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Abstract

Existing joint low-light enhancement and deblurring
methods learn pixel-wise mappings from paired synthetic
data, which results in limited generalization in real-world
scenes. While some studies explore the rich generative
prior of pre-trained diffusion models, they typically rely on
the assumed degradation process and cannot handle un-
known real-world degradations well. To address these prob-
lems, we propose a novel zero-shot framework, FourierDiff,
which embeds Fourier priors into a pre-trained diffusion
model to harmoniously handle the joint degradation of lu-
minance and structures. FourierDiff is appealing in its re-
laxed requirements on paired training data and degrada-
tion assumptions. The key zero-shot insight is motivated
by image characteristics in the Fourier domain: most lumi-
nance information concentrates on amplitudes while struc-
ture and content information are closely related to phases.
Based on this observation, we decompose the sampled re-
sults of the reverse diffusion process in the Fourier domain
and take advantage of the amplitude of the generative prior
to align the enhanced brightness with the distribution of
natural images. To yield a sharp and content-consistent
enhanced result, we further design a spatial-frequency al-
ternating optimization strategy to progressively refine the
phase of the input. Extensive experiments demonstrate the
superior effectiveness of the proposed method, especially
in real-world scenes. The code is available at https:
//github.com/aipixel/FourierDiff.

1. Introduction
In night photography, long exposure is commonly used to
capture more light, which inevitably causes motion blurs
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Figure 1. Visual comparisons of the state-of-the-art diffusion-
based low-light enhancement method GDP [17], deblurring
method GRL [33], and joint low-light enhancement and deblur-
ring method LEDNet [77] on a low-light blurry image. Existing
methods (b)-(e) fail to cope with the real-world night blurry image.
In contrast, the proposed FourierDiff (f) yields a visually pleasing
result with more natural brightness and sharper textures. More-
over, our method does not require paired training data.

due to camera shake and object motion. Even under long
exposure settings, images taken in low-light conditions still
suffer from limited visibility, low contrast, and distorted
color. Therefore, both low light and motion blur natu-
rally co-exist in images captured in low-light environments,
which not only affects the visual quality but also limits
the performance of high-level tasks such as object detec-
tion [14, 34] and action recognition [9, 10].

With the recent advances in deep learning, numerous
low-light enhancement [3, 19, 30, 39] and deblurring [11,
26, 33, 71] methods have been proposed. Although these
methods cope well with their specific task individually, they
are still far from satisfactory in handling the joint degra-
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Figure 2. Motivations. (a) Swapping the amplitude of a normal-light sharp (normal-sharp) image with that of its corresponding low-
light blurry (low-blur) image produces a low-light sharp (low-sharp) image and a normal-light blurry (normal-blur) image. This implies
that most luminance information concentrates on amplitudes while structure information is closely related to phases. (b) Swapping the
amplitude of two images with different content changes the appearance (e.g., brightness) of the images but preserves their main content.
This means image content can be preserved in phases. The amplitude and phase are produced by Fast Fourier Transform (FFT) and the
recomposed images are obtained by Inverse FFT (IFFT).

dation of luminance and structures. Specifically, low-light
enhancement methods usually focus on improving bright-
ness and denoising but ignore the spatial degradation caused
by motion and therefore remain blurry in the enhanced re-
sults as shown in Fig. 1(b). Besides, deblurring methods are
vulnerable in low-light environments as shown in Fig. 1(c),
since they typically assume that blurred images are captured
in well-lit conditions. An intuitive idea for tackling the joint
task is to cascade these two kinds of methods. However,
the process of light enhancement may lose the informative
clues for blur removal, resulting in the failure of deblur-
ring (see Fig. 1(d)). Recently, Zhou et al. [77] propose the
first joint low-light enhancement and deblurring network,
called LEDNet. Unfortunately, due to the difficulty of col-
lecting low-light blurry and normal-light sharp image pairs
in real-world scenes, LEDNet relies on the pixel-wise map-
ping learned from synthetic data, limiting its generalization
in real-world scenes, as shown in Fig. 1(e).

Additionally, diffusion models have shown impressive
performance in generating realistic and detailed images.
Some pioneering studies [17, 23, 59] attempt to explore
the rich generative prior of pre-trained diffusion models for
zero-shot image restoration. However, these methods typi-
cally rely on the assumed degradation process, either in the
form of a fixed linear matrix [23, 59] or a learnable degrada-
tion model [17]. These limitations impede the application
of these diffusion-based methods in real-world low-light
scenes, where the degradations are unknown and cannot be
precisely modeled.

Unlike existing methods that rely on paired data or
degradation assumptions, this paper addresses the joint task
from a new perspective. As shown in Fig. 2, the core in-
sight is motivated by our observation in the Fourier do-
main: most luminance information concentrates on ampli-
tudes while structure and content information are closely

related to phases. We extend these characteristics to the
pre-trained diffusion model as three-fold: (1) The ampli-
tude of the sampled results in the diffusion process contains
luminance priors from large-scale real-world data, which
motivates us to utilize the amplitude to obtain reasonable
brightness. (2) The phase of the input image preserves the
original content, which can guide the pre-trained diffusion
model to generate data-consistent results. (3) The blurry
structure can be processed in the phase of the input image
during the diffusion process.

With these characteristics at hand, we propose a novel
zero-shot framework, FourierDiff, which embeds Fourier
priors into a pre-trained diffusion model to simultaneously
enhance image brightness and sharpness. FourierDiff per-
forms amplitude-phase decomposition in the reverse diffu-
sion process to handle the joint degradation. Specifically,
we recombine the amplitude of the sampled results and the
phase of the input image in each step to guide the diffusion
sampling process, which progressively aligns the enhanced
brightness with the distribution of natural images while
preserving content consistency. Meanwhile, we present a
spatial-frequency alternating optimization strategy to itera-
tively refine the phase of the input image to further facili-
tate the sampling process to generate pleasing results with
sharp structures. The combination of the enhanced ampli-
tude and the refined phase ensures FourierDiff considers the
synergy between the inner-connected degradations in each
step, therefore yielding harmonious results.

Our contributions are summarized as follows:
• We propose the first zero-shot method, FourierDiff, for

joint low-light enhancement and deblurring through em-
bedding Fourier priors into a pre-trained diffusion model,
which allows harmoniously handling the inner-connected
degradations without any paired training data.

• We leverage Fourier characteristics to distill the lumi-
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nance priors conforming to human visual perception from
pre-trained diffusion models, which enables FourierDiff
to process the complex luminance degradations for yield-
ing pleasing results with natural brightness.

• We present a spatial-frequency alternating optimization
strategy to progressively refine the phase of degraded im-
ages, providing the diffusion process with structure-clear
and content-consistent guidance. Extensive experimental
results demonstrate that FourierDiff outperforms state-of-
the-art methods.

2. Related Work
2.1. Low-Light Image Enhancement

Deep learning-based methods have become the mainstream
in low-light image enhancement (LLIE) [28]. Inspired by
the Retinex theory [27], several deep Retinex-based meth-
ods are proposed [3, 56, 63, 64, 69, 72]. They usually de-
sign multiple sub-networks for image decomposition, re-
flection restoration, and illumination adjustment. With the
availability of paired datasets [4, 30, 34, 63], various meth-
ods [30, 38, 57, 58, 66, 67, 73] design effective networks
to predict normal-light images directly from low-light ones
through supervised learning. Despite their success, super-
vised methods suffer from limited generalization capability.

In recent years, unsupervised methods have attracted in-
creasing attention [19, 29, 35, 39, 68, 75]. Zero-DCE [19]
formulates light enhancement as a task of image-specific
curve estimation. Zhao et al. [75] present a unified zero-
reference framework based on Deep image prior (DIP) [55].
Ma et al. [39] propose a self-calibrated illumination learn-
ing framework to achieve fast, flexible, and robust LLIE.
However, existing LLIE methods usually focus on bright-
ness enhancement and noise reduction, while ignoring the
spatial degradation of motion blurs. Moreover, LLIE meth-
ods may lose the informative clues for blur removal due to
over-smoothing during the denoising process.

2.2. Image Deblurring

Image deblurring has been studied for a long time, with nu-
merous deep learning-based methods proposed [5, 11, 26,
31, 33, 54, 62, 70, 71]. In the early stage, researchers often
use networks to predict the blur kernels followed by non-
blind methods [18, 50, 53]. In the past few years, end-to-
end kernel-free networks have dominated image deblurring.
Several novel components and techniques are proposed to
improve the accuracy of deblurring, such as multi-scale
strategies [11, 45], GAN-based structures [25, 26], and at-
tention modules [33, 71]. Besides, some studies [2, 47] use
image generation prior to achieve unsupervised deblurring.

Due to the poor visibility and noticeable noise, exist-
ing methods exhibit degraded performance when process-
ing images captured in low-light conditions. Hence, some

methods [6, 7, 7, 8, 21, 74] have been specifically de-
signed for deblurring low-light images, but they cannot
deal with the joint degradation of luminance and structures.
Most recently, Zhou et al. [77] propose the first joint low-
light enhancement and deblurring network, named LED-
Net, which considers the synergy between the two inter-
connected tasks. However, LEDNet relies on the pixel-wise
mapping learned from paired synthetic data, resulting in
limited generalization in diverse real-world scenes.

2.3. Diffusion-based Image Restoration

Recently, diffusion models have shown impressive perfor-
mance in image restoration [32]. Existing methods can be
roughly divided into two categories: supervised methods
and zero-shot methods. The former [22, 37, 49, 60, 76] of-
ten uses the degraded image as the condition and entails
training the diffusion model from scratch. Zero-shot meth-
ods [12, 13, 17, 23, 36, 59] exploit the generative prior of
pre-trained diffusion models for image restoration. How to
satisfy both data consistency and realness is the essential
challenge of zero-shot methods. DDRM [23] uses singular
value decomposition (SVD) to decompose the degradation
operators of linear reverse problems. DDNM [59] intro-
duces the range-null space decomposition to ensure content
consistency. GDP [17] adopts a blind degradation estima-
tion strategy, where the degradation parameters are opti-
mized during the diffusion process. However, since these
methods typically rely on the assumed degradation process,
they tend to fall short when dealing with complex degrada-
tions, especially unknown and mixed degradations.

In contrast, we utilize the characteristics in the Fourier
domain to guide the reverse diffusion process without any
extra training or degradation estimation. Despite Dif-
fLL [22] also decomposing images into the frequency do-
main, it focuses on accelerating the diffusion process and
relies on end-to-end training. The role of frequency pri-
ors in achieving diffusion-based zero-shot image restoration
has not been explored in previous works.

3. Preliminary
Diffusion models [20, 51, 52] are generative models with
a Markov chain structure, which consists of a forward pro-
cess and a reverse process. The forward process gradually
adds Gaussian noise to an input image x0 through T steps.
The present state xt is only dependent on the previous state
xt−1, which can be formulated as the following Gaussian
distribution

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

where βt is the predefined variance at step t. After reparam-
eterization, it becomes

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(2)
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Figure 3. The architecture of FourierDiff consists of two components: (a) Fourier priors-guided diffusion sampling: we decompose
the sampled results of the reverse diffusion process in the Fourier domain and leverage the amplitude of the generative prior to make the
enhanced brightness progressively satisfy the distribution of natural images. (b) Spatial-frequency alternating optimization: The phase
of the input image is iteratively refined to further provide sharper guidance for the sampling process. The synergy between the sampling
process and the optimization process enables FourierDiff to yield pleasing and realistic results with natural brightness and sharp structures.

where αt = 1− βt and ᾱt =
∏t

i=0 αi.
The reverse process constructs the clean image from the

Gaussian noise step by step, which can be formulated as

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) ,Σθ (xt, t)) (3)

where Σθ (xt, t) is a time-dependent constant, and
µθ (xt, t) can be written as

µθ (xt, t) =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(4)

where ϵθ (xt, t) is the estimated noise derived from a deep
neural network. According to Ho et al. [20], the model ran-
domly picks a clean image x0 from the dataset and samples
a noise ϵ ∼ N (0, I), then optimizes the network parameters
θ with the following objective function

Ldiff(θ) =
∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2
2

(5)

By iteratively sampling xt−1 from pθ (xt−1 | xt), clean
images x0 ∼ q(x) can be generated from random noises
xT ∼ N (0, I), where q(x) represents the original distribu-
tion in the dataset.

4. Methodology
The proposed FourierDiff is a zero-shot framework that
only applies the reverse diffusion process to restore nat-
ural brightness and sharp structures from low-light blurry
images. Thanks to the real-world data priors from the
pre-trained diffusion model, FourierDiff does not need any
paired synthetic data. As shown in Fig. 3, given a low-
light blurry image y, FourierDiff progressively produces its
corresponding normal-light sharp version x0 from the pure
noise xT under the guidance of the input y. In each step
of the reverse diffusion process, we adopt a Fourier priors-
guided diffusion sampling to leverage the amplitude of lu-

minance priors for harmonious and natural light enhance-
ment. Meanwhile, a spatial-frequency alternating optimiza-
tion is proposed to refine the phase of the input y as the
sampling process. The refined phase offers sharp structures
to guide the generated content during the sampling process.
We detail the key components as follows.

4.1. Fourier Priors-Guided Diffusion Sampling

As described in Sec. 3, the pre-trained diffusion models
are devoted to preserving the data distribution rather than
pixel-wise content consistency. Therefore, how to extract
the corresponding generative priors while maintaining the
content from the input is the essential challenge faced by
diffusion-based zero-shot image restoration methods. Mo-
tivated by the observations that luminance and structure can
be decoupled in the Fourier domain as highlighted in Sec. 1,
we utilize the Fourier characteristics to guide the sampling
process to yield realistic and data-consistent results.

As shown in Fig. 3, we perform amplitude-phase decom-
position on the sampled result in each step of the reverse
diffusion process. Specifically, to produce clean sampled
results for amplitude-phase decomposition, we estimate x0

in each step and denote it as x0|t following [59], which can
be formulated as

x0|t =
1√
ᾱt

(
xt − ϵθ (xt, t)

√
1− ᾱt

)
(6)

Then, we perform Fast Fourier Transform (FFT) on both
the input image y and the sampled result x0|t to obtain the
amplitude and phase as follows

(Ay, Py) = FFT(y) (7)

(Ax0|t , Px0|t) = FFT(x0|t) (8)

where Ay , Ax0|t , Py and Px0|t represent the amplitude and
phase of y and x0|t, respectively. As mentioned before,
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Figure 4. Visualization of the amplitude and phase of a low-light
blurry image and its corresponding normal-light sharp image. The
amplitudes differ significantly between different brightness. The
motion information is encoded as repeated edges in phases.

Ax0|t contains luminance priors conforming to the distribu-
tion of natural images, but Px0|t extracts random content
from the sampled result and disturbs the specific content
generation. To leverage the generative prior while preserv-
ing the content from the input image y, we combine Ax0|t

and Ay to update the amplitude and replace Px0|t with Py to
guide the content of the diffusion process. Next, we can ob-
tain the updated sampled result x̂0|t by Inverse Fast Fourier
Transform (IFFT), which is defined as

x̂0|t = IFFT(Ax0|t +Ay, Py) (9)

As suggested in [59], the next state xt−1 can be sampled
from a joint distribution, which is formulated as

pθ
(
xt−1 | xt, x̂0|t

)
= N

(
xt−1;µt

(
xt, x̂0|t

)
, σ2

t I
)

(10)

where µt

(
xt, x̂0|t

)
=

√
ᾱt−1βt

1−ᾱt
x̂0|t +

√
αt(1−ᾱt−1)

1−ᾱt
xt and

σ2
t = 1−ᾱt−1

1−ᾱt
βt. By using Fourier priors to guide the sam-

pling process in each step, we ultimately obtain the result
x0 with natural brightness and consistent content.

Although the luminance distribution in the generated re-
sult x0 aligns with that of natural images, human percep-
tion of brightness is highly subjective. The optimal bright-
ness level varies among individuals. Therefore, to adapt to
user-specific requirements, we introduce a learnable adap-
tive factor γ to control the brightness level of the sampling
process. Based on the factor, Eq. (9) can be reformulated as

x̂0|t = IFFT(γAx0|t +Ay, Py) (11)

To optimize γ, we introduce a non-reference brightness con-
trol constraint Lbri in each step, which is defined as

Lbri =
1

R

R∑
n=1

|Int − E| (12)

where R is the number of non-overlapping local regions of
size 16 × 16. Int represents the average intensity value of

Algorithm 1 Fourier Priors-Guided Diffusion Sampling.

Input: The degraded image y, the total diffusion step T
and the alternating optimization interval step N .

1: (Ay, Py) = FFT(y)
2: k = A(|Py|)
3: ŷ = y
4: xT ∼ N (0, I)
5: for t = T, . . . , 1 do
6: x0|t =

1√
ᾱt

(
xt − ϵθ (xt, t)

√
1− ᾱt

)
7: yt = ŷ
8: (Ax0|t , Px0|t) = FFT(x0|t)
9: (Ayt , Pyt) = FFT(yt)

10: x̂0|t = IFFT(γAx0|t +Ayt
, Pyt

)

11: xt−1 ∼ pθ
(
xt−1 | xt, x̂0|t

)
12: if t mod N == 0 then
13: kt = A

(∣∣Px̂0|t

∣∣)
14: k = (1− 1

t )k+ 1
tkt

15: minŷ,k ∥k⊗ ŷ − y∥22 + λ1∥k∥22 + λ2h(∇ŷ)
16: end if
17: end for
Output: x0

the local region n in the rectified sampled result x̂0|t. E
represents the brightness level and is set to the gray level in
the RGB color space following [42]. As shown in Fig. 8 of
the ablation study, the brightness of the generated images
can be adjusted by setting different E values.

4.2. Spatial-Frequency Alternating Optimization

Although Fourier priors-guided diffusion sampling enables
the generation of content-consistent images, the degraded
input image brings indistinct structural guidance that makes
the enhanced results still blurry. It is well known that the
phase of blurry images can provide faithful information
about the blur pattern [41, 46]. As illustrated in Fig. 4,
the appearance of the phase is similar to the structure of the
image and the motion information is encoded as repeated
image edges in phases, which to some extent reflects the
shape and size of the blur kernel. Therefore, to provide
sharp structural guidance for the sampling process, we de-
sign a spatial-frequency alternating optimization strategy to
refine the phase of the blurry input image y.

Specifically, we first calculate the autocorrelation
A(|Py|) of the image |Py| reconstructed from the absolute
phase of the input image y, which is formulated as

A(|Py|) = IFFT
(

FFT(|Py|)⊙ FFT(|Py|)
)

(13)

Then, the blur kernel k of the input image can be calculated
from the autocorrelation following [46]. Given the initial
kernel k and the blurry image y, we can acquire sharp guid-
ance by solving the optimization-based deblurring problem,
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Table 1. Quantitative comparisons with state-of-the-art methods on the LOL-Blur dataset. The symbol ∗ indicates the network is trained
on the LOL-Blur dataset. The proposed FourierDiff is a zero-shot method without requiring any paired training data and degradation
assumptions. The best and the second-best scores are shown in bold and underlined, respectively.

Method
Enhancement → Deblurring Deblurring → Enhancement Joint

Zero-DCE++ [29] RetinexDIP [39] GDP [17] Chen [6] Chen [6] W-DIP [2] W-DIP [2] GRL [33] GRL [33] LEDNet∗ FourierDiff
→ GRL [33] → GRL [33] → GRL [33] →Zero-DCE++ [29] →GDP [17] →Zero-DCE++ [29] →GDP [17] →Zero-DCE++ [29] →GDP [17] [77] (Ours)

NIQE ↓ 4.27 4.59 4.31 4.76 4.87 4.82 5.03 4.28 4.32 3.99 3.80
PI ↓ 5.05 5.38 4.81 4.97 4.70 4.32 4.10 5.13 4.90 5.07 3.88
BRISQUE ↓ 42.21 47.45 41.03 47.10 49.83 37.58 35.60 44.36 43.25 42.59 33.13
MUSIQ ↑ 53.36 49.61 56.42 51.64 55.19 47.04 50.10 55.96 58.92 59.64 62.46

PSNR ↑ 18.45 13.65 17.72 17.43 16.52 16.52 15.69 18.90 18.16 25.74 20.53
SSIM ↑ 0.59 0.55 0.66 0.51 0.56 0.42 0.46 0.64 0.70 0.85 0.71

(a) Input (b) Zero-DCE++ → GRL (c) RetinexDIP → GRL (d) GDP → GRL (e) Chen → Zero-DCE++ (f) Chen → GDP

(g) W-DIP → Zero-DCE++ (h) W-DIP → GDP (i) GRL → Zero-DCE++ (j) GRL → GDP (k) LEDNet (l) FourierDiff (Ours)

Figure 5. Qualitative comparisons with state-of-the-art methods on the LOL-Blur dataset. (Zoom in for best view)

which is generally formulated as

min
ŷ,k

∥k⊗ ŷ − y∥22 + λ1∥k∥22 + λ2h(∇ŷ) (14)

where ŷ is the latent sharp image. λ1 and λ2 are weight
parameters. h(·) is a truncated-quadratic gradient [65] reg-
ularization term used to prevent over-sharpening.

However, inaccurate estimation of the blur kernel k in
low-light environments leads to the sub-optimal deblurring
result ŷ, making it difficult for the phase of ŷ to pro-
vide sharp structural guidance for the sampling process.
With Fourier priors-guided diffusion sampling, x̂0|t pro-
gressively becomes clear in content and natural in bright-
ness, which can provide more visible details for blur kernel
estimation. The right of Fig. 3 shows the visualization of
x̂0|t during the sampling process. Therefore, to refine the
content guidance, we present to leverage x̂0|t to update the
optimized blur kernel. We decompose x̂0|t in the Fourier
domain and use its autocorrelation A

(∣∣Px̂0|t

∣∣) from Px̂0|t

to estimate the blur kernel kt. Then, the blur kernel k is
updated according to the following strategy

k = (1− 1

t
)k+

1

t
kt (15)

with the iterative updating of the blur kernel, the phase of
the input image gradually becomes sharper.

Utilizing sampling results to update the blur kernel im-
proves the robustness of deblurring algorithms when pro-
cessing low-light images. Meanwhile, the progressively
refined input image provides sharper structural guidance

for the sampling process. The optimization process and
the sampling process work together and complement each
other. To improve the sampling efficiency, we conduct the
spatial-frequency alternating optimization at intervals of N
steps. Algorithm 1 shows the detailed process. The synergy
between the optimization and sampling processes enables
FourierDiff to generate pleasing and realistic results with
natural brightness and sharp structures.

5. Experiments
5.1. Datasets and Evaluation Metrics

We evaluate the proposed method on the LOL-Blur [77]
and RealBlur [48] datasets. The LOL-Blur dataset is the
first large-scale dataset for joint low-light enhancement
and deblurring, which consists of 12,000 synthetic low-
blur/normal-sharp pairs with diverse darkness and motion
blurs. We use the same training/test separation as LOL-
Blur. The RealBlur dataset is the first real-world image de-
blurring dataset, which contains 4,738 pairs of images in
232 different scenes. Following [77], we use 482 real-world
night blurry images selected from RealBlur as the test set
to verify the generalization of the proposed method. Since
there is no normal-sharp ground truth corresponding to
low-blur images in RealBlur, we use four commonly-used
no-reference image quality metrics to perform quantitative
comparisons, including Natural Image Quality Evaluator
(NIQE) [44], Perceptual Index (PI) [1], Blind/Referenceless
Image Spatial Quality Evaluator (BRISQUE) [43], and
Multi-Scale Image Quality Transformer (MUSIQ) [24].
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Table 2. Quantitative comparisons with state-of-the-art methods on the RealBlur dataset.

Method
Enhancement → Deblurring Deblurring → Enhancement Joint

Zero-DCE++ [29] RetinexDIP [39] GDP [17] Chen [6] Chen [6] W-DIP [2] W-DIP [2] GRL [33] GRL [33] LEDNet FourierDiff
→ GRL [33] → GRL [33] → GRL [33] →Zero-DCE++ [29] →GDP [17] →Zero-DCE++ [29] →GDP [17] →Zero-DCE++ [29] →GDP [17] [77] (Ours)

NIQE ↓ 3.33 3.35 3.26 4.88 4.67 4.23 4.06 3.70 3.58 3.72 3.25
PI ↓ 4.55 4.29 4.54 4.88 4.95 4.31 4.20 4.71 4.61 5.03 3.36
BRISQUE ↓ 30.46 30.90 28.96 45.89 45.60 35.60 33.00 34.80 33.10 42.31 26.39
MUSIQ ↑ 42.88 44.79 39.35 49.96 47.19 41.43 38.68 45.50 43.22 49.45 52.24

(a) Input (b) Zero-DCE++ → GRL (c) RetinexDIP → GRL (d) GDP → GRL (e) Chen → Zero-DCE++ (f) Chen → GDP

(g) W-DIP → Zero-DCE++ (h) W-DIP → GDP (i) GRL → Zero-DCE++ (j) GRL → GDP (k) LEDNet (l) FourierDiff (Ours)

Figure 6. Qualitative comparisons with state-of-the-art methods on the RealBlur dataset. (Zoom in for best view)

Larger MUSIQ indicates more naturalistic and perceptually
favored quality. Contrary to MUSIQ, smaller NIQE, PI and
BRISQUE mean better perceptual quality. On the LOL-
Blur dataset, we also use well-known full-reference metrics
Peak Signal-to-Noise Ratio (PSNR) and Structural SIMi-
larity (SSIM) [61] to measure the difference between the
enhanced results and ground truth.

5.2. Implementation Details

We implement our framework with Pytorch on a single
NVIDIA GeForce RTX 3090 GPU. We use the released
unconditional 256×256 diffusion model [16] pre-trained on
ImageNet [15]. The total diffusion step T and the alternat-
ing optimization interval step N are set to 1000 and 200,
respectively. The brightness level E is flexible for users,
and we use 0.5 by default. For spatial-frequency alternating
optimization, we set λ1 = 2, λ2 = 0.005. For extremely
dark images, we use PEC [40] with a small exposure param-
eter to warm-start the input image to prevent the complete
disappearance of content guidance.

5.3. Comparison with State-of-the-art Methods

To comprehensively evaluate our method, we construct the
following three types of baselines for comparisons.
1. Joint Enhancement and Deblurring. We choose LED-
Net [77] trained on the LOL-Blur dataset as the baseline
since it is the only work dedicated to the joint task.
2. Enhancement → Deblurring. We choose the recent

representative unsupervised low-light enhancement meth-
ods Zero-DCE++ [29], RetinexDIP [75] and the diffusion-
based method GDP [17] followed by a state-of-the-art de-
blurring method GRL [33] trained on the RealBlur dataset.
3. Deblurring → Enhancement. For deblurring, we
choose an optimization-based method [6] specifically de-
signed for low-light deblurring, a recent zero-shot deblur-
ring method W-DIP [2] and a state-of-the-art deblurring
method GRL [33]. Since RetinexDIP [75] tends to produce
halo artifacts that may obscure previous deblurring results,
we use Zero-DCE++ [29] and GDP [17] for low-light en-
hancement in this type of baseline.
Quantitative Comparison. Tables 1 and 2 report the quan-
titative results on the LOL-Blur and RealBlur datasets, re-
spectively. As we can see, FourierDiff outperforms state-
of-the-art methods in terms of all no-reference metrics, in-
dicating that our results are perceptually best. Such re-
sults demonstrate the stability of the proposed method when
handling real-world images with various lighting condi-
tions and blur patterns. In addition, we also evaluate
full-reference metrics PSNR and SSIM on the LOL-Blur
dataset. As shown in Table 1, FourierDiff achieves com-
parable results to LEDNet trained with ground truth and
exceeds other baseline methods by a large margin, which
further suggests the effectiveness of the proposed method.
Qualitative Comparison. In Figs. 5 and 6, we show the
visual comparison results on the LOL-Blur and RealBlur
datasets, respectively. It can be seen that the results en-
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Figure 7. The results of the user study.

hanced by cascade methods suffer from noticeable color de-
viation and severe blur artifacts. Although the method of
Chen et al. [7] is specifically designed for low-light deblur-
ring, their cascading baselines still cannot eliminate blur as
shown in Figs. 5(e), 5(f), 6(e), 6(f). LEDNet can handle the
joint degradation of luminance and structures, but it exhibits
degraded performance when processing real-world images
as shown in Fig. 6(k). In contrast, FourierDiff produces
visually pleasing results with more natural brightness and
sharper textures in various scenes.

5.4. User Study

Furthermore, we conduct a user study to evaluate the sub-
jective perception of different methods. Specifically, we
randomly select 20 testing images from the LOL-Blur and
RealBlur datasets and choose 4 baselines based on the rank
of the average NIQE scores on LOL-Blur and RealBlur. For
each image, we provide the input degraded image, the cor-
responding images enhanced by our method and a baseline.
A total of 40 participants are invited to select their preferred
image. As shown in Fig. 7, our method is more favored by
human subjects.

5.5. Ablation Study

Effect of Brightness Adjustment. To validate the effec-
tiveness of the brightness adjustment strategy, we adopt dif-
ferent E in Eq. (12) to control the brightness level of out-
puts. As shown in Fig. 8, the brightness of the generated
images can be adjusted by setting different E values. Note
that even without using brightness adjustment (denoted as
w/o BA), our method still yields reasonable brightness be-
cause the diffusion model trained on ImageNet contains the
luminance priors of natural images. The effectiveness of the
strategy allows FourierDiff to generate images with various
brightnesss according to the user-specific requirements.
Effect of the Spatial-Frequency Alternating Optimiza-
tion. To verify the effectiveness of the spatial-frequency
alternating optimization strategy (denoted as SFA), we con-
duct five different settings of the alternating optimization in-
terval step N . “w/o SFA” indicates that we refine the phase
of the input image before diffusion sampling and use the
refined phase as guidance during the whole sampling pro-

Table 3. Ablation study of the spatial-frequency alternating opti-
mization on the RealBlur dataset.

w/o SFA N = 500 N = 200 N = 100 N = 1

NIQE ↓ 3.62 3.37 3.25 3.26 3.19
PI ↓ 3.87 3.61 3.36 3.39 3.34
BRISQUE ↓ 31.65 29.72 26.39 26.12 25.14
MUSIQ ↑ 48.81 49.87 52.24 52.41 51.11

(a) Input (b) w/o BA (c) E = 0.2 

(d) E = 0.3 (e) E = 0.5 (f) E = 0.7 

Figure 8. Visual results of the effect of brightness adjustment.

cess. As shown in Table 3, the performance shows a con-
sistent improvement as N=500→1. When N substantially
decreases (e.g., N=500→200), the performance improves
significantly. When N comes to relatively small changes
(e.g., N=200→100), the model has negligible performance
gains. To achieve a trade-off between efficiency and perfor-
mance, we choose N=200 as the interval step.

6. Conclusion
This paper proposes the first zero-shot joint low-light en-
hancement and deblurring method, FourierDiff, which is
able to harmoniously handle the inner-connected degrada-
tions without any paired training data and degradation as-
sumptions. The success of our method is inspired by the
characteristics of real low-light blurry images in the Fourier
domain. This is the first time to extend Fourier character-
istics to the diffusion model, which offers a new perspec-
tive on utilizing the generative prior of pre-trained diffu-
sion models to restore degraded images while maintaining
content consistency. Thanks to the unique design of our
framework that processes luminance and blur in amplitudes
and phases respectively, FourierDiff outperforms state-of-
the-art methods on the joint task.
Limitations. Although our method achieves impressive re-
sults in enhancing real low-light blurry images, it does not
work as well in extremely dark environments because of the
severe loss of content guidance. Furthermore, FourierDiff
inherits the limited inference speed of diffusion models and
is not yet efficient enough for real-time image processing.
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