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Figure 1. Previous methods often achieve farget concept removal from diffusion models at the cost of degeneration on non-target concepts.
They suffer from unpredictable generation alterations, which escalate even into concept erosion when the number of targeted concepts
increases. In contrast, the proposed SPM achieves precise multi-concept erasing while preserving the generation capability of the pre-trained
DM. Moreover, concept-specific SPMs offer training-free transferability towards other models, making it a one-size-fits-all solution.

Abstract

The prevalent use of commercial and open-source diffu-
sion models (DMs) for text-to-image generation prompts risk
mitigation to prevent undesired behaviors. Existing concept
erasing methods in academia are all based on full param-
eter or specification-based fine-tuning, from which we ob-
serve the following issues: 1) Generation alteration towards
erosion: Parameter drift during target elimination causes
alterations and potential deformations across all genera-
tions, even eroding other concepts at varying degrees, which
is more evident with multi-concept erased; 2) Transfer in-
ability & deployment inefficiency: Previous model-specific
erasure impedes the flexible combination of concepts and

*Equal contribution.  t Project lead. i Corresponding authors.

the training-free transfer towards other models, resulting in
linear cost growth as the deployment scenarios increase.

To achieve non-invasive, precise, customizable, and trans-
ferable elimination, we ground our erasing framework on
one-dimensional adapters to erase multiple concepts from
most DMs at once across versatile erasing applications. The
concept-SemiPermeable structure is injected as a Membrane
(SPM) into any DM to learn targeted erasing, and mean-
time the alteration and erosion phenomenon is effectively
mitigated via a novel Latent Anchoring fine-tuning strat-
egy. Once obtained, SPMs can be flexibly combined and
plug-and-play for other DMs without specific re-tuning, en-
abling timely and efficient adaptation to diverse scenarios.
During generation, our Facilitated Transport mechanism
dynamically regulates the permeability of each SPM to re-
spond to different input prompts, further minimizing the
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impact on other concepts. Quantitative and qualitative re-
sults across ~40 concepts, 7 DMs and 4 erasing applica-
tions have demonstrated the superior erasing of SPM. Our
code and pre-tuned SPMs are available on the project page
https://lyumengyao.github.io/projects/spm.

1. Introduction

Text-to-image diffusion models (DMs) [3, 13, 14, 27—
29,34,37,40,41, 49, 50, 52] have shown appealing advance-
ment in high-quality image creation in the span of seconds,
powered by pre-training on web-scale datasets. However, the
cutting-edge synthesis capability is accompanied by degen-
erated behavior and risks, spanning a spectrum pertaining to
copyright infringement [42, 47], privacy breaching [2, 47],
mature content dissemination [43], etc.

Proprietary text-to-image services [41, 45], open-source
models [1, 37] and academia [8, 10, 18, 43] have made ef-
forts to generation safety. Nevertheless, these engineering
and research endeavors often fall into band-aid moderation or
a Pyrrhic victory. For example, training dataset cleansing is
time-consuming and labour-intensive, yet it introduces more
stereotypes [45] and remains not a foolproof solution. Black-
listing and post-hoc safety checker relies on high-quality
annotated data but it is easily circumvented [35, 37, 45].

Recent methods employ targeted interventions via condi-
tional guidance through full parameter or specification-based
fine-tuning [8, 10, 18] or during inference [43]. Despite be-
ing effective for the targeted concept, they come at the cost
of non-targeted concepts. As shown in Fig. 1, previous mit-
igations often bring unpredictable generation alterations,
including potential distortions, which are undesirable for
service providers. Furthermore, the degradation will escalate
into varying degrees of catastrophic forgetting [10, 17, 46]
across other concepts, which becomes more pronounced
with the simultaneous erasing of multiple concepts. We in-
formally refer to the phenomenon as concept erosion.

Another practical yet commonly overlooked concern is
erasing customizability and transferability. On the regulatory
front, risks of generated content necessitate timely adapta-
tion, aligning with evolving societal norms and legal regu-
lations. From the model perspective, DM derivatives with
specific purposes have been proliferating fast since open-
source models became available, exacerbating the severity
of the aforementioned issues. However, most of the previous
methods require the repetitive design of the erasing process
for each set of security specifications and each model. Any
change leads to a linear increase in time and computational
costs, which necessitates a general and flexible solution.

To address the above challenges, we propose a novel
framework to precisely eliminate multiple concepts from
most DMs at once, flexibly accommodating different scenar-
ios. We first develop a one-dimensional non-invasive adapter
that can learn concept-SemiPermeability when injected as a

Membrane (SPM) into DMs with a minimum size increase
of 0.0005 x. Without any auxiliary real or synthetic training
data, SPM learns to erase the pattern of a concept while keep-
ing the pre-trained model intact. Meantime, to ensure that
it is impermeable for other concepts, our Latent Anchoring
strategy samples semantic representations in the general con-
ceptual space and “anchor” their generations to correspond-
ing origins, effectively retaining the quality of other concepts.
Upon acquiring a corpus of erasing SPMs, our framework
facilitates the customization and direct transferability of mul-
tiple SPMs into other DMs without model-specific re-tuning,
as illustrated in Fig. 1. This capability enables timely and
efficient adaptation to complex regulatory and model require-
ments. In the subsequent text-to-image process, to further
ensure precise erasure, our Facilitated Transport mechanism
regulates the activation and permeability rate of each SPM
based on the correlation between the input and its targeted
concept. Therefore, only the erasing of risky prompts are
facilitated, while other concepts remain well-preserved.
The proposed method is evaluated with multiple concepts
erased, different DMs considered and four applications de-
veloped, totaling over 100 tasks. Both qualitative and quanti-
tative results show that SPM can successfully erase concrete
objects, abstract styles, sexual content and memorized im-
ages. Meanwhile, it effectively suppresses generation alter-
ations and alleviates the erosion phenomenon. Its superiority
becomes more evident with multiple concepts overlaid, in
contrast to comparative methods that quickly collapse under
such scenarios. Free from model dependency, we demon-
strate that SPMs can obliterate concepts from all DM deriva-
tives at once, indicating a over 160 speed improvement in
comparison to state-of-the-art (SOTA) methods.

2. Related Work

Existing mitigations adopted by academia and applications
can be categorized based on the intervention stage: pre-
training dataset filtering [36, 37, 45], pre-trained model
parameter fine-tuning [8, 18], in-generation guidance direc-
tion [43], and post-generation content screening [35-37, 45].
The mitigation of detrimental outputs begins with qual-
ity control of training data. Adobe Firefly is trained on
licensed and public-domain content to ensure commercial
safety [36]. Stable Diffusion 2.0 [37] adopts an NSFW (Not
Safe For Work) detector to filter out unsuitable content from
the LAION-5B dataset [44], but meantime it also introduces
bias learnt by the detector [45]. To prevent it, the recently
unveiled DALL-E 3 [45] subdivides the NSFW concept into
specific cases and deploys individualized detectors accord-
ingly. Nonetheless, leaving away the burdensome retraining
costs for the model, the data cleansing process is limited to
sexual content, and is far from being a foolproof solution.
A more recent line of research aims to eliminate certain
concepts through parameter fine-tuning prior to the de-
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Figure 2. Overview of our erasing framework for Diffusion models. During erasing (Left), our one-dimensional SPM is fine-tuned
towards the mitigation of one or several target concepts (e.g., snoopy ¢). Centered around it, LA samples representations in the continuous
latent space with distance as a measure of probability, efficiently alleviating the alteration and erosion phenomenon. When put into use
(Right), a combination of SPMs are customized and directly transferred to a new model without re-tuning. With FT mechanism, only
threatening prompts (e.g., Van Gogh style and sexual innuendo) amplify the permeability rate of corresponding SPMs (diminishing e« ),

while the generation of safe prompts (e.g., Picasso style) remain unharmed (consistent

ployment for downstream applications, enabling it to be
safely released and distributed. ESD [8] achieves it by align-
ing the probability distributions of the targeted concept and a
null string in a self-supervised manner. Despite effective re-
moval, it could suffer from the collapse problem: the model
tends to generate arbitrary images due to the unconstrained
training process [10], thereby significantly impairing its gen-
erative capacity. Concept Ablation [18] steers the targeted
concept towards a pre-defined surrogate concept via a syn-
thesized dataset that is derived from ChatGPT [30] synthetic
prompts. To alleviate the impact on surrounding concepts,
it adds a regularization loss term on the surrogate concept.
However, the generations of concepts distant from the target
are also affected. Selective Amnesia (SA) [10] incorporates
Elastic Weight Consolidation [17] to forget the targeted con-
cept. Besides maximizing the log-likelihood of a named
surrogate concept with a synthesized dataset, it leverages an
additional general dataset using 5K random prompts gen-
erated by GPT3.5 for generative replay [46]. Despite the
explicit supervision, the alteration towards erosion problem
is still prevalent as we have observed in preliminary experi-
ments, which is pronounced with multi-concept erasing.

During generation, hand-crafted textual blacklisting [45]
often serves as the first line of defense. DALL-E 3 further
leverages the advanced large language models (LLMs), e.g.,
ChatGPT [30] and Moderation [26], to construct a multi-
tiered firewall via prompt engineering, such as input safety
classification and prompt transformations. These intricate de-
signs are straightforward, but their reliance on closed-source
resources makes it challenging and expensive to generalize.
Instead of text-level manipulation, SLD [43] leverages in-
appropriate knowledge encoded in the pre-trained models
for reverse guidance. However, striking a balance between
prompt conditioning and reversed conditioning via multi-
ple hyperparameters may require an iterative process of ex-
perimentation and adjustment. Furthermore, in contrast to

), further reducing the impact on other concepts.

abstract concepts, eliminating concrete objects while main-
taining coherence and quality remains a challenge.

In the post-generation stage, content screening has be-
come customary across open-source libraries and commer-
cial APIs. Besides the safety checker confined to sexual
content in SD and DeepFloyd, DALL-E 3 trains multiple
standalone detectors, spotting race, gender, efc. Specialized
detectors require iterative processes of data curating, cleans-
ing and manual annotating. But still, the band-aid moderation
is obfuscated and easy to be circumvented [8, 35].

In contrast, our method is non-invasive, precise, customiz-
able and transferable, holding a superiority in both erasing
effectiveness and efficiency. Note that during deployment,
our solution can integrate with interventions at different
stages discussed above, forming a multi-layered defense.

3. Method

As Fig. 2 illustrates, given a targeted concept (e.g., Snoopy),
our main aim is to precisely erase it from pre-trained DMs
once and for all while preserving other generations. To avoid
the pre-trained model dependency and its parameter drift, we
first develop a 1-dim adapter, dubbed SPM (Sec. 3.1). The
non-invasive structure can be plugged into any pre-trained
DM (e.g., SD v1.4) to learn the transferable recognition
of a specific concept and its corresponding erasure while
keeping the original model intact. We then propose latent
anchoring (Sec. 3.2), a novel fine-tuning strategy for SPM,
to efficiently draw upon continuous concepts in the latent
space for precise erasing and generation preservation.
Once SPMs independently learn to erase various potential
risks, a repository is established wherein any combination of
concepts (e.g., Van Gogh + nudity) can be customized and
directly transferred to other models (e.g., RealisticVision in
the community). During inference, our Facilitated Transport
mechanism controls the activation and permeability of an
SPM when receiving the user prompt (Sec. 3.3). For example,
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a prompt that indicates explicit content will be erased by
the nudity SPM but will not trigger the Van Gogh SPM.
Meanwhile, the style of Picasso, without corresponding SPM
installed in DM, sees almost no alteration in its generation.

3.1. SPM as a 1-dim Lightweight Adapter

To free the concept erasing from pre-trained model depen-
dency, inspired by parameter efficient fine-tuning (PEFT) ap-
proaches [6, 15, 16, 19-21, 23,25, 51], we design an adapter
serving as a lightweight yet effective alternative to the pre-
vailing full parameter or specification-based fine-tuning ap-
proaches of prior arts [8, 10, 18]. With only one intrinsic
dimension, it is injected into a DM as a thin membrane
with minimum overhead, in order to learn concept-specific
semi-permeability for precise targeted erasing.

Specifically, on a certain module parameterized by W €
R™>™ in the DM, we learn an erasing signal vs;qy € R™
to suppress undesired contents in model generation. Mean-
while, the amplitude of the erasing signal is controlled by
a trainable regulator v,., € R", to determine the erasing
strength. As such, the original forward process y = W is
intervened by our SPM as follows:

y=Wae+ (vigm) - Vsig- €))

x € R" and y € R™ represent the input and output of an
intermediate layer, and superscript 7" indicates transposition.

As a short preliminary, take the latent DM (LDM) [37] for
example, the denoising process predicts the noise ¢ applied
on the latent representation of a variably-noised image x;,
conditioning on the current timestep ¢ and a textual descrip-
tion c derived from the text encoder:

€ = e(xe, ¢, t]0). 2

The 6 in Eq. 2 denotes parameters of the noise prediction au-
toencoder, which is often implemented as a U-Net [3, 14, 38].
Upon the pre-trained parameter 6, our SPM is formulated as
Me,,, = {(vl;,: V}ey)|Ctar }, each of which is inserted into

the i-th layer, thereby eliminating patterns of the undesired
concept ¢4, Thus the diffusion process now reads

€ = e(x¢, ¢, t10, Mc,,,)- 3)

The addition-based erasing enables flexible customization of
multiple concepts, where specific SPMs can be placed on a
pre-trained DM simultaneously to meet intricate and ever-
changing safety requirements needs. Furthermore, the simple
design allows it to be easily shared and reused across most
other DMs as validated in Sec. 4.2, significantly improving
computational and storage efficiency.

3.2. Latent Anchoring

Upon the constructed lightweight SPM, we acquire its semi-
permeability of the specialized concepts through a fine-
tuning process. Inspired by the discovery [4, 5, 8, 24] that
concept composition and negation on DMs can be matched

to arithmetic operations on log probabilities, we reparam-
eterize it to perform the concept elimination on the noise
prediction process of DMs. Formally, given the target con-
cept ciqr, We pre-define a corresponding surrogate concept
Csqyr Instructing the behaviour of the erased model when ¢y,
is prompted. Then, to achieve ciar < Csur — N * (Ctar — Csur),
SPM employs an erasing loss to match the probability distri-
butions of ¢, and gy,
Lera = Ea, ¢ [||€(xe, ctar, t10, Me,,.,.) — €(2t, Csur, t]6)
+n * (e(x¢, Ctar, t|0) — €(x4, csur,t|0))||§] .
The 1 determines the erasure intensity for features assiciated
with ¢4, as opposed to cg,-, With a larger 7 signifying a
more thorough erasure.

Meanwhile, erasing a concept from DMs must prevent
the catastrophic forgetting of others. Simply suppressing
the generation of the target leads to severe concept erosion.
ConAbl [18] and SA [10] attempted to adopt a generate-
and-relearn approach to mitigate the issue, wherein images
are synthesized using collected text prompts, and then these
image-text pairs are relearned during fine-tuning. Neverthe-
less, this approach has two major limitations. On the one
hand, in comparison with the large general semantic space
that pre-trained models have obtained, hand-crafted prompts
at the scale of thousands are highly limited and potentially
biased. Therefore, the replay in the pixel space during fine-
tuning leads to the degradation and distortion of the seman-
tic space, resulting in inevitable generation alterations and
unexpected concept erosion. On the other hand, intensive
time and computational cost are required for prompt and
image preparation. As an example, leaving aside the prompt
preparation stage, the image generation process alone takes
SA [10] more than 80 GPU hours, as listed in Tab. 2.

Towards precise and efficient erasing, we propose Latent
Anchoring to address the issues. On the conceptual space,
we establish explicit guidelines for the generation behav-
ior of the model across the entire conceptual space. While
the model is instructed for the target concept to align with
the surrogate concept, for other concepts, particularly those
that are semantically distant from the target, the model is
expected to maintain consistency with its original generation
as much as possible. With C representing the conceptual
space under the text encoder of the DM, this objective could
be characterized as:

argmin Ecec [[|€(zs, ci, 10, Me,,,) — (e, ci, t10)[5] - (5)
6

C)

However, this form is intractable due to the latent space C,
and it is also partially against the erasing loss. Therefore, we
derive a sampling distribution D(-|ctq,-) from C to obtain a
tractable and optimization-friendly form. Our intention is for
the distant concepts from the target to exhibit consistency,
while the synonyms of the target get suitably influenced.
Here the distance is defined by cosine similarity same as
CLIP [33]. For each encoding ¢ within the sampling space,
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we define the sample probability by:
|C ° Ctu/r| @
PCND ‘letar (C|Cta7‘) X (1 - 7) ) (6)
lever) ERE
where « is a hyper-parameter influencing the behavior of the
synonym concepts. The anchoring loss is formulated as:
L‘”w = ]EC"'D('\CtaT) [HE(IEt, Ci, t|67 MCtar) - 6({Et7 Ci, t|9)||§] .
@)
Combining the two components with balancing hyper-
parameter )\, we can derive our total training loss as:

L = Le'ra + )\Lanc~ (8)

With Latent Anchoring applied, SPM can be correctly trig-
gered with the erasing target and take control of correspond-
ing content generation, while staying minimally activated
for non-target and keeping the original generation.

3.3. Facilitated Transport

Once SPMs are learnt in a concept-specific and model-
independent manner, a universal comprehensive erasure cor-
pus is established. To comply with specific legal regulations
and social norms, instead of repeating the whole erasing
pipeline each time for a dedicated model, we can directly
retrieve k plug-and-play SPMs of potential thre/vats from the
corpus, and seamlessly overlay any other DM W with them:
k

y= Ww + Z(,yc : vczegw) . (Ugig~ ©

Despite Latent Anchoring designed to uphold safe con-
cepts during fine-tuning, in the challenging scenarios where
multi-SPMs are installed, the overall generations inevitably
become entangled. To further minimize the impact of erasing
mitigations on other concepts, we introduce the facilitated
transport mechanism into SPMs at the inference stage, which
dynamically transports the erasing signal of the targeted con-
cept while rejecting other concepts to pass through.

Specifically, given a text prompt p, the information per-
meability and rate of transmission for each SPM, denoted
as v¢(p), is contingent upon the probability of its targeted
concept ¢ indicated in p. To estimate the probability, we first
compute the cosine distance in the CLIP [33] textual encod-
ing space, referred to as s;(p). However, the global-view
representation could fail in capturing the correlation between
the concept name and an elaborate user description. For in-
stance, the score between Van Gogh and The swirling night
sky above the village, in the style of Van Gogh is 0.46, but
we expect the corresponding SPM to operate at its maximum
capacity. To this end, we additionally introduce a unigram
metric to identify the similarity at the token-level:

o T(c) N T(p)|
s¢(p) IT(0)] )
where T represents a text tokenizer. We thus derive the prob-
ability of concept c appearing in the description as:

10)

7(p) = max(s}, st), (11

Original ConAbl SPM (Ours)

o)
o

Qo
[
o
c
o
Q.

(7]

Pikachu

Legislator

Figure 3. Samples of “graffiti of the {concept}” after erasing
Snoopy. Our SPM exhibits sufficient elimination on the targeted
concept Snoopy, while the impact on non-targets is negligible.

so that the correlation can be captured at both global and
local levels. When a user prompt stimulates one or multiple
SPMs semantically, their permeability v amplifies, dynam-
ically emitting erasing signals. Conversely, the transport is
deactivated when the relevance is low, effectively minimiz-
ing the impact on safe concepts.

4. Experiments

We conduct extensive experiments encompassing erasing
various concepts, transferring across different personalized
models, as well as practical erasing applications, validating
our effectiveness as a one-size-fits-all solution. Due to space
constraints, training details of SPM and comparative meth-
ods are shown in Appendix C. The dimension analysis and
ablation study of SPM are presented in Appendix A.

4.1. Single and Multiple Concept Removal

Experimental Setup. Without loss of generality, we eval-
uate single and multi-concept erasing in the application of
object removal. Besides the estimation of the target gener-
ation, the impact on surrounding concepts is also assessed.
Here we take the concept of Snoopy as an example, the dic-
tionary of the CLIP text tokenizer is utilized to identify the
concepts most closely associated with it with cosine simi-
larity. After deduplication and disambiguation, the nearest
Mickey, Spongebob, and Pikachu are chosen. Additionally,
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Prompt: Prompt:

“A painting of a Mickey”

Erased
Concepts

“A tattoo of the Pikachu”

ESD ConAbl

Original: Prompt:

“A pixelated photo of a
Legislator”

ESD ConAbl

Figure 4. Samples from DMs with one and multiple instances removed. As prior methods suffer from both generation alteration and
concept erosion, which escalates as the number of targets increase, generations with our SPMs remain almost identical.

Snoopy Mickey Spongebob | . . General
‘ cs CER‘ CcS CER | CS CER Pikachu| Dog |Legislator FID,
SDv1.4|7443 062 |71.94 250 [7299 062 | - | - | - | 1324

Erasing Snoopy

|CSL CERt| FIDL | FID| | FID| |FID| | FID| | FIDg|

ESD [44.50 77.62| 129.07 113.90 72.18 | 4594 | 55.18 | 13.68

ConAbl |59.81 5.50 110.85 79.49 7122 | 9636 | 5574 | 15.42
SA 6459 025 53.64 57.65 4295 | 7572 | 4742 | 16.84

Ours |55.48 20.12 28.39 30.75 18.61 | 10.11 | 7.40 13.24

Erasing Snoopy and Mickey
| CS| CERt| CS| CERf| FID| | FID| | FID|
ESD [45.49 67.00|44.23 83.12| 14571 | 114255105 | 6474 | 13.69
ConAbl [60.05 4.00 |56.14 14.00| 112.15 | 10543 | 79.40 | 56.17 | 15.28

SA  ]63.33 10.75|60.93 51.12 148.33 129.52 |137.91| 151.94 | 17.67
Ours |55.11 20.62|52.04 39.50 36.52 26.69 | 1345 | 16.03 13.26

FID| | FIDy

Erasing Snoopy, Mickey and Spongebob
| CS| CERt| CS| CERT|CS| CERt| FID| | FID| | FID| | FID,|
ESD |46.94 60.38|44.79 80.25 |43.76 85.88 | 137.23 | 50.77 | 73.96 | 13.46
ConAbl |60.88 1.12 [55.10 23.12|58.46 1538 | 102.79 | 67.43 | 5572 | 15.50

SA  |64.53 15.25|61.15 61.88 |60.59 49.88 | 167.79 |183.26| 185.29 18.32
Ours |53.72 25.75|50.50 44.50 |51.30 41.87 | 33.19 | 14.69 | 20.66 13.26

Table 1. Quantitative Evaluation of instance erasure. The best
results are highlighted in bold, while the second-best is underlined.
Arrows on headers indicate the favourable direction for each metric.
On the target concepts, our second-ranked erasing SPM, already
proven sufficient as in Fig. 3, significantly surpasses previous meth-
ods in generation preservation, and maintains stability while the
number of erased concept increases. General FID,, further shows
the superiority of SPM in mitigating alterations and erosion.

we examine its parent concept of Dog, as well as a randomly
chosen general concept, Legislator, for comparison.

Evaluation Protocol. In order to holistically assess the
generation capability after erasing, we employ 80 templates
proposed in CLIP [33] to augment text prompts. A concept
to be evaluated is incorporated into 80 templates, with each
template yielding 10 images. After the generation process,
two groups of metrics are employed for result analysis. 1)
CLIP Score (CS) [11] and CLIP Error Rate (CER) for
target concept evaluation. CS, calculated using the similarity
between the concept and the image, is utilized to confirm
the existence of the concept within the generated content.

The computation of CER adopts CLIP with the embedded
target and corresponding surrogate, functioning as a binary
classifier, yielding the error rate of the image being classified
as the surrogate concept. A lower CS or a higher CER is
indicative of more effective erasure on targets. 2) Fréchet
Inception Distance (FID) [12] for non-target concepts. It
is calculated between the generations of the erased model
and the original DM, with a larger FID value demonstrating
more severe generation alteration after erasing. Additionally,
to ensure the conditional generation capability for general
safe concepts, we also evaluate the erased model on the
COCO-30k Caption dataset [22], where the FID is calculated
between generated and natural images, denoted as FID,;.

Results of Single Concept Erasure. As presented in Fig. 3,
with the elimination of Snoopy, generation alterations can
be observed in all cases of previous methods. Furthermore,
some samples exhibit noticeable concept erosion, such as the
Dog generated by ConAbl (style lost of graffiti) and Mickey
of ESD (severe distortion). It demonstrates that previous arts
are all limited to the trade-off between erasing and preser-
vation: most of them erase the target at the cost of other
concepts, with SA leaning towards the latter. In contrast, our
SPM achieves successful erasure while showing promising
stability on those non-targets, with almost identical genera-
tions aligned with the original generation of the DM.

Quantitatively, Tab. 1 gives the evaluation of the erased
model on the inspected concepts and the general dataset. On
the targeted Snoopy, ESD exhibits the most thorough erasing
performance, but the erosion phenomenon shown in other
concepts is significant, with a huge quality decline compared
to the original DM. ConAbl and SA, where a generate-and-
relearn approach is employed, have subpar performances
in general generation, evidenced by their notably increased
FID,,. This can be attributed to the bias introduced by hand-
crafted pixel-level data adopted for relearning, as elaborated
in Sec. 3.2. As a comparison, our SPM has sufficient erasure
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Exposed Body Parts
(# of original SD v1.4) SD v2.0 SLD ESD ConAbl SA SPM (Ours)
Total (1509) -27.5%k fe—-771% -39.0% fe———— t=— -65.0% {+——-69.5%: fe— -85.3%
Male Genitalia (59)
Belly (271)
Armpits (400) I
Feet (183) I
Male Breast (77) I
Female Genitalia (70) ]
Female Breast (325) 1
Buttocks (123)] | [ ]
-100 -50 0 -100 -50 0 -100 -50 0 -100 -50 0 -100 -50 0 -100 -50 0
Change (%) Change (%) Change (%) Change (%) Change (%) Change (%)

Figure 5. NudeNet Evaluation on the I2P benchmark. The numbers on the left count the exposed body parts of the SD v1.4 generations.
The binplots show the decrement with different methods applied for nudity mitigation, including data-filtering (SD v2.0) and concept erasing
(others, by erasing “nudity”). Compared to the prior works, SPM effectively eliminates explicit contents across different nude categories.

Data Model Image Total (h)
Prep. (h) FT (h) Gen. (s) (¢c=20,n=>5,p=060)
SLD 0 0 3.3pn 1.1
ESD 0 0.7cn 3pn 70.25
ConAbl 0.15¢n 0.25¢n 3pn 40.25
SA 20n +4cn 36cen 3pn 4100.25
Ours 0 1.2¢ (34 0.15¢)pn 24.5

Table 2. Time consumption of the erasing pipeline for c targeted
concepts on n DMs, with each generating on p prompts. One
NVIDIA A100 GPU is used by default, while more than one GPU
usages are correspondingly multiplied on time consumption.

on the target while maintaining the generation capability on
other concepts, and the general FID, remains intact. Results
on SD v2.1 [37], SDXL v1.0 [32] can be found in Appendix
B.1. More sample generations are shown in Appendix D.1.
Results of Multi-Concept Erasure. Fig. 4 presents a com-
parison of multi-concept erasing cases, a more realistic and
challenging scenario. It can be observed that all previous
methods exhibit varying degrees of generation alteration,
which exacerbates with the number of erased concepts in-
creases, and meantime the erosion phenomenon becomes
more prevalent. For instance, ESD forgets Mickey after eras-
ing Snoopy, and ConAbl and SA exhibit deteriorating gener-
ation quality in Pikachu and Legislator, finally leading to the
erosion. These findings are consistent with numerical results
presented in Tab. 1, where their FID scores escalate to an
unacceptable rate. In comparison, our SPM effectively sup-
presses the rate of generation alteration and erosion. Further-
more, our FID, only shows a negligible increase of < 0.02,
indicating significantly better alignment with the original
DM, while prior arts present 10x to 200 variances. Please
refer to Fig. 1 and Appendix D.2 for the results of erasing
up to 20 concepts. The performance of cross-application
multi-concept erasure can be found in Appendix B.2.
Efficiency Analysis. Generally, based on pre-trained text-to-
image models, the pipeline of concept erasure task includes
data preparation, parameter fine-tuning and image generation
when put into use. Tab. 2 reports the time consumption of
SOTA methods and our SPM in GPU hours.

Under the extreme condition of single concept erasing,
SPM achieves a good balance between performance and effi-
ciency. Under the more realistic condition of multi-concept

Official SD v1.5 RealisticVision
Original w/ Pikachu-SPM Original w/ Spengebob SPM
» »
» »
DreamShaper ChillOutMix
Original w/ Miekey SPM Original w/ Sneepy SPM
» »
» »

Figure 6. Training-free transfer results for SPM. Once obtained
(e.g., from SD v1.4 in this case), SPM can transfer to other special-
ized models without re-tuning, and express both its target concept
erasing and non-target preservation capabilities well.

and multi-model, the scalability and transferability of SPM
make it significantly more efficient than previous arts: SPM
parallelizes the elimination of multiple concepts, while previ-
ous arts have to extend their training iterations [ 18]; the cost
of SPM is constant when applied for multiple models, and in
contrast, others are linear to the number of application sce-
narios. Assuming a case where ¢ = 20, n = 5 and p = 60,
the erasing results in Tab. 1 and corresponding costs in Tab. 2
show that we achieve significantly better performance with a
reduction in time consumption by 65.1% and 39.1% in com-
parison with ESD and ConAbl respectively, and obtain a high
margin in erasure effect over SA at a 167.4x speed. Also,
SPM utilizes marginal parameter storage, only 0.0005x that
of previous tuning-based methods, endorsing its aptness for
efficient management and deployment.

4.2. Training-Free Transfer Study

As all prior fine-tuning-based methods are model-dependent,
they lack transferability across DMs. In this section, we
present the training-free transfer results of our SPMs ob-
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tained from training on the official SD v1.4, and subse-
quently applied on SD v1.5, as well as top-most downloaded
checkpoints in the community, including Chilloutmix', Re-
alisticVision” and Dreamshaper-8°. Results in Fig.6 show
that, without model-specific fine-tuning, our SPMs success-
fully erase these finely-tuned and more elaborated concepts,
while preserving the consistency and flexibility of generation.
More transfer samples on community checkpoints can be
found in Appendix D.4 and B.7.

4.3. Versatile Erasing Applications

Experimental Setup & Evaluation Protocol. To examine
the generality of erasing methods, we conduct three sets
of experiments aimed at eliminating artistic styles, explicit
content and memorized images. Towards the abstract artistic
styles, we focus on five renowned artists, including Van
Gogh, Picasso, Rembrandt, Andy Warhol, and Caravaggio.
For each artist, ESD [8] provides 20 distinct prompts, for
each of which we generated 20 images with erased models.
In the case of explicit content removal, following ESD
and SLD, the I2P benchmark [43] of 4703 risky prompts is
adopted for evaluation. SPM is validated with only one gen-
eral term nudity, while comparison methods retain their pub-
lic implementations. After generation, we employ NudeNet
v3* to identify nude body parts within the generated images.
We also experiment with specific artwork erasing to pre-
vent DMs from memorizing training images. The results and
analysis can be found in Appendix B.3.
Artistic Style Removal. Besides concrete object removal
demonstrated above, Fig. 7 showcases the results of erasing
artistic styles. We find that SLD under-erases the artistic
styles, while ESD and ConAbl succeed in erasing Van Gogh
style but fail in Picasso. SA, in accordance with the analysis
above, barely eliminates the specified artistic styles from the
model, especially in the challenging Picasso case. Moreover,
the alterations of generations for non-target concepts are
much more evident than in most of the prior arts, indicating
a skewed semantic space attributed to the biased relearning.
Conversely, our SPM can successfully remove the targeted
style without loss of semantic understanding of the prompts,
while still preserving other styles and generated contents.
Numerical and more qualitative comparison can be found in
Appendix B.6 and D.3.
Explicit Content Removal. The obfuscation of the concept
and the implicity of prompts make the erasure of explicit
content challenging. SD v2.x [37] suppresses inappropriate
generations via training dataset cleansing. However, results
in Fig. 5 show that the probability of generating inappropri-
ate content is reduced by less than 30% compared to SD v1.4.

Thttps://huggingface.co/emilian]R/chilloutmix_NiPrunedFp32Fix
Zhttps:/huggingface.co/SG161222/Realistic_Vision_V5.1_noVAE
3https://huggingface.co/Lykon/dreamshaper-8
“https://github.com/notAl-tech/NudeNet/tree/v3

oOriginal |  SLD ESD ConAbl sA

SPM (Ours)

A vase of vibrant
flowers, in the style of
Van-Gogh's still lifes.

A glimpse of Rembrandt's "'
Amsterdam through his
painting.

An intimate portrait
featuring a contemplative
subject, illuminated by a
single source of light,
reminiscent of
Caravaggio's style.

Astilllife with abstract
shapes and colors,
inspired by Pieasse's love
for bold experimentation.

Faces of Rembrandt's
era in his signature

!
chiaroscuro style. n. :

A whimsical and
irreverent portrayal of
Marilyn Monroe by
Warhol.

n |
Figure 7. Samples from DMs with artistic styles removed. SPMs
can erase targeted styles (upper “Van Gogh” and lower “Picasso’)
while preserving others, unlike prior works that show an evident
trade-off between erasing and preservation.

Furthermore, evaluation with prompts that do not explicitly
mention NSFW terms would lead to the failure of word-level
blacklisting and methods with discrete semantic comprehen-
sion, which could explain the suboptimal results of ConAbl
and SA as we have analyzed in Sec. 3.2. In contrast, our
SPM leverages the Latent Anchoring mechanism, instead
of a limited synthesized dataset, to retain the knowledge
of the large-scale semantic space. It achieves a significant
reduction of 85.3% in the generation of nudity, indicating
that the simple term nudity can be generally comprehended
and thus the explicit content can be well erased. We then
directly transfer the nudity-removal SPM to popular com-
munity derivatives, and the results in Appendix B.7 further
validate its effectiveness and generalizability.

5. Conclusion

This paper proposes a novel erasing framework based on
one-dimensional lightweight SPMs. With a minimum size
increase of 0.0005x, SPMs can erase multiple concepts at
once for most DMs in versatile applications. Experiments
show that SPM achieves precise erasing of undesired con-
tent, and meantime the training-time Latent Anchoring and
inference-time Facilitated Transport effectively mitigate gen-
eration alteration and erosion. Furthermore, the customiza-
tion and transferability of SPMs significantly reduces time,
computational and storage costs, facilitating practical usage
towards different regulatory and model requirements.
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