require no finetuning

MaskClip (by [51]) × × 224 22.1 - 13.8 8.1 6.8
MaskClip [89] × × 336 - 25.5 - 14.6 -
Reco [58] × × 320 - 27.2 - 27.2 -
Reco (by [6]) × × 448 25.1 19.9 15.7 14.8 11.2

PnP-OVSS with different VLMs

BLIPFlickr × × 224 47.8 36.4 24.8 25.8 18.2
BLIPFlickr × × 320 51.7 40.4 28.0 29.6 21.3
BLIPFlickr × × 336 52.5 40.7 28.2 29.6 21.9
BLIPFlickr × × 448 54.5 42.2 29.7 31.5 22.6
BLIPFlickr × × 768 54.1 42.8 31.8 32.5 23.5
BLIPCOCO × × 768 55.7 41.9 33.8 32.6 23.2
BridgeTower × × 322 36.4 32.3 24.2 27.6 18.6
BridgeTower × × 336 35.3 32.4 24.2 27.6 18.0
BridgeTower × × 770 35.2 32.4 24.5 28.0 19.0

Table 3. Zero-shot semantic segmentation performance in mIoU. Group 3 contains the most similar baselines that serve as fair comparisons
to PnP-OVSS. Groups 1 and 2 benefit from additional training, extra image-text data, and hyperparameter tuning on dense labels. We use
the word “by” followed by a paper citation to indicate results of the same technique reported by different papers. ⋆ CLIPpy tests on 133
categories of COCO Stuff while we test all 171 classes of COCO Stuff. ViL-Seg† is tested on subset of classes on the three datasets, as
detailed in the supplementary.

Method
Dense
Labels

HT on Dense
Labels

Pascal
VOC-20

Pascal
Context-59

COCO
Stuff-171

PnP-OVSS + BLIPFlickr (Ours) × × 53.6 53.8 39.8

SPNet+ST [71] ✓ ✓ 25.8 - 26.9
ZS3Net+ST [4] ✓ ✓ 21.2 20.7 10.6
CaGNet+ST [18] ✓ ✓ 30.3 - 13.4
STRICT [47] ✓ ✓ 35.6 - 30.3
LSeg [32] ✓ ✓ 41.0 - -
SimBase [76] ✓ ✓ 72.5 - 36.3
MaskCLIP+ w/ ST [89] ✓ ✓ 86.1 66.7 54.7

Table 4. Comparison of zero-shot semantic segmentation performance on unseen categories with methods trained with dense annotation.
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Ablated Model
Pascal

Context
COCO
Stuff

BLIPFlickr 19.8 14.5
+ GradCam 21.6 17.5

+ Drop 1 25.1 19.8
+ Drop 2 26.5 20.6
+ Drop 3 27.0 20.9
+ Drop 4 27.2 20.9
+ Drop 4 + Blur 36.8 28.6
+ Drop 4 + Dense CRF 35.3 31.8
+ Drop 4 + Blur + Dense CRF 42.8 32.5

Table 5. An ablation study of PnP-OVSS + BLIPFlickr with resolu-
tion 768 on Pascal Context and COCO Stuff.

vastly different lists of classes to segment. We observe that
the advantage of PnP-OVSS over methods in Group 1 be-
comes more pronounced as the number of classes on the
same image increases.

When applied to BridgeTower [78], PnP-OVSS still sur-
passes all methods in Group 3 by 10.2% on Pascal VOC,
5.1% on Pascal Context, 8.5% on COCO Object, 0.4% on
COCO Stuff, and 6.8% on ADE-20K. This showcases the
plug-and-play ability of PnP-OVSS, which excels with dif-
ferent base networks.

We report comparisons against supervised methods in
Tab 4. PnP-OVSS + BLIPFlickr outperforms 5 out of 7
methods on Pascal VOC, as well as every baseline except
MaskCLIP+ on Pascal Context and COCO stuff. As these
baselines benefit from dense supervision, the results further
demonstrate the strengths of PnP-OVSS.

4.3. Ablation Study

We perform gradual ablation of the components of PnP-
OVSS on BLIPFlickr and report the results in Tab. 5. Each
component, including GradCAM, all Salience DropOut it-
erations, Gaussian blur, and Dense CRF, contribute posi-
tively to the final performance. In particular, the first itera-
tion of Salience DropOut has much larger impact (+3.5/2.3)
than the second iteration (+1.4/0.8), which in turn is more
important than the rest. Interestingly, Gaussian blur by itself
attains good performance (+9.6/7.7) whereas Dense CRF
only works well when combined with blur. Dense CRF
alone is worse than Gaussian blur by 1.5 mIoU on Pascal
Context. This is likely caused by the fact that hard 0/1 la-
bels resulted from thresholding are not informative unary
potentials that can be leveraged by CRF effectively.

4.4. Hyperparameter Sensitivity

The choice of hyperparameters often exerts substantial in-
fluence on segmentation performance. Here we quanti-
tatively examine how the choice of cross-attention layers

Layer Mean 1 2 3 4 5 6

mIoU 11.6 12.3 11.3 11.0 11.6 12.9

Layer Mean 7 8 9 10 11 12

mIoU 13.7 25.3 25.8 23.4 12.5 5.8

Head in Layer 8 1 2 3 4 5 6

mIoU 16.6 3.8 8.6 20.0 19.8 5.2

Head in Layer 8 7 8 9 10 11 12

mIoU 11.1 6.0 3.8 29.6 17.3 8.0

Table 6. Semantic segmentation performance using cross-attention
maps averaged across all heads in a layer and separate heads
in Layer 8. Results are attained with PnP-OVSS+BLIPFlickr on
COCO Stuff and resolution 336.

and attention heads may change the segmentation mIoU on
COCO Stuff. Tab. 6 shows the results obtained from the av-
erage cross-attention maps over all heads in each layer and
those from different attention heads.

We make the following observations. First, different lay-
ers and heads have drastic performance differences. The
best-to-worst difference among all layers is 20, and that
among heads in Layer 8 is 23.8, underscoring the impor-
tance of hyperparameter tuning. Second, the random search
using the proposed reward function correctly identifies the
best layer-head combination, even though Layer 8 is not the
best layer based on average head performance. This indi-
cates the effectiveness of our method.

5. Conclusions

We propose PnP-OVSS, which extracts the ability of se-
mantic segmentation from opaque VLMs. PnP-OVSS is
simple to use, requires no extra finetuning, and delivers
high performance, exceeding not only all baselines that re-
quires no finetuning, but also all baselines that do not use
image-text pairs in finetuning. Its success hints at a new di-
rection for open-vocabulary segmentation tasks leveraging
large VLMs.
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