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Abstract

Fairness is a critical concern in deep learning, espe-
cially in healthcare, where these models influence diag-
noses and treatment decisions. Although fairness has been
investigated in the vision-only domain, the fairness of medi-
cal vision-language (VL) models remains unexplored due to
the scarcity of medical VL datasets for studying fairness. To
bridge this research gap, we introduce the first fair vision-
language medical dataset (Harvard-FairVLMed) that pro-
vides detailed demographic attributes, ground-truth labels,
and clinical notes to facilitate an in-depth examination of
fairness within VL foundation models. Using Harvard-
FairVLMed, we conduct a comprehensive fairness analy-
sis of two widely-used VL models (CLIP and BLIP2), pre-
trained on both natural and medical domains, across four
different protected attributes. Our results highlight sig-
nificant biases in all VL models, with Asian, Male, Non-
Hispanic, and Spanish being the preferred subgroups across
the protected attributes of race, gender, ethnicity, and lan-
guage, respectively. In order to alleviate these biases, we
propose FairCLIP, an optimal-transport-based approach
that achieves a favorable trade-off between performance
and fairness by reducing the Sinkhorn distance between
the overall sample distribution and the distributions cor-
responding to each demographic group. As the first VL
dataset of its kind, Harvard-FairVLMed holds the poten-
tial to catalyze advancements in the development of ma-
chine learning models that are both ethically aware and
clinically effective. Our dataset and code are available at
https://ophai.hms.harvard.edu/datasets/
harvard-fairvlmed10k.

*Contributed equally as co-first authors.
†Contributed equally as co-senior authors.

Table 1. Public medical fairness datasets. In contrast to exist-
ing medical VL datasets, our Harvard-FairVLMed provides de-
tailed demographic attributes, ground-truth labels, and clinical
notes with imaging as well as non-imaging clinical information.

Dataset Data Modality # of Images # of Patients Identity Attribute V L L Info Type

Fitzpatrick17k [16] Skin Photos 16,012 1,373 Skin type ✓ ✗
HAM10000 [75] Dermatoscopy 9,948 - Age; Gender ✓ ✗
OL3I[90] Heart CT 8,139 1,686 Age; Gender ✓ ✗
ODIR-2019 [1] Color Fundus 8,000 5,000 Age; Gender ✓ ✗
PAPILA [34] Color Fundus 488 244 Age; Gender ✓ ✗
Harvard-GDP [45] OCT 1,000 1,000 Age; Gender; Race;

Ethnicity
✓ ✗

COVID-CT-MD[3] Lung CT 308 305 Age; Gender ✓ ✗
AMD-OCT[14] OCT 384 - Age ✓ ✗
ADNI 1.5T [83] Brain MRI 550 Age; Gender ✓ ✗

CheXpert [24] Chest X-ray and Radiology Report 222,793 65,240 Age; Gender; Race ✓ ✓ Image
Description

MIMIC-CXR [27] Chest X-ray and Radiology Report 370,955 65,079 Age; Gender; Race ✓ ✓ Image
Description

PadChest [12] Chest X-ray and Radiology Report
(Spanish)

160,868 69,882 Age; Gender ✓ ✓ Image
Description

Harvard-
FairVLMed

SLO Fundus and Clinical Note Fundus:
10,000;
Note: 10,000

10,000 Age; Gender; Race;
Ethnicity; Preferred
Language; Marital
Status

✓ ✓ Image
Description +
Non-Imaging
Clinical Info

1. Introduction

Fairness has received increasing interest in deep learning in
recent years. This is vital, especially in healthcare, where
these deep learning models influence diagnoses and treat-
ment decisions. Biases in these models related to fac-
tors like race, gender, or socioeconomic status can lead to
healthcare disparities and adverse patient outcomes. Hence,
ensuring that these models are free from bias is not only an
ethical and legal requirement but also a necessity for ensur-
ing patient safety and healthcare equity. This makes fair-
ness in medical computer vision a critical and immediate
concern, essential for providing equitable healthcare.

Previous research has identified biases in deep learning-
based medical imaging models, focusing primarily on Chest
X-ray diagnosis [15, 31]. In contrast to these vision-only
models, there has been a recent surge of vision-language
(VL) foundation models [21, 29, 30, 44, 78, 84, 85], which
have set new benchmarks across a wide spectrum of tasks.
However, despite these strong performances, the fairness of
these VL models remains unclear. Given the existence of
biases in vision-only models (which operate on machine-
acquired images) and the human-written nature of clinical
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notes, VL models could further aggravate fairness issues.
Hence, as the field moves towards multi-modal foundation
models, it becomes increasingly critical to scrutinize how
the interplay of vision and text affects equity in algorithmic
outcomes. The current landscape for such an investigation
is, however, constrained by the scarcity of VL datasets that
include comprehensive demographic information, with the
existing public VL datasets primarily focused on Chest X-
rays [24, 26]. Prior studies [24, 65] have highlighted the
challenges of studying fairness using these datasets since
their ground-truth labels are automatically extracted from
radiology reports, potentially leading to inaccurate fairness
conclusions due to the noisy labels. Moreover, since these
datasets were not primarily designed for fairness, they pro-
vide only a handful of demographic characteristics, limiting
the potential for a comprehensive fairness study across mul-
tiple dimensions. Furthermore, radiology reports, focusing
mainly on direct observations of the imaging data with lim-
ited additional patient-specific information, are not repre-
sentative of most clinical text, thus limiting their utility in
fairness studies of medical VL models.

To bridge this research gap, we introduce the first
fair vision-language medical dataset (Harvard-FairVLMed
for short) that provides detailed demographic attributes,
ground-truth labels, and clinical notes to facilitate an in-
depth examination of fairness within VL foundation models
(Table 1). Harvard-FairVLMed contains records for 10,000
patients, each paired with an SLO fundus image and a clin-
ical note for diagnosing Glaucoma, along with fine-grained
protected attributes such as age, gender, race, ethnicity, pre-
ferred language, and marital status. Unlike radiology re-
ports, the clinical notes in our dataset provide much more
detailed information featuring not only image descriptions
but also rich non-imaging clinical information such as med-
ication, non-imaging test results, and family history. Hence,
these clinical notes are more representative of clinical tex-
tual information, making them better suited for studying the
fairness of medical VL models.

Glaucoma, affecting millions globally [17, 46, 47, 67,
69, 70, 72, 74], exemplifies the need for equitable diagnos-
tic models. Timely detection is crucial in order to avoid ir-
reversible vision loss. However, many patients remain undi-
agnosed [66] due to the disease’s asymptomatic nature and
barriers to ophthalmic care. Moreover, this undiagnosed is-
sue is even more pronounced among minority groups. For
example, previous studies have shown that individuals from
Black communities are 4.4 times more likely to have undi-
agnosed and untreated Glaucoma compared to their White
counterparts [66], highlighting the importance of address-
ing healthcare disparities. Deep learning systems hold sig-
nificant potential for improving healthcare. However, it is
imperative to address potential fairness issues in these deep
learning systems prior to their clinical implementation to

ensure equitable healthcare delivery.
In this work, we conduct an extensive fairness analy-

sis with two widely-used VL methods (i.e., CLIP [61] and
BLIP2 [39]) on Harvard-FairVLMed. Our experimental
findings reveal significant disparities across various groups
based on race, gender, ethnicity, and language. To address
these fairness issues, we introduce FairCLIP, an optimal
transport-based approach. FairCLIP is designed to enhance
fairness by optimizing the Sinkhorn distance, thereby align-
ing the overall sample distribution with the distributions
specific to each demographic group.

Our main contributions can be summarized as follows:
• We introduce the first fair vision-language medical

dataset (Harvard-FairVLMed) featuring detailed demo-
graphic attributes, ground-truth labels, and clinical notes
for studying the fairness of VL foundation models.

• Using Harvard-FairVLMed, we conduct a comprehen-
sive fairness analysis of two widely-used VL models (i.e.,
CLIP and BLIP2), pre-trained on both natural and medi-
cal domains, across four different protected attributes.

• Our results highlight significant biases in all VL mod-
els, with Asian, Male, Non-Hispanic, and Spanish being
the preferred subgroups across the protected attributes of
race, gender, ethnicity, and language, respectively.

• We propose an optimal transport-based approach named
FairCLIP, which demonstrates a significant improvement
over CLIP in terms of both performance and fairness.

2. Related Work
Fairness Models Fairness in machine learning is crucial for
creating dependable systems that avoid discrimination. His-
torical instances of bias have been identified in various tech-
nologies. In the field of image processing, biases exist in
facial recognition [7, 11, 18, 76, 77] and pedestrian detec-
tion algorithms [9, 32, 37]. Recent efforts in deep learning
aim to rectify these biases by adjusting training processes
to minimize unfair predictions across different demographic
groups. These deep learning methods focus on removing or
neutralizing sensitive features and fostering representations
that are fair and unbiased.

Particularly in the medical domain, fairness models have
emerged as a critical tool to mitigate biases and promote eq-
uity, particularly within healthcare applications. This field
has developed a range of methodologies, each targeting
a different stage: pre-processing, in-processing, and post-
processing. Pre-processing strategies [10, 28, 55, 59, 62,
62, 65, 74, 93, 93, 97, 98] are designed to mitigate biases
by enhancing the dataset prior to model training. In in-
processing approaches [8, 8, 63, 63, 64, 64, 68, 89, 91, 91]
fairness is incorporated directly into the model’s training
stage. Post-processing methods [49, 58, 82], applied after
the model has been trained, aim to adjust outputs to improve
fairness.
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To address the challenges of fairness in VL tasks, this
work introduces FairCLIP, a method designed to promote
fairness. FairCLIP aligns the distribution of all samples
with those of specific demographic groups, leveraging the
similarities between visual and textual features.
Vision-Language Models The integration of vision and
language in machine learning, especially through models
like CLIP (Contrastive Language-Image Pretraining) [61],
represents a significant advancement in computer vision.
CLIP, trained from a large scale of images and their related
text descriptions, marks an important step in aligning vi-
sual information with text. BLIP (Bootstrapping Language-
Image Pre-training) [38] represents a novel approach in
vision-language models, utilizing a visual transformer as an
image encoder and a transformer for text processing. BLIP-
2 [39] advances the field with its scalable multimodal pre-
training approach, enabling LLMs to process and compre-
hend images.

The success of CLIP-like models has inspired numerous
adaptations in the medical field [36, 43, 78, 79, 87, 92, 96],
where it confronts challenges like limited data and the need
for accurate interpretations. For instance, Pathology Lan-
guage–Image Pretraining (PLIP) [21] utilizes the OpenPath
dataset [21], consisting of pathology images with language
descriptions derived from medical Twitter posts. PMC-
CLIP (PubMedCentral-CLIP) [40] joins these efforts by en-
hancing CLIP’s application in the biomedical domain.

Beyond these adaptations of CLIP, several other vision-
language models have emerged to address various medical
tasks that range from generating reports from medical im-
ages [42, 52, 53, 73, 81, 86] to diagnosing medical condi-
tions [50, 51, 94, 95], and facilitating medical image-based
question-answering (VQA) [6, 33].

Despite these advancements, a gap remains in under-
standing and addressing fairness concerns within vision-
language models (VLMs). The complex interplay of visual
and textual data in VLMs poses unique challenges for fair-
ness, which have been largely unexplored, especially in the
context of medical applications.
Vision-Language Medical Fairness Datasets Medical
fairness datasets serve a critical role in the development of
machine learning models [23, 27, 45, 47, 48], ensuring that
they operate equitably across diverse patient populations.
In this context, datasets equipped with imaging data as well
as associated textual reports are particularly valuable. They
not only enable the development of models but also allow
for nuanced explorations of fairness by providing a richer
context for each medical case.

CheXpert [23] is a prominent chest radiography dataset
annotated for 14 distinct observations. CheXpert uses an
automated system to extract labels from radiology reports.
However, this method introduces uncertainties due to the
inherent ambiguities in the reports and varying interpreta-

Attending targets 

maintaining IOP ≤ 18 

mmHg in both eyes 

without glaucoma 

meds, prescribes 

artificial tears, 

schedules follow-up 

for comprehensive 

eye evaluation, and 

confirms the 

accuracy of the 

scribe's notes.

Non-Glaucoma Glaucoma

SLO Fundus Image Clinical Note SLO Fundus Image Clinical Note

Suspected disc 

damage in right eye 

due to inflammation, 

not clearly 
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for damage 

prevention ongoing; 
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Timolol with follow-
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scheduled.

Figure 1. Examples of non-glaucomatous and glaucomatous sam-
ples with the corresponding SLO fundus image and clinical note.

tions by radiologists. This uncertainty, such as the 16%
of Atelectasis labels that are uncertain, represents a signifi-
cant challenge in using datasets like this in real-world sce-
narios [2, 23]. MIMIC-CXR [27] contributes to this area
in which each study is complemented by a semi-structured
free-text radiology report. Padchest [12] further expands the
resources by providing chest X-ray images along with a set
of radiographic findings that have been processed using ra-
diology reports. However, the radiological reports are only
available in Spanish, which may present a barrier for the
global research community. Similarly, datasets pertaining
to image captioning [13, 25, 56, 71] and VQA [20, 35, 41]
have been developed in the medical domain.

In contrast, fundus image datasets present a different sce-
nario. While ODIR2019 [1] and PAPILA [34] offer valu-
able imaging data for ocular conditions, they do not pro-
vide the same depth of textual information as CheXpert and
MIMIC-CXR. Also, the Glaucoma Detection and Progres-
sion [45], Eye Fairness [47], and Glaucoma Fairness [48]
datasets lack textual information required for studying the
VL problem. While datasets such as CheXpert and MIMIC-
CXR have advanced the field of fairness research by pair-
ing images with radiology reports, they fall short in pro-
viding extensive demographic data and are prone to noisy
labels due to their automated labeling processes. Addition-
ally, they were not initially created with a focus on fairness,
which poses limitations in studying fairness.

Our Harvard-FairVLMed dataset stands as a pioneering
resource tailored for fairness studies in VL modeling. It
comprises ground-truth labels, ensuring high label quality,
and includes a broad range of identity attributes such as age,
gender, race, ethnicity, preferred language, and marital sta-
tus. Hence, this dataset not only enhances the quality and
reliability of fairness studies but also broadens the horizon
for research in the VL domain.

3. Dataset Analysis
This study strictly adheres to the principles outlined in the
Declaration of Helsinki and has been approved by our in-
stitute’s Institutional Review Board. All data in this dataset
are de-identified.
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3.1. Data Collection and Quality Control

Harvard-FairVLMed contains subjects who received glau-
coma care from Massachusetts Eye and Ear at Harvard
Medical School between 2015 and 2022. There are three
types of data to be released in this study: (1) scanning laser
ophthalmoscopy (SLO) fundus images; (2) demographic
identity group information; and (3) de-identified clinical
notes written by ophthalmologists to provide a summary of
the glaucoma diagnosis. SLO fundus images are a valu-
able marker for assessing retinal damage from diseases like
glaucoma. Each SLO fundus image is associated with six
demographic identity attributes, including age, gender, race,
ethnicity, preferred language, and marital status. The ac-
companying clinical notes vary in length. These notes may
detail assessments, treatment plans, and diagnostic strate-
gies, and are considered to correspond with the visual se-
mantics in SLO fundus images. Two examples of pairs of
SLO fundus images and clinical notes are shown in Figure
1. The subjects are categorized into non-glaucoma (visual
function measured by visual field (VF) test is normal: VF
mean deviation ≥ -1 dB and normal VF glaucoma hemi-
field test and pattern standard deviation (PSD) results) and
glaucoma categories (visual function measured by VF test
is abnormal: VF mean deviation < -3 dB and abnormal VF
glaucoma hemifield test and PSD results).

3.2. Protected Information De-Identification

The raw clinical notes may contain protected sensitive in-
formation, such as the date of glaucoma diagnosis, patient
name, phone number, email address, physical location, in-
stitution, etc. We de-identified this sensitive information
in the following three steps. First, we anonymized all
the clinical notes using Microsoft’s Presidio 1, which re-
placed sensitive information with respective placeholders
(e.g., PERSON NAME, PHONE NUMBER, and LOCA-
TION) so that the original sentence structure and coher-
ence can be maintained. Then, we used rules to match
and de-identify the protected information (e.g., physical ad-
dress) that has not been fully recognized by Presidio. Lastly,
the de-identified clinical notes were further verified by four
medical experts. Specially, every clinical note was checked
by an expert and the sensitive information was manually re-
placed with respective placeholders when necessary.

3.3. Data Characteristics

Our Harvard-FairVLMed dataset comprises 10,000 samples
from 10,000 subjects. It is divided into 7,000 training, 1,000
validation, and 2,000 test samples. The dataset’s collective
age average is 60.9 ± 16.2 years. The dataset includes sam-
ples from three major groups: Asian, with 819 samples;
Black, with 1,491 samples; and White, with 7,690 samples.

1https://github.com/microsoft/presidio.

Gender-wise, females constitute 56.3% of the subjects, with
the remainder being males. The ethnic distribution is high-
lighted by 90.6% Non-Hispanic, 4.0% Hispanic, and 5.4%
unspecified. In terms of preferred language, 92.5% of the
subjects prefer English, 1.7% prefer Spanish, 0.8% pre-
fer other languages, and 5.0% remain unknown. From a
marital status perspective, 57.4% are in a marriage or part-
nered, 26.4% are single, 6.6% have experienced divorce,
1.0% are legally separated, 6.1% are widowed, and 2.5%
are not specified. After de-identification, clinical notes vary
from 11 to 332 words, with an average word count of 147.

4. Methodology
4.1. Background

With the labeled data D = {(xIi, xTi, yi, ai)}, where xIi ∈
XI represents an SLO fundus image, xTi ∈ XT represents
a clinical note, y ∈ Y denotes a glaucoma diagnosis label,
and a ∈ A signifies an identity attribute associated with the
patient, such as gender, race, or ethnicity. To process multi-
modal data, a vision-language (VL) pre-trained model (e.g.,
CLIP [60]) f employs a vision encoder fI and a text en-
coder fT to generate vision features zI and text features
zT , respectively. Given a batch of N image and text pairs,
CLIP is trained to generate a similarity matrix M ∈ RN×N

with each entry Mij = z⊤IizTj representing the cosine sim-
ilarity between the i-th image feature zIi and the j-th text
feature within the given batch. To achieve this, CLIP adopts
a contrastive learning scheme to maximize the cosine simi-
larity of the image and text features of the N positive pairs
in the batch, while minimizing the cosine similarity of the
image and text features of the remaining N2 − N negative
pairs. Following [60], a symmetric cross-entropy loss is cal-
culated over M to optimize fI and fT . Mathematically, the
optimization goal is defined as follows:

min
f

−
N∑
i=1

N∑
j=1

δ(i− j) log
(
z⊤IizTj/ (∥zIi∥ · ∥zTj∥)

)
,

where δ(i− j) is Dirac’s Delta function, δ(i− j) = 1 when
i = j. In the context of fairness learning, it requires to
incorporate identity information during model training, i.e.,
f ∈ F :∈ XI×XT ×A θ−→ Y . Consequently, fairness learn-
ing aims to minimize disparities between different identity
groups while also maximizing accuracy.

4.2. FairCLIP

As illustrated in Figure 2, the proposed FairCLIP frame-
work is designed to improve fairness during the pre-training
phase. This is achieved by minimizing the disparity be-
tween the probability distributions of Mi,i, which rep-
resents the correlation between visual and language fea-
tures, across different racial groups (or other attribute-
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Figure 2. Schematic view of the proposed FairCLIP. Clinical notes containing PHI (e.g., names and gender) undergo de-identification and
summarization to fit text encoder limitations, such as CLIP’s 77-token maximum length. FairCLIP equalizes the overall sample distribution
with the distributions corresponding to each demographic group, thereby achieving a favorable trade-off between performance and fairness.

based groups). Denote D{(xI ,xT ,a)}|f as a distribution of
Mi,i given the model f . If the samples are from a spe-
cific group (e.g., white), the corresponding distribution is
D{(xI ,xT ,a)|a=white}|f . Then, the objective of enhancing
fairness can be defined as:

min
f

A∑
α

d(D{(xI ,xT ,a)}|f −D{(xI ,xT ,a)|a=α}|f ) (1)

where d is a distance function, D{(xI ,xT ,a)}|f and
D{(xI ,xT ,a)|a=α}|f are the underlying distributions that are
computationally intractable. Instead, we use empirical dis-
tributions in Equation (1) that are estimated based on batch
B, i.e., DB|f and DBa|f . Ba means the samples in the batch
are from group a.

To optimize the objective (1), one straightforward way
is to minimize Kullback–Leibler (KL) divergence between
the two distributions. However, KL-divergence is not sym-
metric and does not satisfy the triangle inequality, and thus
not a true metric of distance. Instead, we follow [57] to
minimize the Sinkhorn distance between the two distribu-
tions. Sinkhorn distance is a type of probability metric and
a variant of the Wasserstein distance.

Specifically, we have a measurable set Z = {z⊤I zT }, de-
noted by M(Z) the set of measures (not necessarily proba-
bility measures) on Z , and P(Z) the set of probability mea-
sures on Z . Consider distributions DB,DBa

∈ P(Z), and
let µ, ν ∈ M(Z) be two reference measures. For regular-
ization parameter ϵ ≥ 0, the Sinkhorn distance between two
distributions DB and DBa is defined as

Wϵ(DB,DBa
) =

inf
γ∈Γ(DB,DBa )

{
E(x,y)∼γ [c(p, q)] + ϵH(γ | µ⊗ ν)

}
, (2)

where Γ(DB,DBa) denotes the set of joint distributions
whose first and second marginal distributions are DB and

DBa
, respectively, c(p, q) denotes the transport cost, and

H(γ | µ⊗ ν) denotes the relative entropy of γ with respect
to the product measure µ ⊗ ν. p and q are the points in the
distributions DB and DBa , respectively. The Sinkhorn loss
would be added to the loss used by CLIP in the pre-training
phase for optimizing each component in CLIP.

5. Experiment & Analysis
5.1. Experimental Setup

In this section, we describe the pre-training and evalua-
tion setups as well as the metrics used to study perfor-
mance and fairness of VL models on our proposed Harvard-
FairVLMed dataset.
Pre-Training: We use the widely-adopted VL methods –
CLIP [60] and BLIP2 [39] – for our analysis. For the natu-
ral pre-trained variants, we use the official checkpoints pro-
vided by CLIP and BLIP2. For the medical pre-trained vari-
ants, we pre-train both methods on the Harvard-FairVLMed
dataset after initializing from the official checkpoints. More
details are in the supplementary material.
Evaluation: We utilize two types of evaluation strategies
– linear probing and zero-shot transfer. For linear probing,
we follow the official MAE [19] implementation and train a
linear classifier on top of the visual features from CLIP and
BLIP2, respectively. Similar to MAE, we use a BatchNorm
layer [22] before the linear classifier and employ a LARS
optimizer [88] with a base learning rate of 0.1, weight decay
of 0, and batch size of 512. We conduct linear probing for
1000 epochs on a single V100 GPU for all experiments.
For zero-shot transfer, we use the same setup as CLIP and
select the class corresponding to the text embedding, which
has the highest similarity with the image embedding.
Metrics: To comprehensively understand the balance be-
tween model performance and fairness, we use multiple
metrics for evaluation, including Demographic Parity Dif-
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Table 2. VL fairness analysis of two widely-used VL methods, i.e., CLIP and BLIP2, pre-trained on both natural and medical domains and
evaluated across four different protected attributes, with all scores presented in percentage.

Attribute Model DPD ↓ DEOdds ↓ AUC ↑ ES-AUC ↑ Group-wise AUC ↑

Asian Black White

Race

CLIP 5.30 ± 0.63 14.00 ± 1.01 77.27 ± 0.03 72.43 ± 0.29 79.74 ± 0.31 73.60 ± 0.12 77.82 ± 0.03
CLIP-FT 4.01 ± 0.47 9.57 ± 0.83 80.27 ± 0.08 74.70 ± 0.33 82.19 ± 0.26 75.67 ± 0.21 81.20 ± 0.08
BLIP2 9.44 ± 0.65 10.62 ± 0.22 73.81 ± 0.02 68.88 ± 0.04 76.28 ± 0.06 69.55 ± 0.09 74.22 ± 0.03
BLIP2-FT 8.30 ± 0.36 10.91 ± 0.32 80.10 ± 0.03 73.81 ± 0.10 82.09 ± 0.09 74.43 ± 0.08 80.97 ± 0.07

Female Male

Gender

CLIP 1.08 ± 0.19 5.19 ± 0.54 77.27 ± 0.03 72.47 ± 0.10 74.25 ± 0.07 80.88 ± 0.03
CLIP-FT 0.39 ± 0.26 4.55 ± 0.33 80.27 ± 0.08 75.81 ± 0.12 77.59 ± 0.09 83.47 ± 0.04
BLIP2 1.07 ± 0.22 5.88 ± 0.24 73.81 ± 0.02 69.16 ± 0.03 70.76 ± 0.02 77.48 ± 0.05
BLIP2-FT 2.41 ± 0.06 6.40 ± 0.26 80.10 ± 0.03 75.08 ± 0.15 77.03 ± 0.10 83.72 ± 0.12

Non-Hispanic Hispanic

Ethnicity

CLIP 15.83 ± 0.42 14.73 ± 0.54 77.27 ± 0.03 71.70 ± 0.08 77.51 ± 0.03 69.73 ± 0.13
CLIP-FT 14.50 ± 0.72 22.49 ± 1.44 80.27 ± 0.08 76.31 ± 0.36 80.48 ± 0.07 75.30 ± 0.46
BLIP2 8.78 ± 1.35 16.56 ± 1.89 73.81 ± 0.02 68.75 ± 0.08 74.10 ± 0.02 66.74 ± 0.14
BLIP2-FT 16.64 ± 1.17 18.41 ± 1.98 80.10 ± 0.03 77.13 ± 0.09 80.25 ± 0.03 76.39 ± 0.12

English Spanish Others

Language

CLIP 13.57 ± 1.35 33.11 ± 0.53 77.27 ± 0.03 70.89 ± 0.21 77.25 ± 0.03 84.00 ± 0.16 75.02 ± 0.28
CLIP-FT 16.75 ± 1.08 15.74 ± 0.28 80.27 ± 0.08 67.06 ± 0.46 80.77 ± 0.07 74.43 ± 0.99 66.91 ± 0.17
BLIP2 22.40 ± 0.33 15.41 ± 1.41 73.81 ± 0.02 70.34 ± 0.64 73.40 ± 0.02 75.95 ± 0.87 76.19 ± 0.12
BLIP2-FT 14.08 ± 3.56 37.68 ± 2.51 80.10 ± 0.03 69.98 ± 0.56 80.62 ± 0.04 83.14 ± 1.18 69.51 ± 0.32

ference (DPD) [4, 5], Difference in Equalized Odds (DE-
Odds) [4], Area Under the Receiver Operating Characteris-
tic Curve (AUC), Equity-Scaled AUC [48], and Group-wise
AUC. More details can be found in the supplementary ma-
terial.

5.2. VL Fairness Analysis

In this section, we present a comprehensive fairness anal-
ysis of two widely-used VL models, benchmarked across
two different pre-training domains and four different pro-
tected attributes. Table 2 presents the linear probing results,
examining various performance (AUC) and fairness (DPD,
DEOdds, ES-AUC) metrics, as well as reporting the group-
wise AUC scores across the individual subgroups within
each of the four protected attributes. We primarily focus on
the ES-AUC metric in the subsequent analysis since it cap-
tures notions of both overall performance as well as fairness
– both of which are important for safety-critical medical ap-
plications (Sec. 5.1). Next, we briefly discuss the disparities
in VL performance across the various protected attributes,
and the impact of different VL pre-training domains (nat-
ural vs. medical) and VL pre-training methods (CLIP vs.
BLIP2) on model performance and fairness.
Protected Attributes: Across the four protected attributes
– race, gender, ethnicity, and language – our results indi-
cate that VL models exhibit the best performance-fairness
trade-off on ethnicity and the worst on language with aver-
age ES-AUC scores (across the four VL models) of 73.47
and 69.57, respectively. A granular analysis reveals that in
terms of racial subgroups, Asian patients consistently have
the highest diagnostic performance, whereas Black patients
have the lowest. Across genders, male patients are con-
sistently better diagnosed than female patients. Moreover,

non-Hispanic is the highest-performing subgroup across
ethnicities, whereas Spanish speakers have the best diag-
nostic performance across the language subgroups. Some
of these performance disparities could be attributed to the
imbalances in the pre-training datasets. For instance, non-
Hispanic patients make up 90.6% of our dataset, potentially
leading to improved performance in this subgroup. How-
ever, this is unlikely to be the only factor responsible for
these performance disparities since the Asian, Male, and
Spanish subgroups exhibit superior performances despite
being the minority subgroups. This indicates that the pre-
training of these models could potentially play a role in the
biases exhibited by these models. We delve deeper into this
in the subsequent analysis.

Natural vs. Medical Pre-training: Here, we compare
the VL models pre-trained on two different domains – nat-
ural vs. medical VL datasets. Comparing the two pre-
training domains, we observe that pre-training on medical
data (i.e., paired fundus images + clinical notes) improves
the performance-fairness trade-off across all protected at-
tributes except language. Concretely, we see the most ben-
efit on ethnicity, with improvements of as much as 8.38 in
terms of ES-AUC. A granular analysis of the individual sub-
groups shows that the White and Hispanic subgroups wit-
ness the most improvement from medical pre-training, with
improvements of as much as 6.75 and 9.65 ES-AUC in the
former and latter, respectively. This indicates that medical
VL pre-training could be an effective strategy for improving
the performances of under-performing subgroups, thereby
effectively reducing the performance disparities across dif-
ferent protected attributes.

CLIP vs. BLIP2: Next, we investigate the impact of dif-
ferent VL pre-training methods on the performance dispar-
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Table 3. Zero-shot transfer results of CLIP vs. FairCLIP, reporting the mean and standard deviation across three random seeds.

Attribute Model DPD ↓ DEOdds ↓ AUC ↑ ES-AUC ↑ Group-wise AUC ↑

Asian Black White

Race

CLIP (ViT-B/16) 15.35 ± 6.50 15.11 ± 5.01 67.84 ± 0.90 61.67 ± 0.63 73.11 ± 2.74 70.78 ± 1.84 66.02 ± 0.60
FairCLIP (ViT-B/16) 6.07 ± 2.44 10.50 ± 2.73 70.24 ± 1.26 65.50 ± 2.60 74.83 ± 0.46 71.39 ± 0.66 69.17 ± 2.10
CLIP (ViT-L/14) 10.10 ± 9.44 10.79 ± 10.41 67.83 ± 2.92 63.53 ± 1.83 70.65 ± 4.58 70.12 ± 3.39 66.22 ± 2.97
FairCLIP (ViT-L/14) 17.79 ± 4.86 18.30 ± 2.07 69.88 ± 2.00 66.54 ± 1.73 71.78 ± 2.18 71.79 ± 2.13 68.67 ± 1.99

Female Male

Gender

CLIP (ViT-B/16) 4.34 ± 0.66 9.95 ± 0.64 67.84 ± 0.90 63.21 ± 0.83 64.62 ± 0.83 71.96 ± 1.22
FairCLIP (ViT-B/16) 0.84 ± 0.25 2.97 ± 2.07 69.76 ± 2.49 65.39 ± 2.39 66.81 ± 2.50 73.50 ± 2.41
CLIP (ViT-L/14) 2.93 ± 3.17 4.29 ± 4.05 67.83 ± 2.92 63.86 ± 2.36 65.13 ± 2.60 71.31 ± 3.24
FairCLIP (ViT-L/14) 5.82 ± 1.22 8.14 ± 2.62 69.74 ± 0.95 66.00 ± 1.55 67.29 ± 1.38 72.99 ± 0.83

Non-Hispanic Hispanic

Ethnicity

CLIP (ViT-B/16) 8.86 ± 5.95 15.33 ± 5.18 67.84 ± 0.90 63.09 ± 0.26 68.08 ± 0.97 60.56 ± 0.30
FairCLIP (ViT-B/16) 9.12 ± 3.25 14.30 ± 7.20 69.30 ± 1.87 63.33 ± 0.25 69.62 ± 2.02 60.19 ± 1.18
CLIP (ViT-L/14) 7.78 ± 5.50 11.56 ± 9.03 67.83 ± 2.92 62.20 ± 0.82 68.14 ± 3.07 59.13 ± 0.92
FairCLIP (ViT-L/14) 9.44 ± 3.28 13.03 ± 5.56 69.87 ± 1.05 64.90 ± 2.05 70.16 ± 1.05 62.43 ± 2.99

English Spanish Others

Language

CLIP (ViT-B/16) 11.11 ± 2.42 16.97 ± 2.73 67.84 ± 0.90 60.19 ± 3.47 67.88 ± 1.15 61.93 ± 4.57 61.89 ± 2.90
FairCLIP (ViT-B/16) 7.34 ± 4.63 17.15 ± 11.13 70.08 ± 1.14 62.31 ± 0.96 70.22 ± 1.27 68.47 ± 5.49 63.47 ± 2.13
CLIP (ViT-L/14) 7.62 ± 5.39 10.84 ± 9.84 67.83 ± 2.92 61.29 ± 1.28 67.77 ± 3.18 63.83 ± 3.20 62.24 ± 2.25
FairCLIP (ViT-L/14) 11.63 ± 3.53 11.05 ± 5.66 68.68 ± 2.26 61.50 ± 2.29 68.71 ± 2.31 65.06 ± 3.96 61.18 ± 1.20

ities of the downstream models. In order to ensure a fair
comparison, we use the same ViT-L/14 architecture for the
vision encoders of both models. Unlike CLIP, BLIP2 is
a parameter-efficient VL method that keeps the vision en-
coder frozen and leverages a Q-former to learn the most
suitable image representations corresponding to the text.
From the natural pre-training results in Table 2, we note that
CLIP consistently outperforms BLIP2 in terms of not only
overall performance (77.27 vs. 73.81 AUC) but also fair-
ness, as evidenced by the superior ES-AUC scores across
all four protected attributes. However, we observe that med-
ical pre-training largely closes this gap, with BLIP2 yield-
ing similar results as CLIP (80.10 vs. 80.27 AUC). This
large boost in BLIP2 performance indicates that (1) the
parameter-efficient training in BLIP2 is effective for adapt-
ing to the medical VL data, and that (2) the clinical notes are
useful for guiding BLIP2 to extract meaningful visual fea-
tures from the frozen vision encoder. Among the medical
pre-trained CLIP and BLIP2 models, CLIP exhibits a better
performance-fairness trade-off than BLIP2 on the race and
gender attributes, whereas BLIP2 yields more favorable re-
sults on the ethnicity and language attributes.

In summary, we observe that all VL models exhibit bi-
ases, with Asian, Male, Non-Hispanic, and Spanish being
the preferred subgroups across the protected attributes of
race, gender, ethnicity, and language, respectively. Medi-
cal pre-training enhances the performance-fairness trade-off
across all attributes except language. Furthermore, differ-
ent VL pre-training methods exhibit varying strengths, with
CLIP outperforming on race and gender, whereas BLIP2
yields superior results on ethnicity and language.

5.3. CLIP vs. FairCLIP

Table 3 compares the zero-shot performance of CLIP
against FairCLIP across two different architectures (ViT-

B/16 and ViT-L/14) and four different protected attributes.
Both CLIP and FairCLIP are fine-tuned with the pairs of im-
ages and clinical notes without supervised information (i.e.,
labels). Then, the resulting models are evaluated in the clas-
sification task. CLIP exhibits notable disparities in group-
wise AUC for attributes such as race, gender, ethnicity, and
language, indicating the presence of bias in glaucoma de-
tection. Regarding the racial groups, FairCLIP (ViT-B/16)
gains a significant improvement in fairness, reducing DPD
and DEOdds to 6.07 and 10.50, respectively, while increas-
ing the AUC for the White group to 69.17. In terms of gen-
der disparity, FairCLIP (ViT-B/16) addresses the bias ef-
fectively, elevating the female AUC to 66.81 from 64.62,
indicating a substantial enhancement in gender. Similar en-
hancements by FairCLIP are observed in ethnicity and lan-
guage groups.

Overall, FairCLIP demonstrates a significant improve-
ment over CLIP in terms of both fairness metrics (DPD,
DEOdds) as well as ES-AUC and AUC scores across var-
ious demographic subgroups. The supplementary material
shows more end-to-end fine-tuning results, further validat-
ing the effectiveness of FairCLIP. These empirical findings
suggest that optimizing the distance between the overall
sample distribution and the distribution w.r.t. specific sub-
groups effectively improves fairness, indicating a promising
direction in addressing and mitigating inherent biases.

5.4. Ablation Studies

Clinical Note Summarization: VL models are usually
trained with images and captions, which tend to be quite
short. In contrast, the clinical notes in our Harvard-
FairVLMed dataset are fairly lengthy, capturing a lot more
nuanced information. Hence, we summarize these clin-
ical notes in order to align our setup with the standard
VL frameworks while retaining essential medical informa-
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tion. We use three different types of LLMs for summa-
rization. In addition to the SOTA GPT-4 [54] model, we
also use two LLMs specialized for the medical domain –
PMC-LLAMA [80] and MED422. We use the following
prompt for summarization for all three LLMs: Summarize
the key details, including the presence of glaucoma, from
the clinical note within 180 characters. Figure 3a com-
pares the performance-fairness trade-off of BLIP2 models
trained via the three summarized notes against the original
notes. Across all protected attributes except language, we
note that all three summarization methods yield a consis-
tent improvement in ES-AUC. Particularly, MED42 yields
the best performance across race, GPT-4 yields the best
performance across gender, whereas PMC-LLAMA yields
the best performance across both ethnicity and language.
Overall, the medical pre-trained LLMs (PMC-LLAMA and
MED42) yield superior results, highlighting the efficacy of
domain-specific LLMs for clinical note summarization.
Vision vs. Multimodal Features: In order to decouple
the benefits of image and text features, we conduct lin-
ear probing on the BLIP2 pre-trained models using either
vision-only or (vision + language) features. Table 4 presents
the performance-fairness trade-off in terms of ES-AUC.
We note that the multimodal features consistently improve
the performance-fairness trade-off across all protected at-
tributes except language. This highlights that the VL mod-
els make effective use of the clinical textual features, with
the most appreciable gains observed on the race attribute.
Natural vs. Medical Vision Encoder: To investigate the
impact of different vision encoders on model fairness in
BLIP2, we utilize two different pre-trained encoders – 1)
CLIP trained on the natural domain, whereas 2) PMC-CLIP
trained on the medical domain. The results in Figure 3b
reveal that PMC-CLIP outperforms CLIP across all four
protected attributes, with the most appreciable gains on
the racial subgroups. We note that medical-specific LLM
summarizers and vision encoders consistently improve the
performance-fairness trade-off of VL models, with the most
appreciable improvements across the race attribute.
Comparison with Adversary Fairness: Beutel et al. [8]
introduce a fairness approach that employs adversarial loss
to prevent the model from inaccurately predicting sensi-
tive attributes. This method aims to ensure that the model
predicts the label of an image without relying on its sensi-
tive attributes, thereby reducing bias in classification. Fig-
ure 3c shows the performance comparison among CLIP,
CLIP with adversarial loss (CLIP w/ Adv), and FairCLIP.
The performance of CLIP with adversarial training (CLIP
w/ Adv) does not consistently surpass that of the standard
CLIP across all attributes. In contrast, FairCLIP consis-
tently outperforms CLIP. This variation in performance can
be attributed to the inherent challenges of adversarial train-

2https://huggingface.co/m42-health/med42-70b

Table 4. Impact of vision-only and (vision + language) features on
the performance-fairness trade-off of linear probing via BLIP2.

Attribute V L ES-AUC ↑ Group-wise AUC ↑

Asian Black White

Race ✓ ✗ 73.76 82.08 74.35 81.03
✓ ✓ 76.70 79.79 77.77 82.37

Female Male

Gender ✓ ✗ 75.22 77.13 83.66
✓ ✓ 79.15 80.21 83.38

Non-Hispanic Hispanic

Ethnicity ✓ ✗ 77.18 80.28 76.46
✓ ✓ 75.54 81.95 73.85

English Spanish Others

Language ✓ ✗ 69.88 80.64 83.52 69.36
✓ ✓ 66.35 82.32 69.89 71.01
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Figure 3. Extensive analyses on Harvard-FairVLMed, including
(a) Effects of various LLM summarizations on the performance-
fairness trade-off of BLIP2, (b) Effects of using pre-trained vision
encoders from natural (CLIP) and medical (PMC-CLIP) domains
on the performance-fairness trade-off of BLIP2, and (c) Perfor-
mance comparison among CLIP, CLIP with adversarial loss (CLIP
w/ Adv), and FairCLIP.

ing in maintaining equivalent prediction accuracy for each
attribute. On the other hand, FairCLIP utilizes Sinkhorn
loss, which effectively encourages uniformity in the dis-
tribution of all samples relative to the distributions corre-
sponding to each group.

6. Conclusion

Given the critical need for fairness in healthcare-focused
settings, we introduce the first fair vision-language medi-
cal dataset (Harvard-FairVLMed) for studying the fairness
of medical VL foundation models. Our comprehensive fair-
ness analysis on Harvard-FairVLMed reveals significant bi-
ases in all VL models. To address these biases, we propose
FairCLIP, an optimal transport-based approach that effec-
tively balances both performance and fairness. To aid future
research in this area, we make our dataset and code publicly
available at https://ophai.hms.harvard.edu/
datasets/harvard-fairvlmed10k.
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