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Abstract

We present UniBind, a flexible and efficient approach
that learns a unified representation space for seven diverse
modalities – image, text, audio, point cloud, thermal, video,
and event data. Existing works, e.g., ImageBind [13], treat
the image as the central modality and build an image-
centered representation space; however, the space may be
sub-optimal as it leads to an unbalanced representation
space among all modalities. Moreover, the category names
are directly used to extract text embeddings for the down-
stream tasks, making it hardly possible to represent the se-
mantics of multi-modal data. The ‘out-of-the-box’ insight
of our UniBind is to make the alignment centers modality-
agnostic and further learn a unified and balanced repre-
sentation space, empowered by the large language mod-
els (LLMs). UniBind is superior in its flexible application
to all CLIP-style models and delivers remarkable perfor-
mance boosts. To make this possible, we 1) construct a
knowledge base of text with the help of LLMs and multi-
modal LLMs; 2) adaptively build LLM-augmented class-
wise embedding centers on top of the knowledge base and
encoded visual embeddings; 3) align all the embeddings
to the LLM-augmented embedding centers via contrastive
learning to achieve a unified and balanced representation
space. UniBind shows strong zero-shot recognition perfor-
mance gains over prior arts by an average of 6.36%. Fi-
nally, we achieve new state-of-the-art performance, e.g., a
6.75% gain on ImageNet, on the multi-modal fine-tuning
setting while reducing 90% of the learnable parameters.

1. Introduction
Humans use multiple senses– each of which is from a
different source, a.k.a., modality– to perceive and inter-
pret the world [36, 46]. Humans are naturally equipped
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Figure 1. (a) By making the alignment center modality-agnostic,
our UniBind can learn a unified and balanced representation space.
(b) The embedding centers for each semantic category: these cen-
ters exhibit more complementary semantics compared to embed-
dings solely encoded by category names.

with the capacity to process and fuse multiple modalities
simultaneously. For machines to emulate human intelli-
gence, it is imperative for them to interpret, reason, and
fuse multi-modal inputs, such as vision, text, audio, etc. [8].
This has inspired many methods that employ paired data
to align image with text [4, 12, 24, 47] or align image
with audio [16, 32]. Building on these works, early re-
search has largely focused on integrating additional modali-
ties, e.g., CLIP2Video [10] and PointCLIP [59] for enhanc-
ing the comprehensiveness and accuracy of multi-modal
data representation, and ultimately, improving performance
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across various tasks. Recent endeavors have shown the
possibility of learning across multiple modalities, includ-
ing video [5, 48, 63], point cloud [18, 50, 59, 66], ther-
mal [13, 57], event [64, 65], etc. Among these methods,
ImageBind [13] sets a new way to learn a single shared
representation space by leveraging multiple types of image-
paired data. It utilizes the binding property of image modal-
ity to align the embeddings from the other modalities with
the image embeddings.

However, as depicted in Fig. 1 (a), treating the im-
age as the central modality and building an image-centered
representation space leads to sub-optimal results, it may
introduce bias and thus results in an unbalanced repre-
sentation space among all modalities [9]. Also, as de-
picted in Fig. 1 (b), existing CLIP-style models, e.g., Im-
ageBind [13], solely utilize the text embeddings obtained
from category names as embedding centers for categories.
Nonetheless, category names, such as [‘Airplane’]
and [‘Helicopter’], may not fully represent the se-
mantics of the visual data, as there exist numerous images
of airplanes with varying backgrounds and conditions.

This paper strives to tackle two problems: 1) the un-
balanced representation space resulting from taking a spe-
cific visual modality as the alignment center, and 2) the
unreliable nature of embedding alignment centers that
rely solely on category names. Accordingly, we propose
UniBind, a flexible and efficient approach for binding seven
modalities– image, text, audio, point cloud, thermal, video,
and event data. The core insight of our UniBind is to make
the alignment centers modality-agnostic and further learn a
unified and balanced representation space, empowered by
the large language models (LLMs) and multi-modal large
language models (multi-modal LLMs). Our UniBind is su-
perior in its flexible application to all CLIP-style models
and delivers remarkable performance boosts (+3.83% in N-
caltech [38] with E-CLIP [65]).

Specifically, we first construct a knowledge base of
texts which are extracted from the text generated by sev-
eral LLMs, e.g., GPT-4 [37] and LLaMa [49], as well
as multi-modal LLMs, e.g., BLIP-2 [23] and LLaMa-
Adapter [60]. In practice, GPT-4 and LLaMa are uti-
lized to generate the category descriptions, while BLIP-2
and LLaMa-Adapter are used to provide the multi-modal
data descriptions (Sec. 3.2). Secondly, we compute the
class-wise similarity between the input prompts and the
text embeddings. It then utilizes the top 50 text embed-
dings to construct the corresponding class-wise text embed-
ding center (Sec. 3.4). For example, as depicted in Fig. 1
(b), we select the top 50 text embeddings based on their
similarity to the input prompts: ["A photo of heli-
copter/airplane."]. These selected embeddings are
then utilized to construct the embedding centers for the
categories of [‘helicopter’] and [‘airplane’].

Lastly, we align all modality embeddings toward the text
embedding centers using contrastive learning loss functions
(Sec. 3.3). This ensures that all modalities are equally con-
sidered in the representation space and achieve a unified and
balanced representation space, as shown in Fig. 1 (a).

We apply our UniBind to the state-of-the-art (SoTA)
CLIP-style multi-modal learning methods, including
CLIP [40], E-CLIP [65], Audio-CLIP [16], Point-
CLIP [59], ImageBind [13], and PointBind [15], on 14
benchmarks from seven modalities. Note that, our UniBind
is the first work to introduce the event modality [64] into
the multi-modal representation space. UniBind consistently
delivers significant performance improvements with all the
CLIP-style multi-modal methods on all the benchmarks
from the seven modalities, such as +5.55% in ImageNet-
1K [7] with ImageBind [13] and +8.28% in N-caltech [38]
with PointBind [15]. Moreover, we achieve new SoTA
performance, e.g., +6.75% gain on ImageNet-1K with the
multi-modal fine-tuning setting while reducing 90% of the
learnable parameters. Additionally, in the cross-modal re-
trieval tasks, our UniBind demonstrates a substantial per-
formance improvement by +17.96% with PointBind on the
top-20 recall score in the event-to-image retrieval task.

2. Related Work
Multi-modal Learning: From the modality alignment per-
spective, existing methods can be divided into two cat-
egories: alignment at the token and feature levels. (1)
Token-level alignment methods [5, 10, 33, 58, 61, 63] align
multi-modal token embeddings in a shared token embed-
dings space and design a subsequent encoder to extract
the feature of these input token embeddings. (2) Feature-
level alignment methods are based on the unified vision-
language representation space, built by the CLIP style large
vision-language models [22, 27, 29, 30, 40, 51, 54], e.g.,
BLIP [22]. These methods adapt one [10, 16, 32, 59, 65, 66]
or more [13, 15] modalities to the image representation
space to align multiple visual modalities. Representative
works include ImageBind [13], which learns a single shared
representation space by leveraging multiple types of image-
paired data. It leverages the binding property of images
and aligns each modality’s embeddings to image embed-
dings. Other works, such as PointCLIP [59, 66] and Au-
dioCLIP [16], align point cloud and audio modalities, re-
spectively, to the image representation space using cross-
modal correlation or attention mechanisms. However, since
these methods treat the image modality as the multi-modal
alignment center, the obtained representation space is un-
balanced among all the visual modalities [9], as demon-
strated in Fig. 1. By contrast, we propose to learn modality-
agnostic alignment centers, buttressed by the LLMs, thus
yielding a unified and balanced visual representation space.
Our UniBand binds the multi-modalities with the same se-
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mantics to bridge the gap of multi-modalities.
LLMs and Knowledge Base: In Natural Language Pro-
cessing (NLP), knowledge bases are widely used to enhance
the understanding of human language [1, 6, 17, 44] and the
robustness of generated results [14, 42, 56]. With the de-
velopment of LLMs [49, 62], researchers use them to build
knowledge bases [2, 25, 31, 35]. These methods can be
categorized into two groups, including: 1) designing effec-
tive text prompts via LLMs to enhance the representation
ability of the text encoder [26, 43]; and 2) utilizing LLMs
to verbalize the semantics of text input by generating texts
with similar semantics for the same category data, aiming to
enhance the robustness of text representation [34, 66]. We
utilize LLMs and multi-modal LLMs to construct a knowl-
edge base to incorporate the prior knowledge of each cat-
egory by generating the descriptions of the category name.
This augments the text embeddings of the category names
in the representation space.
Language-augmented Representation Learning aims to
enhance the visual representation space by incorporating
language, i.e., text data. As pointed out by [9], language
helps to identify conceptually similar image pairs even
if they are visually dissimilar in visual recognition tasks.
Moreover, efforts have been taken to leverage text as the
representation centers for contrastive learning in informa-
tion retrieval [27, 55]. For example, UniVL-DR [27] ad-
dresses the modality gap by verbalizing images to text and
constructs a unified representation space for multi-modal
dense retrieval, resulting in significant performance gains.
Differently, we introduce a text embedding center strategy
to the multi-modal domain. Our UniBind utilizes extracted
text embeddings as the alignment centers and further binds
the visual modality embeddings, thereby facilitating multi-
modal representation learning and obtaining a balanced and
unified representation space.

3. The Proposed UniBind
3.1. Problem Setting and Overview
Problem setting: We follow the multi-modal recognition
setting popularized by ImageBind [13]. It uses the default
set of text prompt templates P 1

j , P
2
j , ..., P

n
j from CLIP [40].

It then computes the similarity score between the input
multi-modal data Vi and the Cj category by:

S(Vi,Cj) = cos < FV (Vi),mean{FT (P 1
j , ..., P

n
j )} >, (1)

where FV and FT represent the visual and text encoders,
respectively, which extract the image and text embeddings.
The key insight of our UniBind is to make the align-
ment centers modality-agnostic and then learn a unified
and balanced representation space for diverse modalities
by leveraging the embedding centers constructed from the
knowledge base, thereby binding them together. UniBind
strives to address the two main challenges: 1) The unbal-

anced representation space that emerges from designating
a particular visual modality as the alignment center, and
2) The unreliable nature of embedding alignment centers
that exclusively depend on category names. To this end,
firstly, UniBind constructs a knowledge base of text em-
beddings using LLMs and Multi-modal LLMs. Secondly,
UniBind [13] adaptively builds LLM-augmented class-wise
embedding centers based on the knowledge base and aligns
multi-modal embeddings to the embedding centers with
contrastive learning to build a unified embedding space.
Overview: An overview of UniBind is shown in Fig. 2.
Specifically, given n visual modalities, Our UniBind in-
cludes n multi-modal encoders Fn and a text encoder FT ,
which are adapted from existing multi-modal learning mod-
els such as ImageBind [13]. The only modification of these
multi-modal learning models made in UniBind is adding a
trainable linear layer to each of the n visual encoders, while
the adopted encoders are all frozen during training. Our
framework includes two stages:
1) Training Stage: For training, we initially construct the
knowledge base (Sec.3.2) by incorporating both LLMs and
multi-modal LLMs. We then leverage the knowledge base
to learn a unified representation space (Sec.3.3) via LLM-
augmented contrastive learning.
2) Inference Stage: Building on our unified multi-modal
representation space, we infer recognition results via a
novel Embedding Center Localization module (Sec. 3.4).
We now describe these technical components in detail.
3.2. Knowledge Base Construction

The construction of the knowledge base comprises two
parts: 1) Category descriptions, generated by LLMs. These
texts are employed to localize the embedding centers. 2)
Multi-modal data descriptions produced by multi-modal
LLMs. These descriptions help to alleviate the modality
gaps prevalent among multiple modalities.

Although it has been demonstrated in [9, 27] that lan-
guage is a powerful tool for capturing semantic relation-
ships among multi-modal data, dependency on category
names exclusively to align modalities with extracted em-
beddings is unreliable. As discussed in Sec. 1, category
names cannot fully capture the semantics of multi-modal
data. To address this issue, we first use LLMs, such as GPT-
4 [37] and LLaMa [49], to generate category descriptions
based on the category names, as shown in Fig. 3:

T 1
Ci
, ..., Tn

Ci
= FLLMs(Ci), (2)

where the T 1
Ci
, ..., Tn

Ci
are the n generated descriptions

for the category Ci and FLLMs are the aforementioned
LLMs. Subsequently, we produce descriptions for multi-
modal data via multi-modal LLMs:

TIi , ..., TAi
= FMLLMs(Ii), ..., F

MLLMs(Ai), (3)
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Figure 3. Knowledge Base. Generation pipeline for category de-
scriptions (left) and multi-modal data descriptions (right).

here, Ii, ..., Ai represent the multi-modal data inputs, while
TIi , ..., TAi

are the generated multi-modal data descriptions
and FMLLMs denote the aforementioned multi-modal
LLMs. As an example, consider the category [‘Desk’],
we use LLMs to generate category descriptions, such
as ["A computer monitor is prominently
displayed on the desk, indicating it is
a workstation"]. We then utilize multi-modal LLMs
to generate descriptions for image data falling within the
[‘Desk’] category. Finally, we compile these two sets of
descriptions to formulate our knowledge base.

3.3. Unified Representation Space Learning

Expanding upon our knowledge base, we subsequently
align multiple modalities to learn a unified multi-modal rep-
resentation space. For multi-modal data, we utilize feature
encoders derived from existing multi-modal models with
frozen parameters and learnable subsequent linear layers,
to obtain embeddings for each modality:

vIi , ..., vAi
= FI(Ii), ..., FA(Ai), (4)

where the vIi , ..., vAi
are the extracted embeddings and

FI(·), ..., FA(·) are the feature encoders for each modality.
Subsequently, we generate text embeddings of multi-modal
data descriptions TIi , ..., TAi via text encoder:

zIi , ..., zAi = FT (TIi), ..., F
T (TAi), (5)

where the TIi , ..., TAi
are the generated multi-modal data

descriptions, FT (·) is the text encoder, and zI , ..., zA are
the extracted text embeddings. The extracted visual and
text embeddings are employed for learning a unified rep-
resentation space. In contrast to existing multi-modal learn-
ing frameworks, such as ImageBind [13], we do not im-
pose contrastive learning objectives among visual data with
the image center. Instead, we impose contrastive learning
objectives directly between the multi-modal and text em-
beddings. As an illustration, for aligning the visual modal-
ity I to our unified representation space, the extracted vi-
sual embeddings vI1 , ..., vIn and the corresponding text em-
beddings zI1 , ..., zIn are employed for contrastive learning
within this representation space. Text embeddings gener-
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The impact of our embedding center localization is demonstrated.

ated from corresponding descriptions are considered posi-
tive samples for input visual data, whereas text embeddings
from other visual data are utilized as negative samples:

L(I,A) = −log
exp(vTIi · zIi)/τ

exp(vTIi · zIi/τ) +
∑

j ̸=i(v
T
Ii

· zIj/τ)
, (6)

where zIj is the corresponding text embeddings of the vi-
sual data Ij in visual modality I .

3.4. Embedding Center Localization

We localize our embedding centers by selecting 50 text
embeddings for each category from the knowledge base.
Specifically, we utilize the basic prompt ["A photo of
a [Category]"] to calculate cosine similarity, subse-
quently selecting the top 50 descriptions based on the high-
est cosine similarity scores. As depicted in Fig. 4 (a), we
subsequently derive the text embedding center ECi for cat-
egory Ci from these top 50 descriptions by processing them
through the text encoder FT :

ECi = {z1Ci
, ..., z50Ci

} = FT (T 1
Ci
), ..., FT (T 50

Ci
), (7)

The text embeddings generated from the top 50 descriptions
collectively form the embedding center ECi for each cate-
gory. Consequently, UniBind extracts embedding centers
from the knowledge base which have more complementary
semantics than simply using the category names. Unlike ex-
isting methods exemplified in Eq. 1, our embedding centers
establish more distinct category boundaries in representa-
tion space (shown in Fig. 7). For instance, we compute the

Modalities Dataset Metric Scale #cls

Image
ImageNet-1K (IN-1K) [7] Acc 1,280K 1,000
Places-Stanford-365 (P365) [28] Acc 1,240K 365
Caltech-101 (cal) [11] Recall 8K 101

PointCloud ModelNet-40 (ModelNet40) [52] Acc 9K 40
ShapeNet-part (ShapeNet) [3] Acc 16K 16

Audio ESC 5-folds (ESC) [39] Acc 2K 50
Urban-Sound-8K (Urban-S) [41] Acc 8K 10

Thermal LLVIP (LLVIP) [20] Acc 15K 2
RGB-T Selected (RGB-T) [19] Acc 10K 2

Video MSR-VTT (MSR-VTT) [53] Acc 10K 20
UCF-101 (UCF-101) [45] Acc 14K 101

Event N-Caltech-101 (N-cal) [38] Acc & Recall 8K 101
N-ImageNet-1K (N-IN-1K) [21] Acc 1,280K 1,000

Table 1. Summary of experimental settings across various modal-
ities. We report the task, dataset, and data scale for each modality.

similarity between an arbitrary modality input Mi and the
category Cj as follows:

S(Mi,ECj) = max{cos < Fm(Mi), z
1
Ci
, ..., z50Ci

>}, (8)

where the zI , ..., zA are the extracted text embeddings of
category Ci. As shown in Fig.4 (b), compared with the
mean of text prompt embeddings, our embedding centers
have more significant spatial distributions. With our embed-
ding centers, multi-modal data distributed at the boundary
of the category representation space can effectively avoid
interference from other categories (shown in Fig. 7), thus
facilitating more accurate recognition.

3.5. Implementation

UniBind can be flexibly implemented with different exist-
ing CLIP-style multi-modal learning models, such as Point-
CLIP [59], ImageBind [13] and PointBind [15].
Backbone Models We use existing CLIP style multi-
modal learning models as the backbones to implement
our UniBind. Concretely, we implement our UniBind
with the following models: CLIP [40], ImageBind [13],
PointBind [15], E-CLIP [65], PointCLIP [66], and Audio-
CLIP [16]. We use separate visual encoders for image, point
cloud, audio, thermal, video, and event data. We add a sim-
ple linear layer at the end of the visual encoders of each
modality for mapping the multi-modal embeddings to our
unified representation space. We utilize the frozen text en-
coder from the backbone model as our text encoder.
Training and Inference UniBind can be utilized for both
zero-shot and fine-tuning recognition tasks. For zero-shot
tasks, as depicted in Fig. 2, UniBind employs the basic
prompt ["A photo of a [Category]"] to select
the top 50 most related text embeddings from the knowl-
edge base as class-wise embedding centers. The similar-
ities between the multi-modal embeddings and the class-
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Model Image Point Cloud Audio Thermal Video Event

IN-1K Place-365 ModalNet40 ShapeNet ESC-50 Urban-S LLVIP RGB-T MSR-VTT UCF-101 N-Cal N-IN-1K

Fine-tuning Setting

Meta-Transformer [61] 83.10 52.70 90.50 99.30 - - - - - 46.60 % %

ImageBind [13] w/ linear 80.19 49.45 % % 83.40 71.60 - 60.55 63.81 98.06 % %

PointBind [15] w/ linear 80.19 49.45 90.64 99.09 83.40 71.60 - 60.55 63.81 98.06 % %

PointBind (+Event) 80.19 49.45 90.64 99.09 83.40 71.60 - 60.55 63.81 98.06 77.83 23.69
Ours w/ PointBind 86.94 56.99 90.72 99.59 84.01 69.09 - 60.71 69.53 93.31 78.05 24.48
∆ +6.75 +7.54 +0.08 +0.50 +0.61 -2.51 - +0.16 +5.72 -4.75 +0.22 +0.79

Zero-shot Setting

ImageBind [13] 77.70 45.40 % % 66.90 41.73 63.40 54.71 31.27 64.84 % %

PointBind [15] 77.70 45.40 77.67 98.85 66.90 41.73 63.40 54.71 31.27 64.84 % %

PointBind (+Event) 77.70 45.40 77.67 98.85 66.90 41.73 63.40 54.71 31.27 64.84 50.98 10.79
Ours w/ PointBind 83.25 53.84 80.59 98.96 71.70 62.56 64.67 56.20 40.90 73.74 59.26 13.85
∆ +5.55 +8.44 +2.92 +0.11 +4.80 +20.83 +1.27 +1.49 +9.63 +8.90 +8.28 +3.06

Table 2. Emergent zero-shot and fine-tuning recognition on six modalities.

wise embedding centers are then utilized to make recogni-
tion predictions. For fine-tuning, there is a training stage
with the proposed representation space learning, as shown
in Fig. 2. The inference process is the same as zero-shot.

4. Experiments

4.1. Datasets and Implementation Details

Modalities and datasets. We evaluate UniBind on seven
modalities – image, point cloud, audio, thermal, video,
event, and text. For each modality, we assess our UniBind
on two mainstream datasets at least. A summary of the
datasets utilized is presented in Table 1.
Multi-modal backbone models. Since our UniBind can
be flexibly applied to the existing CLIP-style multi-modal
learning models, in this paper, we implement UniBind with
ImageBind [13], PointBind [15], CLIP [40], E-CLIP [65],
Audio-CLIP [16], and Point-CLIP [59]. The backbone
models are kept frozen and the linear layers at the end of vi-
sual encoders are updated during the LLM-augmented con-
trastive learning.
Knowledge Base. We generate 1,000 descriptions for
each category name via LLMs (GPT-4 [37], LLaMa [49])
and generate multi-modal data descriptions via multi-modal
LLMs (BLIP-2 [23], LLaMa-Adapter [60]). We construct
our knowledge base with these two sets of description texts.

4.2. Zero-shot Recognition

Settings. The emergent zero-shot recognition is first pro-
posed in ImageBind [13] which means just by pre-training
on (image, text) and (image, audio). As shown in Tab. 1, we
evaluate UniBind in 12 main-stream datasets from 6 modal-
ities. We directly test the recognition performance without
training (more details can be found in the suppl.).

Model Image Event/Audio/PC

IN-1K Place-365 Dataset 1 Dataset 2

CLIP [40] 68.30 29.95 % %

Ours w/ CLIP 78.63 39.14 % %

∆ +10.35 +9.19 - -

E-CLIP [65] 68.30 29.95 50.40 4.13
Ours w/ E-CLIP 78.63 39.14 54.26 7.91
∆ +10.35 +9.19 +3.83 +3.78

Audio-CLIP [16] 40.51 18.76 68.60 68.78
Ours w/ Audio-CLIP 46.44 22.60 71.25 69.52
∆ +5.93 +3.84 +2.65 +0.74

Point-CLIP [59] 59.60 25.56 20.20 89.20
Ours w Point-CLIP [59] 62.58 27.10 21.43 90.27
∆ +2.98 +1.54 +1.23 +1.07

Table 3. Emergent zero-shot recognition in image + X modalities.
Dataset 1 and 2 indicate N-Cal and N-1N-1K, ESC-50 and Urban-
S, and ModelNet40 and ShapeNet, respectively.

Results. We evaluate the zero-shot recognition perfor-
mance in comparison to existing methods across various
modalities, including image, point cloud, audio, thermal,
video, and event. In Tab. 2, we present the performance re-
sults of our approach when applied with CLIP-style multi-
modal learning models that align more than three modali-
ties. Additionally, we show the performance of our UniBind
in conjunction with two-modality methods in Tab. 3. Our
UniBind significantly improves the performances of CLIP-
style multi-modal models. Across all benchmarks, UniBind
achieves large gains about an average of +6.27% in top 1
accuracy and even compares favorably to supervised spe-
cialist models trained for the special modality and task.

4.3. Fine-tuning Recognition

Settings. We follow ImageBind [13] and only train the lin-
ear layer after the frozen visual encoders with the training
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Figure 5. Top 5 results from text to events & images retrieval.
We choose ["A photo of a [category]"] as the query
to retrieve events and images in the same embedding space.

dataset, and then evaluate our UniBind on the testing dataset
with the same metric in the zero-shot setting.
Results. In Tab. 2, we compare our approach with the su-
pervised methods that use ["A photo of a [cate-
gory name]"] as the text label during the training stage.
Our UniBind outperforms the supervised method on 10
benchmarks spanning 6 modalities, exhibiting an average
improvement of +1.26%. In particular, our UniBind shows
more significant gains in the datasets containing a large
number of categories, such as +6.75% in ImageNet (1,000
categories) and +7.54% in Place-365 (365 categories). It
demonstrates the advantages of our approach to apply in
complex semantic data.

5. Ablation Study and Analysis
5.1. LLM-augmented Contrastive Learning

To investigate the effectiveness of our proposed LLM-
augmented contrastive learning, we conduct ablation stud-
ies on the cross-modal retrieval task. We experiment with
E-CLIP [65] and PointBind [15] and subsequently report
the results for event-to-image retrieval and image-to-event
retrieval in Tab. 4. The recall score improvement increases
incrementally from the top 1 to the top 20, illustrating the
efficacy of our approach in aligning modalities with the
same semantics. In addition, as shown in Fig. 5, we demon-
strate the case of cross-modal retrieval based on Point-
Bind [15] adapted event modality. In this case, we use the
text ["A photo of a Gerenuk."] to retrieve im-
ages and events in the same representation space. In the
absence of LLM-augmented contrastive learning, the top 5
retrieval results solely consist of images. By contrast, with
LLM-augmented contrastive learning, the retrieval results
are more balanced across image and event modalities.

Furthermore, the results of the t-SNE visualization in
Fig. 6 reveal the differences between the representation
spaces constructed by ImageBind [13] / PointBind [15] and
our UniBind. For example, in Fig. 6 (a), We select em-

Model Image-to-Event Event-to-Image

R@1 R@10 R@20 R@1 R@10 R@20

E-CLIP [65] 79.52 93.08 95.51 76.29 91.80 94.61
E-CLIP w LCL 78.95 94.32 97.06 77.04 93.62 96.70
∆ -0.57 +1.24 +1.55 +0.75 +1.82 +2.09

PointBind (+Event) [15] 14.07 40.79 49.46 9.00 29.32 37.70
PointBind w LCL 14.12 41.25 50.98 14.29 44.34 55.66
∆ +0.05 +0.46 +1.52 +5.29 +15.02 +17.96

Table 4. Multi-modal retrieval result with/without LLM-
augmented Contrastive Learning (LCL). We evaluate E-CLIP [65]
and PointBind [15] in Image-to-Event and Event-to-Image tasks.

Image Audio Point Cloud

ImageBind / PointBind

Event

UniBind (ours)

(a) Airplane

(b) Car

Figure 6. Representation space visualization of ImageBind / Point-
Bind and our UniBind. We sample 64 data in the same semantic
for each modality, specifically, [‘Airplane’] data representa-
tion space shown in (a), [‘Car’] data shown in (b).

beddings with the same semantic label [‘airplane’]
from image, audio, point cloud, and event modalities, and
visualize 64 randomly chosen samples from each modal-
ity. In the representation space, embeddings from different
modalities tend to cluster around their respective modali-
ties. Thereby, with LLM-augmented contrastive learning,
multi-modal embeddings cluster around the same semantic
label in our unified modality-agnostic representation space.

5.2. Embedding Center Localization

The results presented in Tab. 5 demonstrate the effect of
improving the zero-shot recognition performance with E-
CLIP [65], AudioCLIP [16], ImageBind [13], and Point-
Bind [15] on four modalities. Our embedding center lo-
calization method attains a substantial improvement, av-
eraging +6.50% when applied to these CLIP-style multi-
modal learning models. As the t-SNE visualization in
Fig. 7 illustrated, our approach results in more distinct se-
mantic boundaries between different categories, effectively
enhancing recognition accuracy and reducing interference
from other categories. We also study the impact of LLMs
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(c) Point Cloud Modality

(b) Audio Modality

W/o ECL:  𝐿! >	𝐿" W ECL:  𝐿! <	 𝐿"

W/o ECL:  𝐿! >	𝐿" W ECL:  𝐿! <	 𝐿"

“A photo of a    
chair”

“A photo of a bed”

𝐿!

𝐿"

𝐿"

𝐿!

𝐿"

𝐿!

v

𝐿"

𝐿!

“A photo of a train”

“A photo of a engine”

“train” 
center

“engine” 
center

“bed” 
center

“chair” 
center

Engine Audio

Figure 7. Embedding centers t-SNE visualization in the point
cloud and audio modalities. (a) in this case, we simply use the
prompts as the centers of both the bed and chair categories; on the
right, we use our localized embedding centers. (b) show the cases
in audio modality.

Modality Image Audio PointCloud Event

E-CLIP [65] 68.30 % % 50.40
E-CLIP w ECL 78.63 % % 54.26
∆ +10.33 - - +3.86

AudioCLIP [16] 40.51 68.60 % %

AudioCLIP w ECL 46.44 71.25 % %

∆ +5.93 +2.65

ImageBind [13] 77.70 66.90 % %

ImageBind w ECL 83.25 71.70 % %

∆ +5.55 +4.80 - -

PointBind (+Event) [15] 77.70 66.90 77.67 50.98
PointBind w ECL 83.25 71.70 80.59 59.26
∆ +5.55 +4.80 +2.92 +8.28

Table 5. Performance in zero-shot recognition task with/without
Embedding Center Localization (ECL) with five multi-modal
models in four modalities.

and Multi-modal LLMs, while further examining the opti-
mal number of selected texts for each category. We com-
pare our UniBind to the method that only selects texts from
LLMs or only from Multi-modal LLMs to construct the
knowledge base and present the results in Fig. 8. Evi-
dently, the knowledge base created by LLMs and Multi-
modal LLMs exhibits the best performance, with the se-
lection of the top 50 texts for each category proving to be
the most effective choice for localizing the embedding cen-
ters. Lastly, we present the results of comparisons with

(a) (b)

Figure 8. Ablation study of the knowledge base. (a) compares
three ways to build a knowledge base by only LLMs, only Multi-
modal LLMs, and both LLMs and Multi-modal LLMs. (b) shows
the performance of selecting the top 10-100 texts for each category
in image and event modalities.

Method Image PointCloud Video Event

Simple Prompts [40] 75.86 76.02 30.92 50.39
Complex Prompts [15, 40] 77.70 77.67 31.27 50.98
Word-net Augmented [17] 78.10 79.09 41.03 50.60
LLM-generated Prompts [66] 79.59 77.43 34.13 51.93
Ours 83.25 80.59 40.90 59.26

Table 6. Performance of various language-augmented meth-
ods in the zero-shot recognition task. We compare our LLM-
augmented method with simple promotes by default of CLIP [40],
complex prompts used by PointBind [15], word-net augmented
prompts [17], and LLM-generated prompts.

other language-augmented methods in Tab. 6. Our UniBind
demonstrates the best performance.

6. Conclusion
In this paper, we proposed UniBind, a multi-modal learn-
ing approach that renders the alignment centers modality-
agnostic and further learns a unified and balanced repre-
sentation space, empowered by the large language models
(LLMs) and the multi-modal large language models (multi-
modal LLMs). Our UniBind achieves remarkable perfor-
mance boosts and is compatible with all CLIP-style multi-
modal learning models. Additionally, we examined the po-
tential of LLMs and Multi-modal LLMs for multi-modal
representation space learning.
Limitations and Future Works. The robustness of the
LLM-augmented method requires enhancement. In re-
sponse, our future work will concentrate on harnessing
the capabilities of LLMs to augment the robustness of the
modality-agnostic representation space.
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