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Abstract

Optical flow estimation, a process of predicting pixel-
wise displacement between consecutive frames, has com-
monly been approached as a regression task in the age of
deep learning. Despite notable advancements, this de facto
paradigm unfortunately falls short in generalization perfor-
mance when trained on synthetic or constrained data. Pio-
neering a paradigm shift, we reformulate optical flow esti-
mation as a conditional flow generation challenge, unveil-
ing FlowDiffuser — a new family of optical flow models that
could have stronger learning and generalization capabili-
ties. FlowDiffuser estimates optical flow through a ‘noise-
to-flow’ strategy, progressively eliminating noise from ran-
domly generated flows conditioned on the provided pairs.
To optimize accuracy and efficiency, our FlowDiffuser in-
corporates a novel Conditional Recurrent Denoising De-
coder (Conditional-RDD), streamlining the flow estimation
process. It incorporates a unique Hidden State Denois-
ing (HSD) paradigm, effectively leveraging the information
from previous time steps. Moreover, FlowDiffuser can be
easily integrated into existing flow networks, leading to sig-
nificant improvements in performance metrics compared to
conventional implementations. Experiments on challeng-
ing benchmarks, including Sintel and KITTI, demonstrate
the effectiveness of our FlowDiffuser with superior perfor-
mance to existing state-of-the-art models. Code is available
at https://github.com/LA30/FlowDiffuser.

1. Introduction

Optical flow estimation remains a pivotal research domain,
with its significance highlighted by a wide range of critical
applications. This task aims to establish per-pixel corre-
spondences between consecutive frames, resulting in a two-
dimensional vector field that illustrates pixel displacement.
In the contemporary deep learning paradigm, this challenge
is predominantly framed as a regression task: neural mod-
els are trained to infer the optical flow vectors directly from
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Figure 1. Idea illustration. Conventional optical flow models (a)
map frames directly to flow fields. In contrast, FlowDiffuser (b)
generates flow through a reverse denoising process.

sequential image data [17, 36, 41, 49, 50]. Starting with
the groundbreaking end-to-end model FlowNet [12], the re-
search community has actively sought improvements along
two main dimensions: i) the augmentation of feature en-
coding capabilities via more robust backbones, transition-
ing from ResNet to Transformer, to extract increasingly dis-
criminative feature representations [8, 45, 51]; and ii) the
integration of advanced decoding techniques, such as the
recurrent scheme with 4D cost volume [41] or transformer-
based motion aggregation [19, 25] and cost modeling [15],
to refine the regression accuracy. Fundamentally, current
studies are predominantly characterized by a shared focus
on devising effective techniques that improve the correspon-
dence mapping between sequential frames and their resul-
tant optical flow vectors.

Notwithstanding the notable performance of the es-
tablished paradigm in optical flow estimation, it is bur-
dened by intrinsic constraints due to its discriminative na-
ture. Firstly, prevalent models fail to explicitly capture
the underlying probabilistic distribution that characterizes
the dense correspondence field of the flow, consequently
struggling with complex motion dynamics. Secondly, chal-
lenges like occlusion, motion blur, and brightness changes
hinder discriminative models in optical flow tasks. These
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issues, prevalent in real-world scenarios, obscure vital de-
tails, affecting accuracy. Generative models, proficient in
learning comprehensive joint probability distributions, pro-
vide robust solutions to these challenges, thereby improv-
ing performance across various scenarios. Despite Saxena
et al. [31] attempts to mitigate discriminative model limita-
tions via a generative approach, their reliance on a standard
diffusion model framework significantly increases compu-
tational demands. Furthermore, this method lacks a cus-
tomized design for optical flow systems, limiting its efficacy
in scenarios demanding swift and precise flow calculations.
These shortcomings not only compromise the dependability
of existing models but also restrict their ability to make ex-
trapolations. In light of these insights, a pressing question
emerges: Is there a more efficacious paradigm, specifically
designed for optical flow estimation, that transcends con-
ventional methodologies?

To answer the above question, we introduce FlowDif-
fuser—the first denoising diffusion model specifically de-
signed for optical flow estimation. Fig. 1 delineates the
paradigmatic shift from conventional discriminative map-
pings to a generative model that conditions the flow es-
timation on sequential frame pairs. Distinct from prior
approaches, FlowDiffuser initiates with a perturbed flow
field and engages in a progressive denoising diffusion se-
quence. During training, Gaussian noise is methodically
integrated into the original optical flow to synthesize ini-
tial noisy fields. FlowDiffuser is designed to progressively
reduce the noise, conditioned on the matching cost and con-
textual features, thereby cultivating the model’s capacity to
deduce the flow field from stochastic beginnings. In the in-
ference phase, FlowDiffuser reverses the diffusion trajec-
tory to unveil the flow field. This approach follows popular
denoising techniques in generative modeling [7, 9, 34, 43]
and further leverages frame-pair data to guide flow creation,
a novel effort in this field to our knowledge.

Inspired by RAFT paradigm [41], our model incorpo-
rates a similar recurrent update mechanism into our diffu-
sion approach, designed specifically for optical flow estima-
tion. To elaborate further, we integrate a novel Conditional
Recurrent Denoising Decoder (Conditional-RDD) into our
flow estimation mechanism, substantially enhancing both
reliability and computational efficiency. The distinctive fea-
ture of Conditional-RDD lies in its ability to predict and
utilize the intermediate (hidden) states between the initial
noisy flow and the target, diverging from typical diffusion
models that attempt to predict the full flow length. This ap-
proach, named Hidden State Denoising (HSD) and crafted
for optical flow, further enables precise motion estimation.

Our proposed FlowDiffuser adopts a generative scheme
towards optical flow estimation, inheriting the strengths in-
herent to generative models. A key benefit is its stronger
capability in understanding the underlying structure of data,

giving FlowDiffuser an improved ability to handle complex
motion patterns, outperforming conventional methods. Cru-
cially, by explicitly defining the stochastic process, FlowD-
iffuser is required to explore various trajectories within the
latent space, potentially enhancing its generalizability. This
characteristic, combined with the noise-conditioned diffu-
sion process’s inherent prevention of overfitting to training
data, is especially remarkable. We validate the effective-
ness of FlowDiffuser through extensive testing on challeng-
ing benchmarks like Sintel and KITTI, where it demon-
strates marked enhancements over contemporary state-of-
the-art models. The major contributions of this work are
summarized as follows:
• A novel generative approach for optical flow estima-

tion. FlowDiffuser stands as one of the pioneering gen-
erative models explicitly devised for optical flow estima-
tion, integrating the strengths of conventional flow mod-
els into the diffusion modeling framework. This work not
only offers a novel perspective in the field of optical flow
estimation but also lays the groundwork for future explo-
rations in this field.

• A tailored Conditional-RDD for optical flow estima-
tion. Our model, inspired by the RAFT [41], pioneers a
Conditional Recurrent Denoising Decoder (Conditional-
RDD) specifically designed for optical flow estimation.
Integrating the Conditional-RDD and Hidden State De-
noising (HSD) paradigm, our FlowDiffuser achieves im-
proved efficiency and precision in optical flow prediction,
advancing the state-of-the-art in this field.

• State-of-the-art results on widely-used benchmarks.
Our FlowDiffuser can accurately estimate optical flow
in challenging scenarios, and demonstrates leading-edge
performance on both the Sintel and KITTI benchmarks.

2. Related Work
Optical Flow. The field of optical flow estimation has wit-
nessed remarkable advancements with the advent of deep
neural networks, enabling the creation of complex map-
pings between video frames and flow vectors. Initially,
methods like those in [2, 12] employed an encoder-decoder
architecture to directly translate video frames into flow
fields. Subsequent research has further harnessed the power
of deep learning, either by refining the flow encoder for
more distinct representations [17, 36, 49, 50] or by integrat-
ing correlation data into the flow decoder to enhance regres-
sion performance [36, 41]. Recent developments have seen
the integration of graph techniques [26], attention mecha-
nisms [19, 25], iterative refinement [16, 17, 36], and holis-
tic motion analysis [19, 26] into optical flow models. In the
same timeframe as our research, Saxena et al [31] explored
a generative strategy to address the drawbacks of discrim-
inative models in optical flow prediction. However, their
approach, grounded in standard diffusion model paradigms,
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incurs heightened computational costs. This methodology,
not being specifically tailored for optical flow tasks, may
compromise efficiency and accuracy in scenarios where de-
tailed and rapid flow estimation are critical.
Diffusion Models. Diffusion models, a subset of gener-
ative models, methodically learn the true data distribution
through iterative denoising [9, 14]. In computer vision,
their success in image and video generation, as well as syn-
thesis, is well-documented [7, 9, 34, 43]. Recent forays
include applications in semantic segmentation [3, 40], in-
stance segmentation [13], object detection [5], homogra-
phy estimation [22], and even 3D vision [1, 21, 29]. In
this work, we uniquely harness diffusion models to revo-
lutionize optical flow estimation. Our approach introduces
a groundbreaking paradigm specifically tailored for optical
flow challenges. This includes the development of a custom
module, the Conditional-RDD, designed to optimize flow
estimation precision and efficiency. By adapting diffusion
models to the nuanced requirements of optical flow, we aim
to substantially improve both the accuracy and generaliza-
tion capacity of existing optical flow models.

3. Method
3.1. Preliminaries

Motivation & Objectives. While the UNet-based denois-
ing diffusion process is effective, it requires significant
computational resources, which is suboptimal for vision
tasks such as optical flow estimation. Recent work [31]
has improved UNet’s efficiency, yet their DDVM remains
significantly slower (by about 20 to 30 times) compared to
discriminative models. Given this, we question the suitabil-
ity of the standard diffusion paradigm for optical flow esti-
mation. The prevalent use of conventional modules and ar-
chitectures in current optical flow research underlines their
effectiveness in enhancing performance and efficiency. This
highlights the need to incorporate these task-specific de-
signs into the diffusion framework.

Our aim is to design a model that integrates RAFT-based
models [19, 39, 41] with generative techniques, achieving
an equilibrium between the efficiency of conventional mod-
els and the advanced capabilities of generative approaches.

Problem Formulation. Optical flow estimation aims to
discern pixel-level movement between two consecutive im-
ages, I1 and I2, by producing a flow field f . This field traces
each pixel’s shift from I1 to I2, usually treated as a regres-
sion problem where a neural network predicts the flow as
f = FΦ(I1, I2), with Φ denoting network parameters.

In this work, we draw inspiration from the proven ef-
fectiveness of denoising diffusion probabilistic models, as
detailed in [14, 33], to redefine optical flow estimation as
a generative process. The new approach, named FlowDif-
fuser and symbolized as PΘ, utilizes learnable weights Θ to

methodically transform a noisy flow field fn into a refined
data sample f0. This transformation process gradually re-
moves noise from fn, under the conditional influence of the
input images: f0 = PΘ(fn|I1, I2). Furthermore, this pro-
cess is dynamically enhanced by our proposed Conditional-
RDD, which iteratively updates the estimation during the
transformation sequence. It’s noteworthy that during train-
ing, fn is derived from the ground truth, whereas in the in-
ference stage, it is randomly generated following a standard
Gaussian distribution, in alignment with the methodologies
presented in [14, 33].

3.2. Diffusion Model for Optical Flow

Overview. Fig. 2 depicts the primary steps and over-
all architecture of our FlowDiffuser. Drawing inspiration
from the RAFT architecture, our model focuses on reverse
denoising through a novel Conditional Recurrent Denois-
ing Decoder (Conditional-RDD) for flow estimation. Par-
ticularly, consistent with established models in the litera-
ture [25, 39, 41], our approach processes the input image
pair (I1, I2) using dual encoders. This generates basic fea-
tures (x1,x2) and a context feature xc. We then construct
a 4D correlation volume xcv from (x1,x2) through dot-
product operations. Yet, diverging from the conventional
paradigm, our flow decoder is restructured by combining a
unique conditional denoising process with the RAFT’s re-
current learning mechanism. The specific enhancements are
outlined as follows: i) Our model’s flow decoder, starting
with a noisy flow ft, refines it to ft−1 in one denoising step.
This process is guided by the encoded features xc, xcv , and
the hidden feature xh of RAFT’s GRU module, formulated
as ft−1 = Pθ(ft |xcv,xc,xh). ii) Our model includes a
time embedding function to synchronize diffusion iterations
with their respective timesteps. This alignment enhances
the decoder’s ability to differentiate noise variations across
various time points. iii) Our approach integrates the Hidden
State Denoising (HSD) paradigm within Conditional-RDD,
enhancing stability and efficiency in the inference phase.

Conditional Recurrent Denoising Decoder. The pro-
posed Conditional-RDD, aligning with RAFT’s decoding
pipeline, commences by using the input flow for a corre-
lation pyramid lookup. This step leads to the creation of
2D motion features, derived from encoding the matched
costs with a motion encoder FME(·), formulated as xm =
FME(xcv, f). Subsequent processing involves state updat-
ing via a GRU, followed by the utilization of a flow head
for the final flow field prediction.

The primary challenge in our approach involves effec-
tively handling the noisy input flow ft using specialized
modules. A critical element is the time embedding func-
tion T (·), essential for synchronizing the diffusion process
iterations with their respective timesteps. This is denoted as
et = T (t), where et signifies the time-embedded features,
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Figure 2. Overview of our FlowDiffuser. Rather than using the discrimination learning paradigm, our framework takes a generative
approach to ensure reliability and generalizability. The notations xcv , xc, and xh denote the constructed cost-volume, the extracted
context feature, and the hidden feature of the RAFT-like decoder, respectively. Best viewed in color.

further divided into a scale vector esc and a shift vector esh.
Diverging from conventional methods that integrate scale
and shift vectors into the feature map via simple multipli-
cation and concatenation/summation, our model introduces
an Embedding Enhancement (EE) module. This module is
designed to significantly augment the impact of time em-
beddings, which is formulated as:

xa = A(xc,xm), (1)
xe = C1(xa) esc + esh, (2)
xo = C2(xe) τ + xa, (3)

where A(·) indicates the attentative motion aggregation op-
erations like GMA [19] and KPA [25], and C(·) represents
the standard convolutional blocks containing 3 × 3 convo-
lution, GELU activation function and group normalization.
τ signifies a learnable weight.

The EE module enriches the aggregated motion feature
xa with time embeddings, thereby enhancing the denoising
diffusion process. The generated xo is then fed into the
GRU and flow head modules. This approach is adaptable
to various RAFT-like decoders, including GMA [19], KPA-
Flow [25], SKFlow [39], etc. The use of more advanced
decoders is expected to further improve performance.

Forward Diffusion. During the network training phase,
we employ a diffusion forward process to create noisy flow
fields derived from the ground truth. This involves using a
Markovian chain which incrementally adds Gaussian noise
to the data sample. The process is defined as follows:

q(ft|f0) = N (ft|
√
ᾱt f0, (1− ᾱt)I), (4)

where f0 indicates the orginal data sample (i.e., the ground-
truth of optical flow), and ft is the produced noisy flow.

t denotes the a time step from the pre-defined sequence
{0, 1, ..., T}. ᾱt :=

∏t
s=0 αs =

∏t
s=0(1 − βs), and βs

indicates the noise variance schedule [14]. Crucially, the
ground-truth flow f0 must be normalized and scaled. In
practice, we follow DDVM [31] to normalize the flow based
on the height and width of the ground truth, resulting in a
range of {−1, 1}. Subsequently, we incorporate the scale
factor b to establish the range {−b, b}. Prior work [14]
shows that the scaling factor b plays an indispensable role
in modulating the signal-to-noise ratio during the diffusion
process. The following studies, including [5, 6], underscore
the criticality of task-specific factors in securing high per-
formance in diverse applications. In pursuit of this, Sec. 4
of our manuscript will delve into an empirical exploration
to assess the influence of the scale factor b on the overall
performance of the model in this field.

Reverse Denoising. During inference, the reverse pro-
cess of diffusion model q(ft−1|ft) can be formulated as
generative processes for non-Markovian forward processes
parametrized by σ [33], which is given by

ft−1 =
√
αt−1 f

(t)
θ +

√
1− αt−1 − σ2

t ϵ̃t + σtϵt, (5)

where ϵt is standard Gaussian noise, and f
(t)
θ indicates

a function intended to approximately predict f0 from the
noisy flow ft. ϵ̃t is the approximated noise at timestep t:

ϵ̃t =
ft −

√
αt f

(t)
θ√

1− αt
. (6)

It is important to note that the generative processes
yielded by our model are contingent upon the chosen value
of σ. Specifically, setting σ to 0 for all t instigates a de-
terministic generative process. This specific instantiation is
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Figure 3. Illustration of Hidden State Denoising (HSD). For
more details, please refer to Sec. 3.3.

.

known as the Denoising Diffusion Implicit Model (DDIM),
as described in [33], given ft−1 and f0. Our empirical anal-
yses suggest that this implicit probabilistic model fosters
more stable predictions in generative flow. In the context of
the reverse denoising process, as outlined in Eqn. (5), the
flow decoder incrementally refines the noisy flow through
an iterative sequence, i.e., ft → ft−∆ → · · · f0.

3.3. Conditional-RDD with Hidden State Denoising

A fundamental challenge in standard diffusion models lies
in their requirement for an extensive series of denoising
steps to effectively convert noise into a target signal. Our
proposed Conditional-RDD has made significant strides in
reducing this computational load by applying reverse de-
noising through a RAFT-inspired recurrent denoising de-
coder. Furthermore, we posit that additional optimization
can be attained by more efficiently harnessing the synergis-
tic potential of these components.

Specifically, we introduce a new decoding strategy,
named Hidden State Denoising (HSD), which can boost the
effectiveness and stability of the denoising process within
FlowDiffuser. The primary insight of HSD entails merg-
ing hidden state features similar to those found in RAFT’s
recurrent decoder into the denoising process. Neverthe-
less, seamlessly blending these components presents a no-
table challenge. This arises from a fundamental disparity
between the conventional hidden state learning mechanism
and the basic structure of diffusion models. The latter pri-
marily focuses on iterative noise updates and restarts the
model from scratch in each denoising step.

Fig. 3 presents a simplified, illustrative example to eluci-
date the mechanism of hidden state generation. For clarity,
we condense the entire reverse diffusion process into dis-
crete timesteps t ∈ {0, 1, 2}. In sub-figure (a), blue arrows
indicate the idealized reverse progression at each timestep,
whereas red arrows illustrate the actual denoising phases.
The process initiates from the noisy initial state ft, then the
decoder estimates f

(t)
θ and employs this to compute ft−1,

as dictated by Eqn. (5). Iteratively applying this rule ulti-
mately leads to the generative outcome f ′0, conforming to

the trained distribution q(f0).
Empirical observations reveal that the UNet’s standard

denoising decoder demonstrates significant variance in flow
prediction, necessitating more iterations for convergence
than the basic RAFT decoder. Conversely, our HSD cap-
italizes on the strengths of RAFT’s recurrent decoder to al-
leviate this variance issue. The key aim is to minimize the
estimation error in directly predicting ft−1, thereby reduc-
ing its subsequent impact on the final optical flow. To this
end, we propose to integrate RAFT’s hidden learning pat-
tern into our denoising steps. However, we empirically ob-
serve that the straightforward application of RAFT’s hidden
learning procedure in our denoising decoder leads to a de-
cline in performance. This is because the simple hidden
learning scheme of RAFT conflicts with the fundamental
setup of learning from scratch in diffusion models.

To tackle this challenge, we define a sub-network G(·),
to predict the hidden state at timestep t, shown as g

(t)
θ in

sub-figure (b). Notably, G(·) can be easily achieved by
training the decoder with a higher number of iterations dur-
ing the training stage compared to the inference stage, with-
out incurring extra computational costs. Consequently, g(t)

θ

represents the intermediate flow prediction, involving fewer
iterations than those used during training in the RAFT de-
coder, and can be considered as the latent form of f (t)θ . It
is important to note that the diffusion models require only
an approximate prediction of f0 to execute the reverse pro-
cess, as indicated in Sec. 3.2. This capability allows for
the substitution of f (t)θ with its latent version g

(t)
θ in the up-

date scheme using Eqn. (5). Subsequently, by applying a
striding factor as f̄t−1 = λ ft−1, it further prevents potential
errors in long-range prediction from noisy flows. This strat-
egy, applied repeatedly, progressively denoises and refines
the flow towards a more stable f̄ ′0.
Training Objective. In our HSD, instead of predicting ϵt
as formulated by [14], we follow [42] to predict the signal
itself. The training objective is given by

L = E f0∼q(f0|c),t∼[1,T ][ ||fgt − f̄ ′0||1] (7)

where c denotes the abbreviation of previously mentioned
conditions, f̄ ′0 indicates the conditional denoising result.

4. Experiments
4.1. Implementation Details

Following previous works [15, 32], our FlowDiffuser uti-
lizes Twins-SVT as the encoders. The decoding pro-
cess, pivotal for denoising, is facilitated by a RAFT-based
model [41], with iterations set at N = 12 as default. Ad-
ditionally, the design of FlowDiffuser reflects a balanced
compatibility with leading-edge methods in the field, in-
cluding those outlined in [19, 25, 39, 41], as evidenced in
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Sintel (train) KITTI-15 (train) Sintel (test) KITTI-15 (test)
Method

Clean Final EPE F1-all Clean Final F1-all
Avg.Rank

RAFT [ECCV20] [41] 1.43 2.71 5.04 17.4 1.61 2.86 5.10 16.0
GMA [ICCV21] [19] 1.30 2.74 4.69 17.1 1.39 2.47 5.15 14.1

SeperableFlow [ICCV21] [48] 1.30 2.59 4.60 15.9 1.50 2.67 4.64 12.9
CRAFT [CVPR22] [35] 1.27 2.79 4.88 17.5 1.45 2.42 4.79 14.1

GMFlow [CVPR22] [45] 1.08 2.48 7.77 23.4 1.74 2.90 9.32 15.4
GMFlowNet [CVPR22] [51] 1.14 2.71 4.24 15.4 1.39 2.65 4.79 11.3

KPA-Flow [CVPR22] [25] 1.28 2.68 4.46 15.9 1.35 2.36 4.60 10.6
OCTC [CVPR22] [18] 1.31 2.67 4.72 16.3 1.41 2.57 4.33 12.1

SKFlow [NeurIPS22] [39] 1.22 2.46 4.27 15.5 1.28 2.27 4.84 9.6
FlowFormer [ECCV22] [15] 0.95 2.35 4.09 14.7 1.16 2.09 4.68 7.0

RAFT-it∗ [ECCV22] [38] 1.74 2.41 4.18 13.4 1.55 2.90 4.31 9.9
GMFlow+ [TPAMI23] [46] 0.91 2.74 5.74 17.6 1.03 2.37 4.49 10.1

FlowFormer++∗ [CVPR23] [32] 0.90 2.30 3.93 14.1 1.07 1.94 4.52 3.7
TransFlow∗ [CVPR23] [24] 0.93 2.33 3.98 14.4 1.06 2.08 4.32 4.0

MatchFlow∗ [CVPR23] [10] 1.03 2.45 4.08 15.6 1.16 2.37 4.63 7.7
GAFlow [ICCV23] [27] 0.95 2.34 3.92 13.9 1.15 2.05 4.42 4.1

EMD-Flow [ICCV23] [8] 0.88 2.55 4.12 13.5 1.32 2.51 4.51 7.1
FlowDiffuser∗ 0.86 2.19 3.61 11.8 1.02 2.03 4.17 1.1

Table 1. Quantitative comparison with state-of-the-art approaches. Following [10, 15, 32, 39], here we conduct a comparative com-
parison between the proposed FlowDiffuser and recent published optical flow approaches that also operate under a two-frame setting. The
metrics with “(train)” and “(test)” indicate the evaluation for generalization ability and online performance, respectively. Given recent in-
consistencies in achieving optimal results across datasets, we calculate the average rank (“Avg.Rank”) for all metrics. This measure offers
a concise overview of the overall capabilities of different approaches. ∗ indicates training without the standard “C+T” setup, see Sec. 4.2.

the experimental section. Technical parameters such as the
scale factor b and striding factor λ are set to 0.5 and 0.2
respectively in our diffusion strategy. In HSD, we set the
default denoising steps K to 3 for the reverse process.

During the training phase of FlowDiffuser, we utilize a
batch size of 6 and the AdamW optimizer with a one-cycle
learning rate, in accordance with RAFT’s settings [41]. Our
models are pre-trained on synthetic datasets such as Fly-
ingChairs [11] and FlyingThings [28], and subsequently
fine-tuned on a combined dataset comprising Sintel [4],
KITTI-2015 [30], and HD1K [20], consistent with recent
research approaches [15, 19, 25, 51]. In line with advance-
ments in the field [10, 24, 31, 38], our training is further
augmented with additional datasets. As shown in Tab. 2, be-
sides the standard “C+T” training, our model is also trained
on “AF+T” following DDVM [31]. For evaluation and on-
line testing purposes, a single GPU setup is employed with
a batch size of 1.

4.2. Benchmarking on Optical Flow Datasets

Generalization Performance. We first compare the pro-
posed FlowDiffuser with top-performing methods on the
Sintel and KITTI benchmarks. The primary focus was to
assess the generalization capability of FlowDiffuser. The
results, as presented in Tab. 1, demonstrate that FlowDif-
fuser achieves unparalleled performance on both datasets.
Notably, on the Sintel dataset, it records an End-Point Er-
ror (EPE) of 0.86 on the clean pass and 2.19 on the final.

Meanwhile, on the KITTI dataset, it sets new records with
an EPE of 3.61 and an F1-all score of 11.8%, surpassing
existing methodologies by a considerable margin.
Online Testing. In the Sintel online tests, FlowDiffuser
achieves an impressive End-Point Error (EPE) of 1.02
and 2.03, notably surpassing recent methods like Match-
Flow [10] and EMD-Flow [8] by margins of 13.2% and
20.9%, respectively. Additionally, FlowDiffuser elevates
the state-of-the-art (SOTA) performance on the KITTI
benchmark to 4.17%, outperforming the leading models
like RAFT-it [38] and TransFlow [24]. Fig. 4 provides
some qualitative comparisons. Furthermore, we conducted
a comprehensive performance analysis across various met-
rics. As shown in the last column of Tab. 1, FlowDiffuser
secures an average rank of 1.1, achieving the top rank in 6
out of 7 metrics. This underscores its significant advantage
over recent published works in the field.
Effectiveness of Training Data. The training data repre-
sents the underlying distribution of the target problem, and
it significantly influences a model’s performance and gen-
eralization capabilities [10, 24, 32]. In line with prior re-
search [31, 38], we employ AutoFlow [37] for our training
data ablation studies. Tab. 2 highlights the impact of aug-
menting the training dataset on the performance of FlowD-
iffuser. Despite the challenges in optimizing FlowDiffuser’s
high scores, the integration of additional training data con-
sistently enhances its performance across all metrics. This
suggests that expanding the training dataset positively af-
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Figure 4. Qualitative comparisons with renowned works, SKFlow [39] and FlowFormer [15], on Sintel test set.
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Overlay DDVM

FlowDiffuser

Figure 5. Visualization of Prediction Samples and the Corresponding Variance Map. The proposed FlowDiffuser (row 2) demonstrates
the advantages of effectively capturing uncertainty and ambiguity, similar to DDVM [31] (row 1). Additionally, our model’s predictions
exhibit significantly improved stability, making them more reliable for real-world applications.

Method Dataset Sintel (train) KITTI-15 (train)

Clean Final EPE F1-all

RAFT-it [38] AF 1.74 2.41 4.18 13.4
FlowFormer++ [32] C+T+YV 0.90 2.30 3.93 14.1

TransFlow [24] RS / RK 0.93 2.33 3.98 14.4
MatchFlow [10] C+T+MD 1.03 2.45 4.08 15.6

CroCo-Flow [44] C+T+CC 1.28 2.58 - -
DDVM [31] AF+T 1.48 2.22 3.71 14.1

FlowDiffuser AF+T 0.86 2.19 3.61 11.8

SKFlow [39] C+T 1.22 2.46 4.27 15.5
GMFlow+ [46] C+T 0.91 2.74 5.74 17.6

FlowDiffuser C+T 0.89 2.38 3.84 12.7

Table 2. Quantitative comparisons with different training data.
The abbreviations are as follows: “C” for Chairs, “T” for Things,
“AF” for AutoFlow [37], “YV” for YouTube-VOS [47], “MD” for
MegaDepth [23], and “CC” for CroCo [44]. Additionally, “RS”
and “RK” refer to the raw data of Sintel and KITTI, respectively.

fects FlowDiffuser’s effectiveness. The incorporation of a
more diverse dataset allows FlowDiffuser to better capture
various patterns and variations, leading to notable improve-
ments in multiple evaluation metrics. Moreover, in com-
parison with DDVM [31], the predictions generated by our
model exhibit a remarkable level of stability, as in Fig. 5.

4.3. Ablation Study

Compatibility with Existing Models. We plug the pro-
posed Conditional-RDD into advanced models: FlowD-

iffuser-R (RAFT [41]), FlowDiffuser-G (GMA [19]),
FlowDiffuser-K (KPA [25]), and FlowDiffuser-S (SK-
Flow [39]). As shown in Tab. 3, FlowDiffuser varia-
tions demonstrate exceptional performance in generaliza-
tion evaluations, consistently outperforming baseline mod-
els across all metrics. Specifically, FlowDiffuser-R and -
G surpass RAFT and GMA by 6.4% and 4.3% on Sintel,
and 8.7% and 8.3% on KITTI, respectively. FlowDiffuser-
K and -S also outperform the baseline, and even surpass
recent models like MatchFlow [10] and TransFlow [24].
FlowDiffuser-K achieves 3.97 EPE and 14.7% F1-all, and
FlowDiffuser-S achieves a remarkable score of 3.91 EPE
and 14.2%, with minimal extra computation.

Furthermore, to understand the impact of the denoising
process in our approach, we present intermediate results
from our FlowDiffuser-R and RAFT model in Fig. 6. The
RAFT model struggles with challenging scenarios charac-
terized by severe motion blur. Conversely, our method ef-
fectively utilizes learned motion patterns from the training
data distribution to address this challenge, resulting in a
more accurate and reliable flow field.

Ablation for Diffusion Approaches. In Tab. 4 (# 1), we
evaluate the FlowDiffuser models against baseline mod-
els in terms of performance and computational overhead.
Baseline refers to a pure discriminative model that excludes
all diffusion-related techniques, components, and denoising
strategies employed in our approach. The results show that
FlowDiffuser achieves notable improvements over the base-
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Figure 6. Visualization of intermediate results. (a) illustrates the results of RAFT [41] decoder, and (b) presents the denoising results of
our FlowDiffuser-R. The last column provides the reference image and ground truth.

Method Sintel (train) AG. KITTI (train) AG.
Clean Final EPE F1-all

RAFT [41] 1.43 2.71 - 5.04 17.4 -
FlowDiffuser-R 1.29 2.63 +6.4% 4.51 16.2 +8.7%

GMA [19] 1.30 2.74 - 4.69 17.1 -
FlowDiffuser-G 1.26 2.59 +4.3% 4.32 15.6 +8.3%

KPA-Flow [25] 1.28 2.68 - 4.46 15.9 -
FlowDiffuser-K 1.24 2.45 +5.8% 3.97 14.7 +9.3%

SKFlow [39] 1.22 2.46 - 4.27 15.5 -
FlowDiffuser-S 1.18 2.39 +3.1% 3.91 14.2 +8.4%

Table 3. Compatibility evaluation. Following [19, 25, 39, 41], all
models are trained on “C+T” and evaluated on Sintel and KITTI
training set for fair comparison. “AG.” denotes the average gain of
performance on Sinte/KITTI dataset.

line with only a minimal increase in parameters. Addition-
ally, the integration of HSD enhances performance across
all metrics without adding to the computational complexity.
Ablation for Denoising Steps. Tab. 4 (# 2) illustrates the
performance enhancement of FlowDiffuser with different
DDIM denoising steps. As K increased from 1 to 3, per-
formance shows a consistent improvement ranging from ap-
proximately 8.4% ∼ 24.8% across four metrics. However,
with a further increase to K = 4, the performance gain is
minimal. Consequently, we designate K = 3 as the optimal
default setting.
Ablation for Time Embeddings. The time embed-
ding function aligns diffusion iterations with corresponding
timesteps. To enhance this, we introduce the EE module,
which amplifies the role of time embeddings. This enhance-
ment enables the denoising decoder to more effectively rec-
ognize noise variations across different times. As illustrated
in Tab. 4 (# 3), integrating the EE module yields significant
improvements in all evaluated metrics.
Ablation for Scale Factor b. Prior works [5, 6, 14] have
shown that diverse tasks necessitate distinct task-specific
factors to guarantee optimal performance. Here we empiri-
cally analyze the effect of b in optical flow, as in Tab. 4 (#
4). Despite the sensitivity of classification [6] and detec-
tion [5] tasks to the signal-to-noise ratio, our FlowDiffuser
demonstrates insensitivity to this factor. We select b = 0.5
as the default setting, yielding slightly improved results.

Method Sintel (train) KITTI (train) Param.
Clean Final EPE F1-all

# 1: FlowDiffuser (FD.) approaches
Baseline 0.98 2.43 4.18 14.5 14.9M
FD.-w/o HSD 0.93 2.31 3.92 13.9 16.3MFD.-HSD 0.86 2.19 3.61 11.8

# 2: Denoising Steps K
1 0.96 2.39 4.43 15.7

16.3M2 0.89 2.25 3.86 12.4
3 0.86 2.19 3.61 11.8
4 0.86 2.20 3.59 11.7

# 3: Embedding Enhancement (EE)
w/. EE 0.86 2.19 3.61 11.8 16.3M
w/o EE 0.92 2.30 3.85 12.6 15.2M

# 4: Scale factor b
0.1 0.87 2.21 3.71 12.0

16.3M0.5 0.86 2.19 3.61 11.8
1 0.89 2.23 3.75 12.2

Table 4. Ablation study. Settings as default are underlined. All
models are trained on “AF+T” for fair comparison.

5. Conclusion

This work marks a significant paradigm shift in optical
flow estimation by reformulating it as a conditional flow
generation task. The proposed FlowDiffuser framework is
part of the cutting-edge wave of generative neural frame-
works designed specifically for optical flow estimation, and
demonstrates enhanced learning and generalization capabil-
ities. The framework’s core strength lies in its Conditional
Recurrent Denoising Decoder (Conditional-RDD), which
specifically integrates Hidden State Denoising (HSD) with
a recurrent flow refinement strategy. Findings and insights
from FlowDiffuser are expected to make a substantial con-
tribution to the progression of optical flow estimation tech-
niques, potentially impacting a wide array of applications
in computer vision.
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