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Abstract

Recently, leveraging large language models (LLMs) or
multimodal large language models (MLLMs) for document
understanding has been proven very promising. However,
previous works that employ LLMs/MLLMs for document
understanding have not fully explored and utilized the doc-
ument layout information, which is vital for precise docu-
ment understanding. In this paper, we propose LayoutLLM,
an LLM/MLLM based method for document understanding.
The core of LayoutLLM is a layout instruction tuning strat-
egy, which is specially designed to enhance the comprehen-
sion and utilization of document layouts. The proposed lay-
out instruction tuning strategy consists of two components:
Layout-aware Pre-training and Layout-aware Supervised
Fine-tuning. To capture the characteristics of document
layout in Layout-aware Pre-training, three groups of pre-
training tasks, corresponding to document-level, region-
level and segment-level information, are introduced. Fur-
thermore, a novel module called layout chain-of-thought
(LayoutCoT) is devised to enable LayoutLLM to focus on
regions relevant to the question and generate accurate an-
swers. LayoutCoT is effective for boosting the performance
of document understanding. Meanwhile, it brings a cer-
tain degree of interpretability, which could facilitate man-
ual inspection and correction. Experiments on standard
benchmarks show that the proposed LayoutLLM signifi-
cantly outperforms existing methods that adopt open-source
7B LLMs/MLLMs for document understanding.

1. Introduction

Document AI [7], including its document understanding
tasks such as document VQA [33, 47] and document visual
information extraction [18, 19, 37], is currently a hot topic
in both academia and industry. In recent years, document
pre-trained models [2, 8, 12, 13, 16, 17, 23, 25, 26, 32, 38,
52, 54, 55, 59] have achieved excellent performance in doc-
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Figure 1. LLMs/MLLMs for document understanding. The Lay-
outLLM is an LLM/MLLM based method that integrates a docu-
ment pre-trained model as encoder. It is trained by the newly pro-
posed layout instruction tuning strategy which consists of Layout-
aware Pre-training and Layout-aware Supervised Fine-tuning.

ument AI downstream tasks. However, due to the necessity
for fine-tuning on corresponding downstream task data, it
is challenging to directly adapt such pre-trained models for
zero-shot document understanding. In this paper, zero-shot
refers to not using training sets of downstream tasks.

Recently, large language models (LLMs) such as Chat-
GPT [35] and LLaMA [49, 50], or multimodal large lan-
guage models (MLLMs) like GPT-4V [1, 36, 56], have
shown remarkable zero-shot capabilities across various ap-
plications. For Document AI, as shown in Fig. 1 (a),
(I) directly prompting LLMs with document text [15, 39]
and (II) training document-based MLLMs [3, 57, 60] have
also achieved promising results under the zero-shot set-
ting [3, 39, 57, 60].

It is widely accepted that document layout information is
vital for document understanding [2, 8, 12, 13, 16, 17, 23,
25, 26, 32, 38, 41, 52, 54, 55, 59]. However, it is difficult
to convey document layout information by directly feeding
text to LLMs. As Fig. 1(a)(I) shows, representing docu-
ments as either flattened plain text or layout text such as text
with coordinates [15, 39, 44, 64] is often used for LLMs.
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Flattened plain text completely excludes any layout infor-
mation of the document [54]. Additionally, as Tab. 1 shows,
using layout text that represents both textual and layout in-
formation as inputs for LLMs does not guarantee LLMs can
effectively comprehend this formatted text.

Moreover, existing works that employ MLLMs for doc-
ument understanding also have not fully explored the doc-
ument layout information. Document-based MLLMs inte-
grate visual models [11, 42] with LLM [48–50, 61] for doc-
ument understanding. As Fig. 1(b) shows, they are typically
based on pre-training and supervised fine-tuning (SFT) on
document datasets. In the pre-training stage, tasks such as
image captioning [29, 57, 60] or generating all text in a doc-
ument as flattened plain text [9, 27, 60] are commonly ap-
plied. Both these image captions [43, 46] and plain text only
provide a brief representation and fail to capture the layout
information of the document. So it is difficult for the model
to learn document layout in the existing pre-training stage.
In the SFT stage, document-related VQA or information ex-
traction data [3, 57] is often used. The answers are directly
provided during SFT, lacking explicit learning about docu-
ment layout. In summary, current approaches using plain or
layout text to prompt LLMs and training document-based
MLLMs have not effectively captured layout information,
limiting their zero-shot document understanding capabil-
ity. Therefore, for better document understanding with the
power of LLMs, it is necessary to investigate how to effec-
tively incorporate layout information into LLMs.

To this end, we propose LayoutLLM, an LLM/MLLM
based method for document understanding, in which a
layout instruction tuning strategy is designed to enhance
the comprehension of document layouts. Different from
the existing MLLMs that use a general visual pre-trained
model [11, 42] as the encoder, we integrate document pre-
trained models [2, 12, 16, 17, 23, 25, 32, 52, 54, 55] as the
encoder in order to better leverage the model’s foundational
understanding capability for documents. The proposed lay-
out instruction tuning consists of two stages: layout-aware
pre-training and layout-aware supervised fine-tuning (SFT).
Due to the complex nature of documents in real-world sce-
narios, encompassing rich textual content and diverse lay-
out structures, achieving a thorough understanding involves
not only capturing the document’s fundamental content at
global but also delving into local details. In the layout-
aware pre-training stage, to ensure the model learns not only
the global information of documents but also detailed in-
formation at different hierarchical levels, three groups of
different level pre-training tasks are proposed: document-
level, region-level, and segment-level. All the proposed pre-
training tasks are unified in the format of instruction tuning.

Furthermore, in the layout-aware SFT stage, to enhance
the model’s comprehension and utilization of layout in-
formation for question answering, a novel strategy called

LayoutCoT is proposed, motivated by the chain-of-thought
(CoT) [21, 53] ability in LLMs. Unlike existing methods
that are directly supervised by the answer to the document
understanding question, LayoutCoT consists of three suc-
cessive steps: Question Analysis, Relevant Area Concen-
tration, and Answer Formation. Through these steps, the
model gains a deeper understanding of the questions, be-
comes capable of focusing the the relevant areas instead of
searching answers in the entire document and can leverage
the specific characteristics of identified areas (such as ta-
bles, paragraphs, etc.) to accurately infer the answers. It not
only brings a certain degree of interpretability, but also pro-
vides a feasible way for manual intervention or correction
of model results. Extensive zero-shot experiments on five
widely-used document understanding benchmarks demon-
strate the effectiveness of the proposed LayoutLLM.

Our contributions are summarized as follows:
1) To better learn document layouts from global to local in

layout-aware pre-training, three groups of different level
pre-training tasks, which are all implemented through in-
struction tuning, are proposed.

2) A novel LayoutCoT strategy is proposed to achieve
layout-aware supervised fine-tuning. It enables Layout-
LLM to focus on the relevant document area and lever-
age the region’s features to generate accurate answers, ex-
hibiting a certain degree of interpretability.

3) Experimental results on zero-shot document under-
standing tasks show that the proposed LayoutLLM
significantly outperforms existing methods that adopt
LLMs/MLLMs for document understanding, demonstrat-
ing the great potential of document layout modeling.

2. Related Works
Pre-trained models for document understanding. Doc-
ument pre-trained models have demonstrated the effec-
tiveness of layout information in document understand-
ing [2, 5, 8, 10, 12, 13, 16, 17, 20, 22, 23, 25, 26, 32, 38,
41, 52, 54, 55, 59]. As a pioneer, LayoutLM [54] is the
first to encode spatial coordinates of text for layout rep-
resentation learning in pre-training documents. The fol-
lowing works [2, 8, 12, 13, 16, 17, 23, 25, 26, 32, 38,
52, 55, 59] then joint text, layout and images in document
pre-training by combining visual models as document im-
age encoders with the text and layout transformers, and
various works [5, 10, 20, 22] start to explore pre-training
end-to-end models for document understanding. These
studies have achieved significant advancements in docu-
ment understanding by exploring various model architec-
tures [2, 8, 10, 12, 13, 20, 25, 26, 38, 41, 52, 59] and at-
tention mechanisms [16, 17, 55] for modeling layout infor-
mation. These methods also have proposed layout-related
pre-training tasks that have been demonstrated to be highly
effective in document understanding tasks. For instance,
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tasks like masked vision-language modeling [13, 17, 55],
where the model is required to generate the original text cor-
responding to the randomly masked text in the document;
position masking [31, 51], involving the randomly position
masking and subsequent recovery of position information
in the document; geometric pre-training [26, 32], focusing
on learning direction, distance, etc.; and layout-aware gen-
eration tasks [5, 22], aiming to make the model generate
structured text with layout information. However, due to
the necessity of fine-tuning with annotated data for down-
stream tasks, these efforts face challenges in extending to
zero-shot document understanding.
LLMs/MLLMs for document understanding. Recently,
LLMs like ChatGPT [35] and MLLMs like GPT-4 [36,
56] have demonstrated remarkable zero-shot performance
across a wide range of NLP/CV tasks. Leveraging
LLMs/MLLMs for zero-shot document understanding has
also shown promising progress [3, 30, 39, 45, 57, 60].
Perot et al. [39] explore the use of LLMs for document
visual information extraction, emphasizing the importance
of the document layout. LLaVAR [60] which extends
LLaVA [28, 29] to the document domain is pre-trained by
generating plain text in the document image. During SFT, it
is trained by document-related instructions which are gener-
ated by GPT-4. Expanding on mPLUG-Owl [58], mPLUG-
DocOwl [57] is trained using publicly available datasets for
document understanding. It includes tasks like document-
level image captioning, direct information extraction, and
direct document VQA. Moreover, Qwen-VL [3] proposes
a general MLLM that performs well on document under-
standing tasks, utilizing document-level pre-training and di-
rect VQA for SFT. Though existing LLMs/MLLMs have
shown promising results in document understanding, their
limited focus on document layout in pre-training and SFT
has hindered their ability to achieve higher accuracy in zero-
shot document understanding and better interpretability.

3. LayoutLLM
LayoutLLM is an LLM/MLLM based method that incor-
porates document pre-trained models for document under-
standing. To enhance the document layout comprehension
in LayoutLLM, a novel layout instruction tuning strategy is
proposed, which consists of two stages: layout-aware pre-
training and layout-aware supervised fine-tuning (SFT).

3.1. Model Architecture

The overall architecture of LayoutLLM is shown in Fig. 2.
In LayoutLLM, given an input document image and its
corresponding text and layout information, the document
pre-trained model encoder is required to obtain the multi-
modal document features. Then, these features are encoded
by multimodal projectors, and together with the instruction
embeddings, fed into the LLM to generate the final results.
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Figure 2. Overall architecture of LayoutLLM.

Document pre-trained model encoder. To leverage the
foundational document comprehension capability of doc-
ument pre-trained models, in this work, we utilize Lay-
outLMv3 [17], a widely-used document pre-training model,
as our basic document encoder. The document image, text,
and layout are initially inputted into the document pre-
trained model (DocPTM ). They are then encoded by the
DocPTM to obtain the corresponding features as follows:

FV , FT = DocPTM(V, T,Box) (1)

where V represents the document image, T = T0:n−1 and
Box = Box0:n−1 indicate the text sequences in the doc-
ument and their corresponding bounding-box coordinates
respectively. After being encoded by the DocPTM , the vi-
sual features of the document FV = FV0:Vm−1

∈ Rd0 and
the text layout features FT = FT0:Tn−1 ∈ Rd0 are acquired.
m signifies the number of visual features and n represents
the number of tokens contained in the document. d0 denotes
the dimension of DocPTM feature space.
Multimodal projectors. To project multi-modality features
from DocPTM into the LLM’s embedding space, inspired
by the simple yet effective projector design in LLaVA [28,
29], two different Multilayer Perceptrons (MLPs) are used
as visual projector and text & layout projector respectively.
Formally, the projected features can be obtained by:

HV = PV (FV ) (2)
HT = PT (FT ) (3)

where HV = HV0:Vm−1
∈ Rd1 is the feature encoded by

the visual projector, HT = HT0:Tn−1
∈ Rd1 is the feature

encoded by the text & layout projector, and d1 is the dimen-
sional of the LLM embedding features.
Large language model. Finally, the HV , HT and the em-
bedding of the question’s instruction text, Iq = Iq0:lq−1

, are
inputted together into the LLM, generating the target an-
swer Ia = Ia0:la−1

. lq and la represent the length of the
question’s instruction text and the answer text, respectively.

3.2. Layout Instruction Tuning

The LayoutLLM model is trained using the layout instruc-
tion tuning, which consists of two stages: layout-aware pre-
training and layout-aware SFT.
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(a) Stage 1: Layout-aware Pre-training (b) Stage 2: Layout-aware Supervised Fine-tuning

Without
LayoutCoT

• Q: What is the “NO. OF STORES” of Fowlers Oil ?

• A: 15.

A: It’s a question about Table Understanding.
The question asks for the “NO. OF STORES” for a specific 
“NAME OF ACCOUNT”. 

Step 1: Question Analysis

A: It is in the NO. OF STORES column
of the table. The number given in 
this column for the Fowlers Oil is 15.

Step 3: Answer Formation

LayoutCoT

Step 2: Relevant Area Concentration

A: It is in the table of the doc.
The table is at [23,405,548,617].

Document Dense Description

• Q: What is the <mask> text content ?
• A: Editor.• Q: Where can we find the figure ?

• A: There are 2 figures at [181, 641, 
454, 875] and [577, 675, 780, 814].

Document Layout Analysis

• Q: How many rows and columns does 
the table have?

• A: 14 rows and 9 columns.

Table Understanding • Q: Provide the original bboxes of the text 
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• A: The direction is the bottom-right. 
The distance is 100.
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the document.
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<[33,407,187,424], ACTIVITY>, …
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• Q: List the values in the column 9.
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• Q: What is the document layout type 
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• A: Page-footer.
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Figure 3. Overview of the Layout Instruction Tuning. (a) Document-level, region-level, and segment-level pre-training tasks, unified in
instruction tuning format, are introduced. (b) A novel module called LayoutCoT is designed to enable LayoutLLM to focus on regions
relevant to the question and generate accurate answers through three intermediate steps.

3.2.1 Layout-aware Pre-training

The goal of pre-training the LayoutLLM is to enhance the
model’s comprehensive understanding of documents at dif-
ferent levels through layout learning, rather than only fo-
cusing on global document-level understanding like exist-
ing MLLM methods [57, 60]. To this end, during the
pre-training stage, three different level pre-training strate-
gies are simultaneously applied to the LayoutLLM, namely
document-level, region-level, and segment-level.
Document-level To enable the model to possess funda-
mental global document understanding, pre-training tasks,
namely Document Dense Description (DDD) and Text and
Layout Reconstruction (TLR), are proposed. As Fig. 3
(a) shows, like the image caption task, the DDD task re-
quires the model to learn to describe the input document.
Moreover, in the DDD task, the descriptions for document
images are more detailed. For instance, in the document
image caption data used for the LLaVAR [60] pre-training,
captions contain an average of 36.27 words, while in the
proposed dataset of the DDD task, the description contains
an average of 373.25 words. Through the DDD task, the
model can obtain basic document-level information, such
as document type and detailed content. The TLR task aims
to reconstruct the complete text and layout information of a
document and output it in the format “<{box}, {text} >”.
The TLR task aligns the text and layout embeddings output
from DocPTM with the LayoutLLM’s LLM space. Conse-
quently, it enables the LLM in LayoutLLM to comprehend
the text and layout information contained in the documents.
Region-level The information contained in specific regions
of a document, such as the titles, figures, tables, is essen-
tial for document understanding [4, 6, 8, 24, 62]. These
regions serve as important characteristics that differentiate

a document from plain text in natural language. For the
LayoutLLM to achieve the basic region-level understand-
ing, two pre-training tasks, namely Document Layout Anal-
ysis (DLA) and Table Understanding (TU), are utilized. The
DLA task is achieved in two ways as shown in Fig. 3.
One involves locating the layout region based on the layout
type, the other involves identifying the type of a given area.
Furthermore, the table region differs from other regions in
that it requires additional focus on 2D layout understanding.
The TU task enables the model to understand the basic row
and column information in the table region of a document.
As shown in Fig. 3, the TU task includes instruction tuning
for the number of rows and columns, logical coordinates,
and the content within rows and columns.
Segment-level Early works on document pre-trained mod-
els [13, 17, 26, 31, 32, 51, 55] have demonstrated the ef-
fectiveness of segment-level document pre-training tasks
to document layout understanding ability, such as masked
vision language modeling (MVLM) [13, 17, 55], position
masking [31, 51], and geometric pre-training [26, 32]. In-
spired by these works, to make LayoutLLM have segment-
level layout understanding, these tasks are transformed into
instruction formats for pre-training as Fig. 3(a) shows. For
the MVLM instructions, random masking of the text input
to LayoutLLM is performed, and the model is instruction
tuned by asking the masked words and answering them. For
mask position instruction, the layout information (coordi-
nates) to a specific text line, when input to LayoutLLM, is
randomly set to 0. The instruction is constructed by asking
about the text line with zeroed coordinates and requesting
the model to respond with the original coordinates with text
content. For geometric layout instruction, text lines are ran-
domly selected, and an instruction is constructed by asking
questions about the direction and distance between them.
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3.2.2 Layout-aware Supervised Fine-tuning

In the SFT stage of existing document-based MLLMs, mod-
els are directly supervised by the answer to the document
understanding instructions. Consequently, these methods
lack explicit learning of document layout which is crucial
for document understanding. Considering this limitation,
and inspired by previous works related to chain-of-though
(CoT) [21, 53], which have shown that inferencing with in-
termediate steps can greatly enhance performance. A novel
module called LayoutCoT is proposed, which incorporates
the layout information into every intermediate step of CoT
explicitly. Meanwhile, by introducing the layout-aware in-
termediate steps, the answer process gains a certain degree
of interpretability for LayoutLLM and also provides inter-
active correction possibilities based on LayoutCoT.
LayoutCoT Details. As shown in Fig. 3(b), the LayoutCoT
involves the following three intermediate steps:
Step 1: Question Analysis. To effectively address a docu-
ment understanding problem, analyzing the key characteris-
tics of the question is very important. Identifying the ques-
tion type, such as table understanding or entity extraction
from paragraphs, and assessing whether the question is a
straightforward extraction query or a more complex reason-
ing problem, can help guide the direction for the subsequent
inference process. Therefore, to give basic guidance to the
subsequent steps, the question analysis step is designed, en-
compassing an analysis of the question type from a layout
perspective and a detailed understanding of the question it-
self. Benefiting from the layout understanding ability by
layout-aware pre-training, this step can extract the types and
key information mentioned in the question, which are re-
lated to the specific characteristics of the document.
Step 2: Relevant Area Concentration. For most docu-
ment understanding tasks, the entire document contains a
large amount of irrelevant information that may confuse the
model [5]. This step aims to focus on the relevant area and
generate its location information, which is used to assist
the model to accurately infer the answer. Benefiting from
the layout information conveyed by step 1 and the position-
ing capabilities learned from the region&segment-level pre-
training, the model can accurately generate the location of
the relevant area. For example in Fig. 3(b), according to
the question type “table” in step 1, the relevant “table” can
be located. By guiding the model to focus on the relevant
area, this step largely narrows the search scope, increasing
the possibility of giving the right answer. Meanwhile, the
location information provides a way for visual inspection
and interactive correction (see Sec. 4.7 for details).
Step 3: Answer Formation. Finally, the last step, the answer
formation, provides explanations based on the layout char-
acteristics of the relevant areas located in step 2 and key
points analyzed in step 1 to get the final answer. For ex-
ample in Fig. 3(b), for a “table” type question, this step in-

Algorithm 1 CONSTRUCT(D): LayoutCoT Construction.
Definition: H: Document HTMLs; I: Document Images; T : MRC

Texts; R: Document Language Representation; QA: QA pairs; Tc:
Text CoT; Lc: LayoutCoT;

Input: Document Dataset D = {DH , DI , DM}
(DH={H}, DI={I}, DM = {T ,QA});

Output: Constructed Dataset Dc

1: Procedure CONSTRUCT(D = {DH ,DI ,DM})
2: 1)R = getDocRep(I) if D ⊆ DI elseH if D ⊆ DH else pass;
3: 2)QA, Tc = getQACoT(D) ifD ⊆ DM else getQACoTGPT(R);
4: 3) Lc = getLayoutCoT(Tc)
5: 4) if D ⊆ {DH ,DM}: I = Html2Img(DH ? H : T );
6: return Dc← {I,QA,Lc}

volves analyzing the row and column in the relevant table in
step 2, and inferencing the answer step-by-step. For a “key-
value” question, analyzing the keywords in concentrated ar-
eas can help get the final answer. Analyzing answers in
different ways based on the features of different layout re-
gions not only improves the document understanding per-
formance but also brings a certain level of interpretability.
LayoutCoT Construction. Given the need for both text
and image annotations in constructing LayoutCoT, manual
labeling can be difficult. Algorithm 1 proposes a manual-
labeling-free method, generating LayoutCoT data using
public datasets with GPT (GPT-3.5 Turbo). It involves rep-
resenting document text and layout in a format understand-
able by GPT. GPT is then utilized to generate document-
content-based QA and corresponding text CoT. Finally, use
rules for transforming the text CoT to LayoutCoT.

Three types of publicly available document datasets are
focused on: HTML documents (DH ), image documents
(DI ), and text documents (DM ) for machine reading com-
prehension (MRC). The construction process is as follows:
1) Document Representation: To fully leverage the capa-
bilities of GPT, it is crucial to ensure that the document
content fed to GPT contains accurate layout information.
Since HTML is the formatted language that can represent
documents accurately, DH is represented using the original
HTML. By transforming HTML to PDF and using the PDF
parser, the text and bounding-boxes are obtained. For DI ,
the layout-aware text [15] is used. The text and bounding-
boxes in DI are from the original dataset annotations.
2) QA&Text CoT Generation: The language representa-
tion R for the document is employed for prompting GPT to
generate QA pairs QA with text CoTs Tc. In addition, the
DM includes the QA pairs and reasoning process, thereby
directly reusing the QA and manually organizing Tc. The
generated Tc includes the step 1 (question analysis) and step
3 (answer formation) for LayoutCoT, and locates all rele-
vant sentences in the document for QA.
3) LayoutCoT Generation: The step 1 & 3 in Tc are used
as the step 1 & 3 in Lc. To construct the step 2 (relevant area
concentration) of Lc, the union bounding-box of all located
relevant sentences in Tc are taken as the relevant area.
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4) Document Images Generation: For DH and DM , the
HTMLs and MRC text are converted to images. Overall,
the document images I, generated QA pairs QA and Lay-
outCoTs Lc constitute the final LayoutCoT dataset Dc.

4. Experiments

4.1. Dataset Collection

Layout-aware pre-training data of LayoutLLM is from
publicly available document understanding datasets. It does
not incorporate any data from the training, validation, and
test sets of downstream benchmarks. Region-level pre-
training tasks, most document-level and segment-level tasks
are self-supervised. Thus, only document images and im-
ages converted from PDFs in the original datasets, along
with the corresponding OCR or text-layout results from
PDF parsing, are needed. For these tasks, data is ran-
domly sampled from PubLayNet [62], DocLayNet [40],
Docbank [24], RVL-CDIP [14], and DocILE [65]. Particu-
larly, data for document dense description is from inputting
the document text content into GPT-3.5 Turbo, prompt-
ing it to generate an average of 373.25 words document
dense descriptions. For the region-level tasks, specifically
the document layout analysis task, publicly available doc-
ument layout analysis datasets are utilized, including Pub-
LayNet [62], DocLayNet [40], and Docbank [24]. Data for
another region-level task, table understanding, is sourced
from PubTabNet [63] with its table annotations. All data
is transformed into the instruction format illustrated in
Fig. 3(a). In total, 5.7 million instructions are constructed,
with a ratio of 1:4:4 for document-level, region-level, and
segment-level tasks, respectively. For detailed instruction
templates and dataset descriptions, please refer to the sup-
plementary material.
Layout-aware SFT data of LayoutLLM is generated by
GPT (GPT-3.5 Turbo) and converted from existing textual
Machine Reading Comprehension (MRC) datasets, as dis-
cussed in Sec. 3.2.2. To generate high-quality document-
based textual QA and textual CoT, it is essential to make
GPT comprehend the document layout. So, the document
is represented using both layout text [15] and HTML. Sim-
ilar to the pre-training data, the DI in Algorithm 1 is also
randomly sampled from PubLayNet [62], DocLayNet [40],
Docbank [24], RVL-CDIP [14], and DocILE [65] for build-
ing layout text. The DH in Algorithm 1 is from GPT’s
free generation. The DM in Algorithm 1 is randomly sam-
pled from the FeTaQA [34] which is a wikipedia question
answering dataset. A total of 300K instructions are con-
structed, with a ratio of 5:4.5:0.5 for DI , DH , and DM ,
respectively. For detailed prompt templates of document-
based text QA and text CoT generation using GPT, prompts
for HTML generation using GPT, and dataset description,
please refer to the supplementary material.

4.2. Training Setup

The encoder weight of LayoutLLM is initialized from the
LayoutLMv3-large [17] which is a widely-used document
pre-trained model. And the LLM backbone is initialized
from Vicuna-7B-v1.5 [61]. Other parameters are randomly
initialized. During pre-training, the LLM is frozen, and the
parameters of the two projectors and document pre-trained
model encoder are updated. During SFT, both LLM and two
projectors are fine-tuned while keeping the document pre-
trained model encoder frozen. For detailed training setup,
please refer to the supplementary material.

4.3. Evaluation Setup

The zero-shot ability is highly expected in real-world docu-
ment understanding scenarios [7, 30, 45]. Therefore, zero-
shot evaluations on widely-used document understanding
benchmarks including document visual question answer-
ing (Document VQA) and visual information extraction
(VIE) are conducted. Only the test sets are utilized in
all benchmarks and only the official provided image, text,
and layout information are used. The Document VQA
datasets comprise the DocVQA[33] test set, consisting of
5,188 questions, and the VisualMRC[47] test set contain-
ing 6,708 questions. Following the evaluation metric set-
tings of the original datasets, the ANLS [33] is utilized for
evaluating DocVQA, and Rouge-L is used for evaluating
VisualMRC. For the VIE task, FUNSD [19], CORD [37],
and SROIE [18] are used. The test set of FUNSD com-
prises 50 form images, each annotated with entity-level
headers, questions, answers, and others, along with entity
linking annotations. CORD’s test set consists of 100 re-
ceipt images, annotated with 30 entity types, such as the tax
amount, total price, etc. SROIE’s test set includes 347 re-
ceipt images, annotated with 4 entity types: company, date,
address, and total. To prompt LLMs/MLLMs for zero-shot
VIE, annotations in VIE datasets are transformed into ques-
tion answering format (QA for VIE). For key-value annota-
tions with linking in the FUNSD, the format is {Q: What is
the “key” in the document? A: “value”}. For entity anno-
tations in CORD and SROIE, directly asking for the entity
in the document like {Q: What is the address in the docu-
ment? A: “the address annotation”} is utilized. Following
DocVQA, the QA for VIE task is evaluated by ANLS.

4.4. Main Results

As shown in Tab. 1, the zero-shot document understand-
ing performance of LayoutLLM and existing open-source
LLMs and MLLMs is evaluated. Generally, the existing
LLMs are better than MLLMs for zero-shot document VQA
and VIE. For example in the results on DocVQA, most
LLMs can achieve a performance of around 60% or higher,
while most MLLMs can only attain around 10%, except
for mPLUG-DocOWL and Qwen-VL that trained with the
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Models Document VQA QA for VIE
DocVQA VisualMRC FUNSD CORD SROIE

Fine-tuned PTM LayoutLMv3 [17] 83.37∗ - 92.08∗‡ 97.46∗‡ -

LLM
Plain Text

Llama2-7B [50] 61.34 29.73 40.78 4.39 15.86
Llama2-7B-chat [50] 64.99 52.84 48.20 47.70 68.97
Vicuna-7B [61] 61.39 53.63 49.79 44.67 67.49
Vicuna-1.5-7B [61] 66.99 52.13 48.06 51.40 68.20

LLM
Layout Text

(Text + Box) [15]

Llama2-7B [50] 37.32 33.82 51.40 28.04 34.96
Llama2-7B-chat [50] 56.55 49.26 58.34 50.93 51.15
Vicuna-7B [61] 37.21 52.55 42.73 46.59 45.43
Vicuna-1.5-7B [61] 56.81 47.22 59.63 56.13 66.20

MLLM

LLaVAR-7B [60] 11.6† 36.37 1.71 13.55 2.38
LLaVA-1.5-7B [28] 13.34 35.23 1.93 18.06 3.83
mPLUG-DocOWL-7B [57] 62.2∗† - - - -
Qwen-VL-7B [3] 65.1∗† 42.52 47.09 30.00 58.59
LayoutLLM-7B△ (Ours) 74.25 55.73 78.65 62.21 70.97
LayoutLLM-7B⋆ (Ours) 74.27 55.76 79.98 63.10 72.12

Table 1. Zero-shot document understanding results on open-source LLMs and MLLMs. ∗ signifies training set use; unmarked results are
zero-shot. Results marked with ‡ are F1 scores for VIE. Results marked with † are from the original paper and others are re-implemented
by us. △ marks LayoutLLM’s LLM backbone as initialized with Llama2-7B-chat, and ⋆ with Vicuna-1.5-7B.

training set. One possible reason is that it’s difficult for
these MLLMs to obtain accurate textual information from
document images. Additionally, for LLMs, using Plain Text
and Layout Text respectively as the document representa-
tion are further discussed, where the Layout Text introduces
layout information by adding text coordinates in the for-
mat: {text:“text”, box:[x1,y1,x2,y2]} [15]. Compared to
the Plain Text, the Layout Text variant doesn’t show stable
performance improvements, noticeable in certain tasks, for
example in Vicuna-1.5, an improvement in VIE (FUNSD
48.06% to 59.63%) but a decline in DocVQA (66.99% to
56.81%). LLMs may lack the ability to learn this format-
ted layout text, and directly adding layout information (e.g.,
coordinates) to the text will also highly increase the token
length, making the answer inference more challenging.

Compared to the prior SOTA model, LayoutLMv3,
which is fine-tuned using the training set of downstream
tasks, LayoutLLM demonstrates competitive performance
on the DocVQA benchmark. Compared with these LLMs
and MLLMs, LayoutLLM achieves consistent and signif-
icant improvements over them on all evaluation bench-
marks. Notably, LayoutLLM which employs zero-shot per-
formance, outperforms mPLUG-DocOWL and Qwen-VL
by around 10% on the DocVQA dataset, both of which
are trained with this dataset. This demonstrates that Lay-
outLLM can learn more robust and discriminative repre-
sentations for document understanding. Furthermore, ex-
periments of the different initialization of the LLM back-
bone have all achieved optimal results across all bench-
marks, substantiating that LayoutLLM can adapt to various
LLMs. In summary, our method explores a more effective
way to utilize layout information for document understand-
ing, which significantly improves the performance of zero-
shot document understanding.

# Layout-aware
Pre-training

Layout-aware
SFT

DocVQA FUNSD

0 70.82 70.96
1 ✓ 72.31 74.02
2 ✓ ✓ 74.27 79.98

Table 2. Ablation study on the DocVQA and FUNSD test sets.

4.5. Ablation study

To better verify the effectiveness of the layout-aware pre-
training and layout-aware SFT in the layout instruction tun-
ing, an ablation study is conducted (see Tab. 2).
Initial baseline. The #0 baseline disables both layout-
aware pre-training and layout-aware SFT. It only adopts
SFT (same SFT data but without LayoutCoT steps) on the
LayoutLLM. Even without any alignment pre-training and
LayoutCoT steps guidance, the baseline outperforms previ-
ous SOTAs, achieving 70.82% on DocVQA and 70.96% on
FUNSD. This indicates the document understanding ability
of DocPTM benefits document understanding with LLMs.
Effect of Layout-aware pre-training. In #1, the layout-
aware pre-training and the same SFT with #0 is conducted.
Compared to #0, benefiting from the basic document under-
standing capability learned through the layout-aware pre-
training, #1 shows an increase of 1.49% on DocVQA and
3.06% on FUNSD. It can be observed that the basic doc-
ument understanding ability learned from the layout-aware
pre-training significantly enhances the performance of the
basic key-value extraction tasks in the FUNSD dataset.
Compared to the FUNSD VIE task, it also shows that the
DocVQA is a more complex task. Effect of Layout-aware
SFT. Compared with #1, #2 further incorporates the layout-
aware SFT strategy, resulting in a performance gain of
1.96% on DocVQA and even 5.96% on FUNSD. This indi-
cates the LayoutCoT in layout-aware SFT can help the Lay-
outLLM to handle complex document tasks and it is effec-
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(b) Final answer: 
70.31

Vicuna-1.5-7B: 79.19

Qwen-VL-7B: 82.39

Ours (w/o LayoutCoT): 64.73

(a)

Vicuna-1.5-7B: $22.00
Qwen-VL-7B: $22.38 
Ours (w/o LayoutCoT): None.

Question: What is the Income Tax Withheld for 
the month of July 1954? 

GT Answer: ['none', 'None'] 

Final answer: 
None

Question: What is the Total for Exit 2004?

GT Answer: [‘70.31’]

The question is about Key-value extraction. And the 
question asks for the Income Tax Withheld for the 
month of July. 1954.

Step 1: Question Analysis

The Income Tax Withheld for the month of July 1954 
is None, as mentioned in the document.

Step 3: Answer Formation

Ours (with LayoutCoT)

Step 2: Relevant Area Concentration
The answer can be found in the area: 
[153, 433, 756, 559].

The question is about table. And the question asks 
for the total exit amount for Exit 2004.

Step 1: Question Analysis

To find the total exit amount for Exit 2004, we need 
to look for the corresponding value in the "Exit 
2004" column. From the relevant sentences, we can 
see that the total exit amount for Exit 2004 is 70.31.

Step 3: Answer Formation

Ours (with LayoutCoT)

Step 2: Relevant Area Concentration
The answer can be found in the area: 
[118, 249, 840, 390].

Figure 4. Qualitative results on DocVQA. Green boxes are the
areas concentrated in the step 2 of LayoutCoT.

tive for boosting the performance on both document VQA
and VIE. Moreover, it also promotes a certain degree of in-
terpretability. Overall, the ablation study demonstrates the
importance of layout-aware pre-training and layout-aware
SFT for zero-shot document understanding.

4.6. Qualitative Results

Two examples are shown in Fig. 4. Through combined with
layout-aware pre-training and layout-aware SFT, Layout-
LLM can accurately focus on the relevant areas, utilize the
layout information to assist in problem-solving and provide
interpretability. For example, in Fig. 4(a) question about
key-value extraction in up-down layout, different from the
left-right variant, relies more on document layout to infer
the right answer. Since the keywords “Income Tax” in the
question often co-occur with numerical data, Vicuna-1.5
and Qwen-VL find numerical answers relying more on the
semantics than the layout, resulting in incorrect responses.
In contrast, benefiting from the layout-aware pre-training,
our model can effectively leverage layout information to
give accurate answers. In addition, the model using Lay-
outCoT can further provide the location and the reasoning
process, showing a certain degree of interpretability. But in
certain situations, only combined with layout pre-training,
our model might fail to give accurate answers. As shown
in Fig. 4(b), without LayoutCoT, our model identifies “Exit
2003” as the relevant column and generates a wrong answer.
However, with the help of LayoutCoT, LayoutLLM can cor-
rectly identify the question type as “Table”, locate the rel-
evant table area, and finally infer the right answer from the
corresponding “Exit 2004” column.

4.7. Interactive Correction with LayoutCoT

Since LayoutCoT runs in a step-by-step fashion and pro-
duces intermediate results in the inference stage, it can fa-
cilitate interactive inspection and correction, when process-
ing a document. As shown in Fig. 5(a), there are two areas

·

Step 1 (Question Analysis): ...
Step 2 (Relevant Area Concentration): The answer can be found 
in the area: [117, 566, 878, 861].
Step 3 (Answer Formation): The heading of the second 
paragraph is "PRELIMINARY STATEMENT".
Final answer: PRELIMINARY STATEMENT

Step 1 (Question Analysis): ...
Step 2 (Relevant Area Concentration): The answer can be found 
in the area: [46, 702, 467, 839].
Step 3 (Answer Formation): The number entered for 'vendor' in 
the table is 013684.

Final answer: 013684.

Step 1 (Question Analysis): The question is about key-value 
extraction. And the question asks for the 'vendor‘… 
Step 2 (Relevant Area Concentration): The answer can be found 
in the area: [28, 123, 317, 148].
Step 3 (Answer Formation): The number entered for 'vendor' in 
the table is Roger Emerson Jr. MD.
Final answer: Roger Emerson Jr. MD.

Step 1 (Question Analysis): The question is about Factoid. And 
the question asks for the heading of the second paragraph…
Step 2 (Relevant Area Concentration): The answer can be found 
in the area: [134, 280, 854, 373].
Step 3 (Answer Formation): The heading of the second 
paragraph is "TAKEDA'S RESPONSE AND OBJECTIONS TO 
PLAINTIFFS' SUPPLEMENTAL INTERROGATORY 2 REGARDING 
ADDITIONAL ACTOS PERSONAL INJURY CLAIMS".
Final answer: TAKEDA'S RESPONSE AND OBJECTIONS TO 
PLAINTIFFS' SUPPLEMENTAL INTERROGATORY 2 
REGARDING ADDITIONAL ACTOS PERSONAL INJURY CLAIMS.

(b)

Question: In the table given on the left bottom of 
the page, what is the number entered for 'vendor’?

GT Answer: 013684

Question: What is the heading of second paragraph?

GT Answer: PRELIMINARY STATEMENT

(a)

Figure 5. Interactive correction with LayoutCoT. Green represents
the correct relevant areas and answers, while Red represents the
original incorrect ones. Best viewed in digital version.

in the image that are relevant to the keyword “vendor” of
the question. LayoutCoT focused on a wrong area contain-
ing “vendor”, as it missed “left bottom” in the question,
the answer was incorrect. However, after the right area
is given manually, it can finally give the correct answer.
Similarly, in Fig. 5(b) the question asks about “the head-
ing of the second paragraph”. However, the term “para-
graph” does not have a universal definition, and in this
case, the sentences in the area below the main heading were
considered as a paragraph, causing the model to predict
“TAKEDA’s...CLAIMS”, which was incorrect according to
the GT. Once the right “second paragraph” region is fed to
the model, the answer can be successfully revised. This
unique ability of LayoutCoT could be very valuable in high-
stake scenarios (e.g., a bank transaction), where the stan-
dards are extremely high, and manual checking and correc-
tion (i.e., human-in-the-loop) are required.

5. Limitations

Through LayoutCoT, LayoutLLM demonstrates the capa-
bility of interactive correction, but in real-world applica-
tions, this is not enough. The ability to refuse false-positive
outputs and generate hints (e.g. “The answer is not men-
tioned in the document.”) is crucial. However, it is cur-
rently absent in LayoutLLM. In addition, despite achieving
notable improvements through layout-aware pre-training,
LayoutLLM struggles in precisely understanding region-
level relationships, as evidenced in Fig. 5(a). We will study
how to endow LayoutLLM with such abilities.

6. Conclusion

We propose LayoutLLM for document understanding, in
which a layout instruction tuning strategy comprising
layout-aware pre-training and layout-aware SFT is designed
to improve the comprehension of document layouts. Exten-
sive experiments confirm the effectiveness of LayoutLLM.
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Matas, Antoine Doucet, Mickaël Coustaty, and Dimosthe-
nis Karatzas. Docile benchmark for document information
localization and extraction, 2023. 6

15640


