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Abstract

The evolution of Diffusion Models has dramatically im-
proved image generation quality, making it increasingly dif-
ficult to differentiate between real and generated images.
This development, while impressive, also raises significant
privacy and security concerns. In response to this, we pro-
pose a novel Latent REconstruction error guided feature
REfinement method (LaRE2) for detecting the diffusion-
generated images. We come up with the Latent Reconstruc-
tion Error (LaRE), the first reconstruction-error based fea-
ture in the latent space for generated image detection. LaRE
surpasses existing methods in terms of feature extraction ef-
ficiency while preserving crucial cues required to differenti-
ate between the real and the fake. To exploit LaRE, we pro-
pose an Error-Guided feature REfinement module (EGRE),
which can refine the image feature guided by LaRE to en-
hance the discriminativeness of the feature. Our EGRE uti-
lizes an align-then-refine mechanism, which effectively re-
fines the image feature for generated-image detection from
both spatial and channel perspectives. Extensive exper-
iments on the large-scale GenImage benchmark demon-
strate the superiority of our LaRE2, which surpasses the
best SoTA method by up to 11.9%/12.1% average ACC/AP
across 8 different image generators. LaRE also surpasses
existing methods in terms of feature extraction cost, deliv-
ering an impressive speed enhancement of 8 times.

1. Introduction
The rapid advancement of Diffusion Models has her-

alded a new era in the domain of image generation. Through
concerted efforts in refining model architecture [9, 32, 33],
optimizing training strategies [15, 27], and enhancing sam-
pling methods [20,34], contemporary Diffusion Models are
now capable of generating images of unprecedented quality,
surpassing the boundaries of human imagination. However,
this progress raises significant concerns regarding privacy
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Figure 1. (a) The comparison of reconstruction-based feature ex-
traction. Existing method [40] chooses to completely reconstruct
an image by first gradually adding noise to the image and then de-
noising it, which involves dozens of sampling steps. Our method
can directly calculate noisy images and denoise them with a sin-
gle sample step. (b) Statistical analysis of the relationship between
the single-step reconstruction loss (1000 images are used) and time
step. The obvious gap between the two lines indicates that single-
step reconstruction can also reflect the differences between real
and generated images. (c) Comparison of the cost of per image
feature extraction. Our method is 8x faster than DIRE [40].

and security associated with the generated images [16]. The
potential for the dissemination of toxic content and misin-
formation through these images poses a threat to society and
could mislead the public. Consequently, there is an urgent
need to develop techniques to detect the images generated
by these models.

A flurry of works [6, 7, 21, 31, 40, 41] has been pro-
posed to detect or study the properties of images generated
by diffusion models. Recently, DIRE [40] has been pro-
posed to leverage the reconstruction error as a discrimina-
tive feature for diffusion-generated image detection. It is
based on the assumption that the diffusion-generated im-
ages are more easily to be reconstructed by a diffusion
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model compared with real images. As a result, DIRE shows
great cross-model generalizability towards different diffu-
sion models. Based on DIRE, SeDID [21] is also pro-
posed to harness the inherent distributional disparities be-
tween naturally occurring and diffusion-synthesized visuals
for diffusion-generated image detection.

However, both DIRE and SeDID require multi-step
DDIM [34] sampling processes in the feature extraction
stage, which results in low efficiency for real-world appli-
cations. As shown in Fig 1(c), it takes more than 2 seconds
to extract the DIRE feature for an image. Besides, the ac-
cumulation loss in the multi-step sampling also introduces
uncertainty into the extracted features. Though DDIM [34]
provides a deterministic inversion method to transform an
image into noise, the reliability of this inversion process
is not consistently upheld. In addition, DIRE and SeDID
use the reconstruction error as the only feature, ignoring the
correspondence between the error and the raw image. We
therefore ask: (1) Do we need to completely reconstruct the
image to get the discriminative feature? (2) Are there better
ways to incorporate reconstruction error into image genera-
tion detection?

To address the two questions mentioned above, we con-
ducted a series of exploratory experiments and analyses.
For the first question, we investigated the training process
of the diffusion model. We found that given any time step
t, the forward Markov process has a closed-form solution,
allowing us to directly transform x0 into xt. Additionally,
during the training phase, the model takes xt and t as inputs
and computes the denoising loss, enabling us to obtain the
loss through single-step denoising. Therefore, we perform
single-step denoising on both 1000 real and 1000 generated
images respectively by LDM [32]. The results, as shown
in Fig. 1(b), indicate that even with only single-step recon-
struction, the loss of real images is consistently greater than
that of generated images. This not only demonstrates that
the real images are harder to reconstruct than the generated
ones but also suggests that the loss from single-step recon-
struction can reflect the differences between real and gener-
ated images. To address the second question, we visualize
the reconstruction loss on the original image, as shown in
Fig. 2. Upon observation, we have found that the recon-
struction loss is positively correlated with the local infor-
mation frequency of the original image. In the first image,
for instance, the reconstruction loss is relatively lower on
the low-frequency background, while it is relatively higher
on the high-frequency foreground. The same pattern can be
observed in other images as well. The reconstruction loss
exhibits spatial correlations with the original image, thereby
presenting a potential to serve as a valuable cue for the gen-
erated image detection.

Based on the findings above, we propose a novel Latent
REconstruction error guided feature REfinement method

Figure 2. Visualization of reconstruction loss on raw images (i.e.
Image + Loss). Though the randomly sampled noises are added
to the whole image, there is a trend that the loss in high-frequency
regions is typically greater than that in low-frequency regions.

(LaRE2) for diffusion-generated image detection. Our
LaRE2 consists of two parts, the Latent Reconstruction Er-
ror (LaRE) and the Error-guided Feature REfinement mod-
ule (EGRE). LaRE is a more efficient reconstruction fea-
ture, which has two improvements compared with existing
methods: (1) LaRE is extracted in a single step of the dif-
fusion reverse process, which is significantly more efficient
than completely reconstructing the image through dozens of
denoising steps. (2) We conduct the reconstruction in the la-
tent space, which further improves the efficiency. Besides,
we find that the reconstructed loss is positively correlated
with the local information frequency of the original image.
Based on that, we come up with the Error-Guided Feature
Refinement module (EGRE). In EGRE, we first align LaRE
with the image feature map for better correspondings for
feature refinement. Then the aligned LaRE is used to refine
the image feature in both spatial and channel perspectives.
With the guidance of LaRE, EGRE refines the feature map
in both spatial and channel perspectives to better reveal the
discriminativeness for detecting the generated images.

To evaluate the effectiveness of our method, we con-
duct extensive experiments on the GenImage [47] bench-
mark, which comprises 2,681,167 images, segregated into
1,331,167 real and 1,350,000 fake images. The fake images
are from 8 different generators. As shown in Fig. 1(c), our
LaRE is 8 times faster than existing method [40]. In addi-
tion, LaRE2 achieves a significant performance gain by up
to 11.9%/12.1% ACC/AP compared with the best SoTA.
The results demonstrated the superiority of our method,
which is both effective and generalizable.

The contributions of our work are three-fold:

• Novel feature: We are the first to propose the recon-
struction error in latent space for generated-image de-
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tection. Compared with the existing method, we re-
markably reduce the cost of feature extraction while
preserving the essential information required for the
detection of diffusion-generated images.

• Novel module: We qualitatively analyze the reason
for the effectiveness of the reconstruction loss. Based
on that, we come up with a novel module EGRE,
which conducts an Error-guided feature refinement to
enhance the discriminativeness of image features.

• Superior performance: Extensive experiments
demonstrate the effectiveness of our method. We
achieve 11.9%/12.1% ACC/AP gain on the large-
scale GenImage benchmark, significantly outperform-
ing the SoTA methods.

2. Related Works
2.1. Diffusion Model

Diffusion Models [14, 33, 43] have become new state-
of-the-art deep generative models. Inspired by nonequi-
librium thermodynamics, Denoising Diffusion Probabilistic
Models (DDPM) demonstrate promising generative qual-
ity, which inspires a flurry of studies on diffusion mod-
els [3, 5, 9, 32, 34, 35, 42, 46]. DDIM [34] generalize
DDPMs [14] via a class of non-Markovian diffusion pro-
cesses to accelerate sampling. ADM [9] firstly obtain better
generation quality than GANs [11] on ImageNet [8]. La-
tent Diffusion Models [32] apply the diffusion process in the
latent space to improve the efficiency of diffusion models,
and enable diffusion models with text conditioning inputs
through the cross-attention conditioning mechanism. There
are also works that employ pre-trained diffusion models for
various downstream tasks [3, 5, 35, 42, 46]. The rapid ad-
vancement of deep generative models has given rise to con-
cerns regarding the potential for malicious utilization of the
generated images [16]. Consequently, it is urgent to develop
robust techniques to detect generated images.

2.2. Deep Generated Image Detection

Deep-generated image detection has achieved significant
improvements due to the contributions of previous research.
Initially, researchers attempted to use hand-crafted fea-
tures including color cues [23], saturation cues [24], blend-
ing [17] artifacts, co-occurrence features [25]. Then CNN is
leveraged to detect the generated images [18, 22, 38]. Some
works [10, 44] also find that there are obvious visual arti-
facts in the GAN-generated images and detect these images
from the frequency view [28]. Most of the above works are
developed and designed for GAN-generated images. With
the advance of diffusion models, many methods are also
provided for the study of diffusion-generated image detec-
tion. Corvi et. al [7, 31] find that state-of-the-art detec-

Figure 3. Overview of our method. In the first stage, we extract
LaRE in the latent space through single-step reconstruction. In
the second stage, to exploit LaRE, we propose the Error-guided
Feature Refinement Module, which consists of the Error-guided
spatial refinement module and the Error-guided Channel Refine-
ment module. From both spatial and channel perspectives, LaRE
is used to enhance the discriminativeness of the image feature for
generated image detection.

tors developed for GAN suffer from a severe performance
drop when applied to Diffusion-generated images. Corvi et.
al [6,7,31] also find that the spectrum artifacts can also rise
up in the Diffusion-generated images. Wu et. al [41] formu-
late the synthetic image detection as an identification prob-
lem and achieve generalizable detection through language-
guided contrastive learning. DIRE [40] and SeDIE [21] are
proposed to leverage reconstruction error from the diffusion
model to achieve generalizable diffusion-generated image
detection. Different from these methods, we are the first to
show that reconstruction error in the latent space can also
benefit diffusion-generated image detection, which is more
efficient and generalizable.

3. Preliminaries

Diffusion Models has achieved remarkable image gener-
ation performance. Typically, it involves two Markov pro-
cesses. In the forward process, Gaussian noise is gradually
added to the raw image x0 until the image is asymptotically
transformed to pure noise, which is defined as:
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q(xt|xt−1) = N(xt;

√
αt

αt−1
xt−1, (1−

αt

αt−1
I)), (1)

where xt is the noisy image at step t and αt is predefined
noise schedule. According to the properties of Markov pro-
cess and Gaussian distribution, we can get xt from x0 di-
rectly by:

q(xt|x0) = N(xt;
√
αtx0, (1− αt)I)). (2)

In the reverse process, the noisy image is gradually de-
noised to get the raw image, which is defined as:

pθ(xt−1|xt) = N(xt−1;µθ(xt, t),Σθ(xt, t)), (3)

where pθ is typically parameterized by neural networks.
During training, a neural network ϵθ is trained to predict the
added noise ϵ, given the noisy image xt and corresponding
time step t:

Lθ(x0, t) = ∥ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2. (4)

During training, t and ϵ are randomly sampled.

4. Methods
In this section, we elaborate on each component of our

LaRE2, as illustrated in Fig. 3.

4.1. Latent Reconstruction Error

Recent methods [40] propose to use reconstruction er-
ror as the feature for generated-image detection. Through
DDIM [34] inversion, an image is first inversed to noise and
then re-generated based on the noise. However, this method
has several limitations: (1) It is relatively slow to inverse
and re-generate an image. For example, it takes more than
2 seconds to extract DIRE for an image on a Tesla V100
GPU as shown in Fig. 1(c), which limits its realistic appli-
cations; (2) The reconstruction of the image is not always
reliable. Error could accumulate during the Markov forward
and reverse process, making it hard to tell whether the bad
reconstruction is from the difference between real and fake
images, or the reconstruction itself.

Here we come up with a new reconstruction feature,
named Latent Reconstruction Error (LaRE). LaRE is based
on the assumption that if the generated images can be com-
pletely reconstructed with relative ease [40], then they can
also be more easily reconstructed at every single step of the
reverse diffusion process.

For an image x, we first get its latent code x0 by VAE.
Then we calculate the LaRE by:

LaRE = Lθ(x0, t) = Eϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥2

]
.

(5)

As shown in Fig. 3, Our LaRE takes advantage of two spe-
cial properties of Diffusion Models. (1) The forward pro-
cess has a close form. According to Eq. 2, we can get xt

directly from x0; (2) Diffusion Model is trained to denoise
a noisy image from any time step t, as shown in Eq. 4.
Therefore, given xt, t, and ϵ, we can directly get the re-
construction error by only single-step denoising, which is
much more efficient than completely reconstructing an im-
age. Compared with complete image reconstruction, our
LaRE has several advantages: (1) Only single-step denois-
ing is required to get LaRE, which significantly improves
its efficiency. (2) Reconstruction is conducted in the la-
tent space, which is also more efficient. (3) No need for
complete inversion and reconstruction of the image, which
eliminates the potential accumulation of errors that may oc-
cur during multiple inversion and reconstruction steps.

With efficiency, the easier reconstruction assumption
still holds for our LaRE. Recall that a diffusion-generated
image is more easily reconstructed by diffusion models
[40]. So the reconstruction error should be relatively
small when completely reconstructing an image through the
whole reverse process. That implies the reconstruction er-
ror is also relatively small during each step of the reverse
process, which is also validated in Fig. 1(b). We leverage
the Monte Carlo method to estimate LaRE in Eq. 6:

LaRE =
1

e

e∑
i

[
∥ϵi − ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵi, t)∥2

]
,

(6)
where e, t are pre-defined hyperparameters. Specifically,
we conduct denoising for e times and average the denoising
loss to extract LaRE.

4.2. Error-Guided Feature Refinement

Existing methods exploit the reconstruction error as the
only feature to detect the generated image, which ignores
the relationships between the reconstruction error and the
raw image. To better understand how reconstruction error
helps generated-image detection, we visualize the extracted
LaRE on the raw image, as shown in Fig. 2. We find several
interesting conclusions. 1) The loss norm is proportional to
the noise norm. It is easy to understand that the stronger
the added noise is, the harder to reconstruct; 2) The loss
norm is also proportional to the frequency of local image
patches. That the low-frequency patches are easier to re-
construct than the high-frequency ones. Therefore, the re-
construction performance on the high-frequency parts of the
image plays an important role in the generated image detec-
tion. To apply this valuable information, we come up with
a novel Error-guided feature REfinement Module (EGRE).
Based on the reconstruction error, our EGRE can better re-
fine the image feature to reveal the discriminative parts for
generated image detection.
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Figure 4. Results of cross-validation on different training and testing subsets. For each generator, we train a model and test it on all 8
generators. For both DIRE [40] and our method. accuracy (ACC) and average precision(AP) are reported.

4.2.1 Error-guided Spatial Refinement Module

We propose the Error-guided Spatial Refinement module
(ESR) for feature refinement from the spatial perspective.
First, we spatially align LaRE and the image feature map
by a simple adaptive average pooling layer, so that they have
the same spatial size. Now we have the spatially aligned in-
put feature map x ∈ RHW×C1 and LaRE e ∈ RHW×C2 .
x̄ ∈ R1×C1 is the global feature, which is the average of x.
To refine the feature from the spatial perspective, we choose
an Error-guided Spatial Attention module (ESA):

ESA(Q,K,V,E) = softmax(
QKT

√
dk

+E)V. (7)

To further enhance the feature representation, we adopt
a multi-head mechanism from Transformer [37]. There-
fore, our Multi-Head Error-guided Spatial Attention mod-
ule (MHESA) is defined as:

MHESA(Q,K,V,E) = Concat(head1, ..., headh)W
O,

where headi = ESA(QWQ
i ,KWK

i ,VWV
i ,EWE

i ).
(8)

where h is the number of heads, WQ
i ∈ RC1×d, WK

i ∈
R

C1×d, WV
i ∈ RC1×d,WQ

E ∈ RC2×d are learnable pro-
jection matrices, d is the hyperparameter. The spatial re-
fined feature x′ is calculated by:

xs = MHESA(x̄,x,x, e), (9)

where x̄ is the only query attending to the feature map x. In
this stage, the aligned LaRE is used to re-weight the atten-
tion score of scaled dot-product attention. Since LaRE and
the feature map are spatially aligned, LaRE can emphasize
important information from the spatial perspective.

4.2.2 Error-guided Channel Refinement Module

For channel refinement, we first squeeze both x and e to
x̄ ∈ R1×C1 and ē ∈ R1×C2 . Then our channel refinement

is achieved by a gate mechanism:

xc = sigmoid (ēW)⊙ x̄, (10)

where W ∈ R
C1×C2 are learnable parameters to align

LaRE and the feature map from the channel perspective. Fi-
nally, xs, xc and the original global feature xg from the last
convolution block are concated as the final feature xEGRE.

xEGRE = Concat(xs,xc,xg). (11)

xEGRE is followed by one FC layer. We train our model with
the binary cross entropy loss.

5. Experiments
5.1. Datasets and Evaluation Metrics

We evaluate our proposed method using the GenIm-
age [47] dataset. This dataset comprises a total of 2,681,167
images, divided into 1,331,167 real images and 1,350,000
generated images. The generated images are from 8 differ-
ent generative models, namely BigGAN [4], GLIDE [26],
VQDM [12], Stable Diffusion V1.4&V1.5 [32], ADM [9],
Midjourney [1], and Wukong [2]. All of the fake images
are generated using the template prompt “photo of CLS”,
where “CLS” is replaced by one of the 1000 labels from
ImageNet [8]. These images are split into 8 subsets where
each subset contains partial real images and all the fake im-
ages generated by one of the above generators. We adhere to
the official division of the dataset in our research, allocating
2,581,167 images for training and reserving the remaining
100,000 images for validation. Following DIRE [40], we
employ Accuracy (ACC) and Average Precision (AP) as our
evaluation metrics. More details and results are included in
our supplementary materials.

5.2. Implementation Details

All experiments are conducted using the GenImage
dataset. To obtain the LaRE, we employed Stable Diffu-
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Methods Testing Subset Avg
ACC.(%)Midjourney SDV1.4 SDV1.5 ADM GLIDE Wukong VQDM BigGAN

CNNSpot [39] 58.2 70.3 70.2 57.0 57.1 67.7 56.7 56.6 61.7
Spec [45] 56.7 72.4 72.3 57.9 65.4 70.3 61.7 64.3 65.1
F3Net [29] 55.1 73.1 73.1 66.5 57.8 72.3 62.1 56.5 64.6
GramNet [19] 58.1 72.8 72.7 58.7 65.3 71.3 57.8 61.2 64.7
DIRE [40]† 65.0 73.7 73.7 61.9 69.1 74.3 63.4 56.7 67.2
Ours 66.4 87.3 87.1 66.7 81.3 85.5 84.4 74.0 79.1

Table 1. Performance comparisons on GenImage test set. For each data point, eight models are trained on eight generators respectively.
Then eight models are tested on the specified test sets and the accuracy scores are averaged. †indicates our reproduction.

sion V1.5 [32] with a step size of t = 200 and a noise en-
semble size of e = 4. Images are resized to 256 × 256
for LaRE extraction. We use the prompt “a photo” for all
images. For both training and testing phases, images are
resized to 224× 224. Our model utilizes the CLIP [30] pre-
trained ResNet50 [13] as the backbone architecture. We set
the batch size to 48 and the learning rate to 1e−4. Train-
ing is performed on a single Nvidia Tesla V100 GPU. We
train eight models on eight subsets respectively, each corre-
sponding to a different generation method. Model selection
is based on performance in the validation set, which shares
the same generation method as the training set.

5.3. Cross-Generator Image Classification

We evaluate the performance of our model trained by one
of the subsets and test on all eight subsets. The results are
shown in Fig. 4. Several conclusions can be made from
the results. (1) It is easy to detect generated images from
seen generators. Both the DIRE and our proposed method
demonstrate superior performance when training and test-
ing images share the same generator, as shown by the di-
agonal of each image. (2) It is challenging to generalize
the model to unseen generators. However, it is relatively
easier to generalize the model to similar generator struc-
tures than to different structures. For example, a model
trained on the BigGAN subset achieves bad performance
when tested on other subsets, which are all diffusion-based
generators. While the model trained on the SDV1.5 subset
achieves relatively better performance on other diffusion-
based models. (3) Our model is more robust and generaliz-
able than DIRE. Our model trained on diffusion-based gen-
erators achieves better generalizability on both gan-based
and diffusion-based generators. This indicates that our
LaRE2 can better capture discriminative features to detect
the generated images.

5.4. Compare with the State of the Arts

In this section, we compare our method with several
state-of-the-art generated image detection methods, includ-
ing CNNSpot [39], Spec [45], F3Net [29], GramNet [19]

and DIRE [40]. In accordance with the GenImage bench-
mark, eight models are trained on each subset. Subse-
quently, these models are evaluated on the specified test set,
and their accuracy scores are averaged to produce a data
point for inclusion in the table. This benchmark presents
a formidable challenge, as the overall accuracy is closely
tied to the cross-generator generalizability of the proposed
techniques. As illustrated in Tab. 1 and Fig. 4, our ap-
proach attains state-of-the-art performance across all eight
generators. Notably, our overall accuracy exhibits a sub-
stantial improvement, surpassing the previous state-of-the-
art by 11.9%/12.1% ACC/AP. This result demonstrates the
superior generalizability of our method.

5.5. Ablation Study

In this section, we conduct several ablative studies to
quantify the contribution of each design in our model and
the influence of the hyperparameters.

5.5.1 Influence of EGRE

The contribution of individual components in EGRE to the
overall performance of the method is reported in Tab. 2.
Starting with the most simple baseline, i.e., training with-
out LaRE (Model A in the table), each component is
added building up to the proposed approach. We mea-
sure the effect of the Error-guided Spatial Refinement mod-
ule (ESR) and Error-guided Channel Refinement module
(ECR). Specifically, ESR achieves 8.6%/5.3% ACC/AP
gain and ECR achieves 5.7%/2.4% ACC/AP gain compared
with the baseline. Both ESR and ECR significantly im-
prove the performance, demonstrating the effectiveness of
the two modules. Relatively, ESR brings a higher improve-
ment in metrics compared with ECR, indicating a greater
benefit from spatial feature refinement. This is also at-
tributed to the better alignment of LaRE with the original
image at the spatial scale as shown in Fig. 2. By combining
ESR and ECR, our approach achieves a further improve-
ment of 11.4%/7.2% ACC/AP. By leveraging LaRE for fea-
ture refinement at both spatial and channel scales, our model

17011



Model ESR ECR CLS MJ SDV1.4 SDV1.5 ADM GLIDE WuKong VQDM Biggan Avg

A 52.9/94.4 100.0/100.0 100.0/100.0 55.0/89.5 75.5/98.7 99.7/100.0 51.8/84.4 50.4/71.7 73.1/92.3
B ✓ 61.8/96.9 100.0/100.0 100.0/100.0 60.3/95.4 87.2/99.1 100.0/100.0 86.2/94.6 58.1/95.0 81.7/97.6
C ✓ 57.4/95.3 100.0/100.0 100.0/100.0 57.2/91.6 81.2/98.9 100.0/100.0 78.3/89.8 56.2/82.3 78.8/94.7
D ✓ ✓ 64.8/98.2 100.0/100.0 100.0/100.0 61.9/98.5 91.4/99.8 100.0/100.0 94.6/100.0 63.7/99.7 84.5/99.5
E ✓ ✓ ✓ 66.2/99.3 100.0/100.0 100.0/100.0 64.5/99.5 91.5/99.9 100.0/100.0 97.7/100.0 67.4/99.8 85.9/99.8

Table 2. Ablative studies on using different modules or prompts. ‘CLS’ indicates to use class-specific prompt for LaRE extraction.

Figure 5. Trade-off between detection performance and feature
extraction cost. When e=4, the model achieves the best trade-off.

achieves more robust and generalizable image generation
detection performance.

5.5.2 Influence of Noise Ensemble

We systematically evaluated the impact of the noise ensem-
ble parameter e on both the accuracy and feature extrac-
tion runtime. As shown in Fig. 5. The results demonstrate
a consistent increase in accuracy as e increased. However,
this improvement in accuracy comes at the cost of increased
feature extraction runtime. Upon careful consideration of
the trade-off between accuracy and computational cost, we
propose e = 4 as the optimal choice. This selection of e
provides an effective balance, maintaining the performance
of our model while ensuring computational efficiency.

5.5.3 Influence of Prompts

Because Latent diffusion is a text-conditioned model, a
prompt is needed to denoise an image. Here we try to use a
class-specific prompt instead of an unchanged prompt. We
choose the template “a photo of CLS” where “CLS” is re-
placed with the ImageNet label of the image. Results are
shown in Tab. 2. When using class-specific prompts (Model
E), we can achieve further improvements by 1.4%/0.3%

Figure 6. ACC and AP when choosing different t. The results
demonstrate that our model is robust to the choice of t.

ACC/AP. This suggests that the category information of im-
ages can aid in the extraction of LaRE features. Even in the
absence of category information, it is interesting that the
accuracy does not decline significantly. We speculate this
is because we did not fully convert the images into noise.
Even with the added noise, the image still retains some of
the original important semantic information, which can as-
sist the model in denoising and thus obtaining good LaRE
features. This experiment validates that when the textual
information of an image is known, the extracted LaRE fea-
tures can further enhance the performance. However, we
still use the generic prompt in our method, as it already
achieves satisfactory results. As for accurately describing
images to further enhance performance, we leave that for
future research work.

5.5.4 Influence of Sample Step

Here we conduct the ablative experiment on the sample step
t. As illustrated in Fig. 1(b), there is a gap between the re-
construction loss of real images and the generated images.
When t ∈ [100, 500], there is a more obvious difference
in the reconstruction loss between the two types of images.
To verify the impact of t selection on the performance, we
conducted experiments with different values of t, and the
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Figure 7. Visualization of the spatial representation of the baseline
model (a) and our model (b). Both models were trained on the
SDV1.5 subset. In the case of seen data, both models exhibit good
discrimination in the feature space. However, for unseen data, the
baseline model shows a significant overlap between real images
and fake images (red circle), whereas our model exhibits a smaller
overlap (red circle). This further indicates the better generalization
capability of our model.

results are shown in Fig. 6. When t ∈ [150, 300], the model
exhibits stable performance, indicating the robustness of
our model with respect to t. However, when t exceeds this
range, the performance of the model tends to decline.

5.5.5 Influence of Input Information

We conduct experiments to train the detection model with
different inputs. The results are shown in Tab. 3. Since
our LaRE is a compressed latent representation whose size
is only 32 × 32 × 4. We train a Resnet-20 with LaRE as
the only input (Model B). The experimental results show
that both the AP and ACC metrics have decreased signif-
icantly. We speculate that there are two reasons. Firstly,

Model Image LaRE Method AVG. ACC AVG. AP
A ✓ None 73.1 92.3
B ✓ None 66.2 68.3
C ✓ ✓ Concat 76.8 93.5
D ✓ ✓ EGRE 84.5 99.5

Table 3. Results of using different input. Models are trained on
the SDv1.5 subset and tested on all the subsets. ‘AVG’ indicates
average scores over 8 subsets. ‘Concat’ indicates concat LaRE
with the image feature map after the last convolution block.

LaRE is in the latent space and has more information loss
compared to the original image. It is not sufficient to serve
as the only information for detecting the generated images.
Secondly, as shown in the Fig. 2, LaRE mainly reflects the
reconstruction quality of the original image at different spa-
tial positions. It is better to leverage LaRE to enhance the
representation of the original image features. Therefore, we
conducted further experiments. In model C, we only con-
catenated LaRE with the feature map of the image, which
also improves the performance. This validates our hypoth-
esis. Besides, model D achieves significant performance
gain compared with Model C. By using EGRE, we can fur-
ther improve the performance of our model by a significant
margin, which also confirms the advantages of EGRE over
simple feature concatenation.

5.6. Qualitative Results and Visualizations

We utilize t-SNE [36] visualization to illustrate feature
vectors derived from the final layers of our model and the
baseline model, as depicted in Fig. 7. Each model is trained
on the SDv1.5 subset of GenImage and evaluated across all
eight generative methods. Although both models exhibit
good feature discrimination on seen images, they both have
limitations when it comes to unseen scenarios. For images
from MJ, ADM, and BigGAN, both models show overlaps
between real and fake images in the feature space. However,
our model demonstrates a smaller proportion of overlap, in-
dicating its better generalization ability.

6. Conclusion

In this paper, we propose a novel reconstruction-based
diffusion-generated image detection method called LaRE2.
We come up with LaRE, a novel and more efficient
reconstruction-based feature by reconstructing the image in
the Latent space. Notably, LaRE is 8 times faster compared
with existing reconstruction-based methods. By incorporat-
ing LaRE with the Error-guided Feature Refinement mod-
ule (EGRE). Our LaRE2 achieves superior performance on
diffusion-generated image detection, demonstrating state-
of-the-art performance.
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