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Figure 1. The diagram of three settings. Left: Conventional AL is a closed-world setting, where labeled and unlabeled classes are identical.

Middle: GCD requires no active labeling and suffers from severe issues. Right: AGCD is an open-world extrapolated version of AL, where

unlabeled data contains novel categories, and models are trained on both labeled and unlabeled data to cluster both old and new classes.

Abstract

Generalized Category Discovery (GCD) is a pragmatic

and challenging open-world task, which endeavors to clus-

ter unlabeled samples from both novel and old classes,

leveraging some labeled data of old classes. Given that

knowledge learned from old classes is not fully transfer-

able to new classes, and that novel categories are fully

unlabeled, GCD inherently faces intractable problems, in-

cluding imbalanced classification performance and incon-

sistent confidence between old and new classes, especially

in the low-labeling regime. Hence, some annotations of

new classes are deemed necessary. However, labeling new

classes is extremely costly. To address this issue, we take the

spirit of active learning and propose a new setting called

Active Generalized Category Discovery (AGCD). The goal

is to improve the performance of GCD by actively select-

ing a limited amount of valuable samples for labeling from

the oracle. To solve this problem, we devise an adaptive

sampling strategy, which jointly considers novelty, infor-

mativeness and diversity to adaptively select novel sam-

*Corresponding author.

ples with proper uncertainty. However, owing to the var-

ied orderings of label indices caused by the clustering of

novel classes, the queried labels are not directly applica-

ble to subsequent training. To overcome this issue, we fur-

ther propose a stable label mapping algorithm that trans-

forms ground truth labels to the label space of the clas-

sifier, thereby ensuring consistent training across differ-

ent active selection stages. Our method achieves state-

of-the-art performance on both generic and fine-grained

datasets. Our code is available at https://github.

com/mashijie1028/ActiveGCD

1. Introduction

Humans could transfer previously acquired knowledge

while learning new concepts [29]. For example, once chil-

dren have been taught to recognize “cats” and “dogs” based

on external contours, they can group “birds” and “bears” ac-

cording to the same rule. However, due to species dispari-

ties, this classification criteria is limited. Children may con-

fuse “zebras” with “horses”, and “huskies” with “wolves”,

and they still need guidance to focus on fine-grained fea-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Accuracy of old and new classes in AGCD with different

methods (shapes) on various datasets (colors). The closer to the di-

agonal, the more balanced accuracy between old and new classes.

In each dataset (color), our method (star) achieves not only the best

overall performance but also more balanced accuracy.

tures like stripes and eyes. Thus, proper guidance is indis-

pensable when acquiring new knowledge. However, seek-

ing help every time is impractical. Instead, they are sup-

posed to actively query some confusing samples [7].

Deep learning is also inspired by the cognitive pro-

cesses above, and could be endowed with the abilities of

knowledge transfer [18, 32, 58] and active learning [34,

38, 50], especially in the open-environments [14, 28, 43,

48, 57] containing unlabeled novel categories. In this pa-

per, we study the task of Generalized Category Discovery

(GCD) [33, 42, 47, 53], which aims to transfer knowledge

from some labeled samples of old classes to cluster novel

categories in the unlabeled data. In addition, models should

also be able to classify old classes present in the unlabeled

data. Pioneer works [12, 42] leverage supervised [23] and

unsupervised contrastive learning [8] with non-parametric

K-Means [30] for clustering. Later works [33, 52] fur-

ther exploit underlying cross-instance relationships. Wen

et al. [47] rethink the failure of parametric classifiers and

propose a simple method to achieve impressive results.

Although great progress has been made, GCD still faces

intractable problems, including imbalanced accuracy (see

Fig. 3) and inconsistent confidence (see Fig. 4) between

old and new classes, especially in low-labeling regimes. In

essence, these issues arise from the nature of the GCD task

itself. As old knowledge is not fully transferable to the new

one, and novel classes are fully unlabeled, models would

encounter inherent challenges, and could not rectify errors

by themselves without the supervision of confusing cate-

gories. Therefore, we argue that some annotations of new

categories [55] are necessary. However, due to the compu-

tational cost of annotation, it is not practical to label all the

novel classes. This raises a question: Can deep learning

models actively select a small number of unlabeled samples

for labeling to remarkably enhance category discovery?

In this work, we try to answer this question and propose

a new setting, namely Active Generalized Category Discov-

ery (AGCD) as in Fig. 1. During training, models actively

select a limited number of samples in unlabeled data, which

contains both old and new classes, and query their labels

from the oracle, these newly-labeled data are then incorpo-

rated into labeled data for the next training round. Through

human-in-the-loop interaction, models actively select infor-

mative novel samples, acquire knowledge that could not be

obtained via pure unsupervised learning, and rectify previ-

ous errors and biases. AGCD is a realistic setting, which ad-

dresses the problems of GCD and largely enhances the per-

formance, requiring very limited annotations. As in Fig. 2,

we improve the new accuracy of GCD by 25.52%/23.49%

on CUB/Air with only ∼ 2.5 samples labeled per class.

In the task of AGCD, one could inevitably encounter two

challenges, which we aim to address in this paper: (1) Con-

ventional AL methods do not take novel categories into con-

sideration, which makes them not applicable to AGCD and

leads to sub-optimal results. (2) Considering the cluster-

ing nature of GCD, the queried ground truth labels could

not be directly used by parametric classifiers due to the

different ordering of indices. To solve the first problem,

we take novelty, informativeness and diversity into consid-

eration and propose an adaptive sampling strategy called

Adaptive-Novel, which adaptively chooses samples

within appropriate uncertainty intervals according to the

clustering performance. To alleviate the second problem,

we propose to perform label mapping on the queried sam-

ples which “translates” ground-truth labels to the labels the

model could understand, however, considering the scarcity

of labeled data, we devise a stable label mapping method

with the model exponential moving average [17, 40, 56].

Our contributions are summarized as follows: (1) We

propose a new task called Active Generalized Category Dis-

covery (AGCD) considering the inherent issues in GCD,

and establish its pipeline and metrics. (2) We propose an

adaptive query strategy called Adaptive-Novel to se-

lect valuable novel samples for labeling and address the

problems of GCD with affordable budgets. (3) We devise

a stable label mapping method to obtain credible mapping

and alleviate the issue of different label ordering in cluster-

ing. (4) Extensive experiments show our method achieves

state-of-the-art performance among various strategies on

generic and fine-grain datasets, as in Fig. 2.

2. Related Works

Novel Category Discovery (NCD) [41] was first formal-

ized as deep transfer clustering [18] to discover unlabeled

new classes using the knowledge of labeled classes. Han et

al. [18, 19] utilize self-supervision for representation learn-

ing and ranking statistics for knowledge transfer. Zhong

et al. [54] propose to mixup [51] old and new classes to

prevent overfitting. UNO [13] is a unified objective to han-

dle old and new classes jointly via swapped prediction [5].

NCD assumes all unlabeled data are from new classes.
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Generalized Category Discovery (GCD) [4, 42] removes

the limited assumption and aims to simultaneously cluster

old and new classes in the unlabeled data, given some la-

beled samples of old classes. Pioneer works [12, 42] con-

duct supervised [23] and unsupervised contrastive learn-

ing [8], and employ semi-supervised K-means [30, 42] clus-

tering. Later works [33, 52] exploit underlying relation-

ships for better feature representation. Zhao et al. [53]

propose an EM-like framework alternating between con-

trastive learning [27] and class number estimation. These

methods predominantly rely on non-parametric classifiers.

By contrast, recent works [9, 47] propose to avoid pre-

diction biases to achieve remarkable results with paramet-

ric classifiers. Although GCD has made great advance-

ments [15, 44], it inherently suffers from issues like im-

balanced accuracy and confidence between old and new

classes, which is intractable due to the incompletely trans-

ferable knowledge and unlabeled nature of new classes. In

this paper, we propose AGCD to address them with afford-

able labeling budgets.

Active Learning (AL) [38] aims to maximize models’ per-

formance with a limited labeling budget. We focus on

pool-based AL [49]. Sampling strategies contain two types.

Uncertainty-based methods select samples with high pre-

dictive uncertainty, e.g., entropy [46], least confidence [46]

and margin [35]. Diversity-based methods select samples

that could represent the entire dataset. Typical works in-

clude KMeans [30], CoreSet [37] and BADGE [3]. Hybrid

methods [1, 21, 22] combine the two types for further im-

provements. In principle, AL is in a close-world setting,

where labeled and unlabeled data share classes. While in

AGCD, unlabeled data contain more categories than labeled

data, and models are expected to classify all the classes, not

limited to the old classes present in labeled data.

3. Preliminaries and Analysis

Here, we briefly introduce the setting and methods of Gen-

eralized Category Discovery (GCD) (Sec. 3.1) and give em-

pirical results to reveal inherent issues (Sec. 3.2), which mo-

tivates us to propose our setting AGCD in Sec. 4.

3.1. Setup and Training Methods of GCD

Problem definition of GCD. Given a labeled dataset

Dl = {(xl
i, y

l
i)} ⊂ X × Yl and an unlabeled dataset

Du = {(xu
i , y

u
i )} ⊂ X × Yu. Dl only contains old classes,

while Du contains both old and new classes, i.e., Yl =
Cold,Yu = Cold∪Cnew. Models are required to cluster both

old and new classes in Du. The number of novel classes

Knew is known a-prior or estimated [33, 42, 53]. f(·) and

g(·) are feature extractor and projection head for contrastive

learning respectively. hi = f(xi) and zi = g(hi) are ℓ-2
normalized feature and projected embeddings respectively.

Related Training Methods. Vaze et al. [42] propose to

employ supervised [23] and self-supervised [8] contrastive

learning on labeled Bl and whole mini-batch B:

Ll
con =

1

|Bl|

∑

i∈Bl

1

|N (i)|

∑

q∈N (i)

− log
exp(z⊤i z

′
q/τc)∑

n ̸=i exp(z
⊤
i z

′
n/τc)

,

(1)

Lu
con =

1

|B|

∑

i∈B

− log
exp(z⊤i z

′
i/τc)∑

n ̸=i exp(z
⊤
i z

′
n/τc)

. (2)

The overall contrastive loss Lcon = (1− λ)Lu
con + λLl

con.

SimGCD [47] employs a parametric prototypical classi-
fier C = {c1, · · · , cK}, where K = Kold + Knew. The
posterior probability could be expressed as:

p
(k)
i =

exp(h⊤

i ck)/τp∑
k′ exp(h⊤

i c
′

k)/τp
. (3)

SimGCD implements self-distillation on two views along

with an entropy H(·) regularization across all samples:

Lu
cls =

1

|B|
ℓ(q′

i,pi)− λeH(p), (4)

where q′
i is a sharpened probability of another view, and

p = 1
2|B|

∑
i∈B(pi + p′

i), ℓ(·) denotes cross-entropy loss.

The supervised loss is also employed on Dl with labels yi:

Ll
cls =

1

|Bl|

∑

i∈Bl

ℓ(yi,pi). (5)

3.2. Inherent Problems in GCD

SimGCD [47] is the state-of-the-art (SOTA) and effective

GCD method with a parametric classifier, we thus use it for

the analysis of confidence [16] and accuracy. To find the

problems of GCD in real scenarios, we train models with

SimGCD in a practical low-label condition as in Table 1.
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Figure 3. Accuracy of old and new classes on six datasets.

GCD suffers from severe performance mismatch be-

tween old and new classes. As Fig. 3 shows, the accu-

racy of old classes largely surpasses the new ones, which is

imbalanced. For example, the performance gap is 28.88%

and 32.59% on IN-100 and SCars. The underlying reason

is the inherent label condition imbalanced, i.e., old classes

are partially labeled while new classes are fully unlabeled,

which is the essential issue of the GCD task itself.
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sures: -entropy (a), margin (b) and MSP (c).

Models tend to have inconsistent confidence between old

and new classes. We plot the distribution of the model’s

predictive confidence, with three metrics, i.e., (minus) en-

tropy [39], margin [35] and maximum softmax probabil-

ity (MSP) [20]. From Fig. 4, we observe that the confi-

dence distribution between old and new classes is inconsis-

tent. The confidence of old classes is relatively high, which

aligns with intuition because some old samples are labeled,

while novel classes are learned with soft targets in Eq. (4),

resulting in ambiguous predictions.

4. Active Generalized Category Discovery

As in Sec. 3.2, models perform poorly on the fully unla-

beled new classes across various datasets and are unable

to correct errors. We argue that some annotations on new

classes are deemed indispensable. To avoid excessive la-

beling costs and make the setting practical, we aim to en-

hance GCD with limited annotation budgets and propose

Active Generalized Category Discovery (AGCD). Firstly,

we introduce the problem definition, analyze its challenges

and distinguish the differences from AL (Sec. 4.1). Then,

we provide metrics considering the accuracy and novelty

of samples (Sec. 4.2). Next, we elaborate on the proposed

sampling strategy Adaptive-Novel (Sec. 4.3) and sta-

ble label mapping algorithm (Sec. 4.4).

Overview. We provide the framework of AGCD in Fig. 5.

(a) illustrates the pipeline and dataflow of AGCD, and

models are trained with off-the-shelf SimGCD [47]. (b)

shows the proposed Adaptive-Novel query strategy.

(c) demonstrates the labeling mapping method to transform

ground truth labels to models’ label space.

4.1. The Task of AGCD and Basic Analysis

Problem definition of AGCD. Initially, the model is

trained on both Dinit
l = D0

l = {(xl
i, y

l
i)} ⊂ X × Yl and

Dinit
u = D0

u = {(xu
i , y

u
i )} ⊂ X × Yu with off-the-shelf

GCD training method SimGCD [47]. The initial data splits

are similar to GCD [42] as in Table 1. After this base train-

ing stage, AGCD could have multiple rounds (denoted as n
in total) like AL. At round t, the model first selects a batch

of b samples (budget size) from unlabeled data Dt−1
u and

queries its labels to obtain Dt
q = {(xq

i , y
q
i )}. Then labeled

and unlabeled data are updated as Dt
l = Dt−1

l ∪ Dt
q ⊂

X × Yt
l , Dt

u = Dt−1
u \ Dt

q . Models are then trained on

Dt
l ∪ Dt

u with off-the-shelf SimGCD [47]. Note that initial

Table 1. The default setting of 3 generic datasets and 3

fine-grained datasets in AGCD benchmark. |Y init
l | = Kold,

|Y init
u | = Kold + Knew denote the initial number of classes in

|Dinit
l | and |Dinit

u |. The number of queries across all rounds is dis-

played in both the total count and average count per class.

Dataset
Labeled Dinit

l Unlabeled Dinit
u #Rounds

#Query

(total)

#Query

(per class)|Dinit
l | |Y init

l | |Dinit
u | |Y init

u |

CIFAR10 (C-10) [25] 2,000 2 48,000 10 1 100 10

CIFAR100 (C-100) [25] 5,000 50 45,000 100 5 500 5

ImageNet-100 (IN-100) [10] 12,744 50 114,371 100 5 500 5

CUB (CUB) [45] 599 100 5,395 200 5 500 2.5

Stanford Cars (SCars) [24] 800 98 7,344 196 5 500 2.5

FGVC-Aircraft (Air) [31] 666 50 6,001 100 5 500 5

labeled data only contains old classes, i.e. Y0
l = Cold, but

after querying in AGCD, the labeled data Dt
l could contain

some classes of all novel ones Cnew. The total budget size

is b × n. For the queried data Dt
q , models are trained with

supervised loss Ll
con in Eq. (1) and Ll

cls in Eq. (5).

Two challenges in AGCD. (1) Directly employing con-

ventional AL methods (e.g., Entropy) results in sub-optimal

performance. This is because they do not consider new

classes, and the confidence and feature distribution of old

and new classes are inconsistent, as discussed in Sec. 3.2.

(2) Considering the clustering of GCD, the queried labels

could not be directly sent to models due to the different

ordering of indices of new classes. For example, consid-

ering new classes “birds” and “lions”, the model assigns

“8”, “7” to them while the ground truth is “9”, “6”, then we

should obtain a mapping as: “9”→“8”, “6”→“7”, and map

the ground truth to the model’s label space for supervision.

Distinguishing between AL and AGCD. (1) AGCD

could be viewed as an open-world extrapolated version of

AL requiring models to classify both old and new classes,

and the unlabeled data could contain new classes. (2) In

conventional AL, models are not trained on Du, which is

only used for sample selection and only the selected sam-

ples engage in training. In contrast, in AGCD, models not

only select samples in Du but are also trained on it.

4.2. Evaluation and Metrics

Accuracy Evaluation. GCD adopts a transductive evalu-

ation on unlabeled training data Du. By contrast, we adopt

an inductive evaluation for AGCD, i.e., we test models on

the unseen and disjoint test dataset. The reason is that mod-

els query some labels in Du, making it unfair for evaluation.

The accuracy is calculated using ground truth labels yi and

models’ predictions ŷi as follows:

ACC = max
p∈P(Yu)

1

M

M∑

i=1

1(yi = p(ŷi)), (6)

M = |Du| and P(Yu) is the set of all permutations across

all classes Cold ∪ Cnew. The maximum value is computed

by the Hungarian optimal assignment algorithm [26] across

all (Kold +Knew) classes, which is the same as GCD [42].
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Figure 5. The framework of AGCD. (a) Overall pipeline and dataflow. Models are trained on Dt
l ∪ Dt

u with SimGCD, and select samples

in Dt
u. (b) The proposed Adaptive-Novel sampling strategy. Here M denotes the label mapping function. Stable M means that at the

initial and end epochs of the current round, M does not change largely. Confident novel samples are sampled at early rounds, when M is

stable, we select the informative ones. (c) Illustration of label mapping computed by model predictions and ground truth on Dt−1
l ∪ Dt

q .

Novelty Evaluation. We also evaluate the selected sam-
ples’ category attribution with the following metrics: (1)
Novelty Coverage Nov-C that measures the coverage of
new classes. (2) Novelty Ratio Nov-R that measures the
ratio of the selected samples belonging to new classes. (3)
Novelty Uniformity Nov-U that measures the uniformity of
the coverage across new classes. (4) Novelty Information
Nov-I, which considers both ratio and uniformity, a high
value indicates one could neither randomly select samples
across old and new classes nor from very few new classes.
Specifically, these metrics are formulated as:

Nov-C = |Cnew,select|/Knew, (7)

Nov-R =

Nselect∑

i=1

1(yi ∈ Cnew)

Nselect

, (8)

Nov-U = −

Knew∑

c=1

Nnew,i

Nselect

log
Nnew,i

Nselect

/ logKnew, (9)

Nov-I = Nov-R× Nov-U, (10)

where Nselect and Nnew,i are the numbers of samples in

total and those belonging to the i-th new class respectively.

Cnew,select denotes the selected new classes.

4.3. Adaptive Novel Sampling

In AGCD, we simultaneously consider three aspects: nov-

elty, informativeness and diversity of samples and propose

an adaptive sampling strategy called Adaptive-Novel,

as in Fig. 5 (b). (1) For the aspect of novelty, as the ini-

tial labeling condition is severely imbalanced, we should

give priority to selecting samples from new classes. Mod-

els’ predictions ŷi are proxies of samples’ novelty. (2) For

the aspect of diversity, we uniformly select samples from

novel classes, i.e., at each round, we select ⌊b/Knew⌋ sam-

ples in each new class based on the model’s prediction. (3)

For the aspect of informativeness, we choose Margin [35]

as the uncertainty metric. Selecting the most uncertain or

informative samples [36, 38] has been a consensus in the lit-

erature of AL. However, new classes are initially fully unla-

beled, and clusters of new classes might be unstable and bi-

ased [2], please refer to visualizations of the appendix, thus

including difficult samples at early rounds to biased clusters

hinders training. Here, we name two types of samples of

novel classes, the most ambiguous and informative samples

are named informative novel samples while the most cer-

tain ones are called confident novel samples. We devise an

adaptive mechanism, where models select confident novel

samples with minimum uncertainties to rectify and stabi-

lize novel clusters at initial rounds. While at later rounds,

informative novel samples with maximum uncertainties are

selected to refine decision boundaries and further improve

the performance.

In our method, we are expected to capture which type

of samples are more important to the current model. To

achieve this goal, we offer a heuristic criterion, where we

regard the stability of label mapping M (as in Sec. 4.4) be-

tween model predictions and ground truth as the stability of

the clusters, especially for new classes. If at round k, the

change of M between the start and end epochs is negligi-

ble, the clustering is deemed stable and we can transfer to

sample informative novel samples from round k + 1.

4.4. Stable Label Mapping Algorithm

As the queried labels could not be directly used, one should

perform label mapping to “translate” ground truth labels

to the model’s label space. as in Fig. 5 (c). We propose

to calculate the mapping function from ground truth to the

model’s perspective via Hungarian algorithm [26], similar

16894



Table 2. Comparative results of various methods with 5 rounds of active category discovery on generic datasets. Our method outperforms

several uncertainty-based (Unc.) and representative/diversity-based (Rep./Div.) methods. Mean results over three runs are reported.

Type AL Strategies
CIFAR10 CIFAR100 ImageNet-100

All Old New All Old New All Old New

Baseline
w/o AGCD 74.22 90.80 70.07 62.62 68.46 56.78 72.56 87.00 58.12

Random 82.74 93.05 80.16 67.28 74.52 60.04 79.16 89.40 68.92

Unc.

Entropy [46] 76.25 95.55 71.43 64.59 73.94 55.24 75.96 91.04 60.88

LeastConf [46] 78.32 96.00 73.90 65.63 76.74 54.52 76.82 91.92 61.72

Margin [35] 92.34 94.35 91.84 69.08 75.58 62.58 80.46 92.40 68.52

Rep./Div.

KMeans [30] 91.18 93.10 90.70 66.70 72.66 60.74 78.18 90.08 66.28

CoreSet [37] 85.51 94.95 83.15 65.72 77.64 53.80 78.08 91.92 64.24

BADGE [3] 92.31 94.75 91.70 67.22 73.70 60.74 81.48 92.68 70.28

Ours Adaptive-Novel 93.15 94.55 92.80 71.25 75.72 66.78 83.34 90.20 76.48

to Eq. (6). However, we can only perform label mapping us-

ing accessible labeled data, i.e., Dt
l = Dt−1

l ∪Dt
q at round t,

which is very limited, especially for new classes, and could

bring about unstable results. To alleviate this, we maintain

an exponential moving average (EMA) [17, 40, 56] of the

model, and compute the label mapping function utilizing

the EMA model’s predictions on Dt
l = Dt−1

l ∪ Dt
q:

Mt = argmax
m∈P(Call)

1

|Dt
l |

∑

i∈Dt

l

1(m(yi) = ŷema
i ), (11)

where yi and ŷema
i are ground truth and predicted labels by

EMA models. P(Call) is the permutation across all classes

Cold ∪Cnew. Mt is a one-to-one mapping between two sets

of classes. Then the mapped label of each query is ymap
i =

M(yi). Let Dt
q,map denote the query dataset after label

mapping, the mapped labeled data is Dt
l = Dt−1

l ∪Dt
q,map.

5. Experiments

5.1. Experimental Setup

Datasets. We construct AGCD on six datasets as shown

in Table 1. For each dataset, Kold classes are selected as

“old” classes, while the remaining Knew classes are “new”

classes. We then sub-sample 20% of the training samples in

Kold as the initial labeled dataset Dinit
l , while all remaining

samples constitute the initial unlabeled part Dinit
u for query-

ing in subsequent rounds. The construction of Dinit
l and Dinit

u

is similar to the literature of GCD [42, 47], but with fewer

labeling ratio which is closer to a real-world scenario.

Evaluation. We compare the accuracy of AGCD with

various query strategies. For fair comparisons, we use off-

the-shelf SimGCD [47] for training as SimGCD is effective

and the SOTA method in GCD. We employ model EMA

for all query methods. Models are evaluated on disjoint test

data using Eq. (6) in an inductive setting.

Query strategies for comparison. We compare our

method Adaptive-Novel with various AL strate-

gies [34, 38, 50], e.g., Random Sampling (Random),

uncertainty-based and representative/diversity-based sam-

pling methods. For the uncertainty-based methods, we com-

pare Maximum Entropy (Entropy) [46], and Least Confi-

dence (LeastConf) [46], Least Margin (Margin) [35].

The representative-based methods include KMeans Clus-

tering (KMeans) [30], Core-Set (CoreSet) [37], and

Batch Active learning by Diverse Gradient Embeddings

(BADGE) [3]. More details are in the Appendix.

AGCD pipeline and implementation details. Following

GCD [42, 47], we employ ViT-B/16 [11] pre-trained by

DINO [6] as the backbone, and fine-tune only the last trans-

former block for all experiments. The output of [CLS] to-

ken is chosen as the feature representation. The batch size

for the original dataset Dl and Du is 128. For queried sam-

ples, we use a smaller batch size Bq = 8. We implement

the base training stage like GCD for 200 epochs and choose

models as initialization for AGCD. At each round, we train

models on Dt
l and Dt

u by various query strategies for 15

epochs. All selection methods are trained using SimGCD

with an initial learning rate of 0.1 and a cosine annealed

schedule both in the base training stage and subsequent

AGCD stage. All experiments are conducted on NVIDIA

RTX A6000 GPUs. More details are in the appendix.

5.2. Comparative Results

Adaptive-Novel achieves stronger overall perfor-

mance. As in Table 2 and Table 3, our method out-

performs others consistently on various generic and fine-

grained datasets. For example, on CIFAR100, our method

outperforms Random by 3.97%/6.74%, and CoreSet by

5.53%/12.98% in terms of accuracy of all/new classes.

Overall, our method exhibits an obvious advantage, espe-

cially in the accuracy of new classes.
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Table 3. Comparative results of various methods with 5 rounds of active category discovery on fine-grained datasets. Our method outper-

forms several uncertainty-based (Unc.) and representative/diversity-based (Rep./Div.) methods. Mean results over three runs are reported.

Type Query Strategies
CUB Stanford Cars FGVC-Aircraft

All Old New All Old New All Old New

Baseline
w/o AGCD 50.17 58.95 41.18 30.12 46.71 14.12 35.01 37.53 32.49

Random 62.74 64.88 60.62 44.12 53.44 35.13 50.41 51.38 49.43

Unc.

Entropy [46] 62.82 69.52 56.19 42.40 53.75 31.44 43.89 51.92 35.86

LeastConf [46] 61.48 66.12 56.87 45.82 55.32 36.65 44.91 50.42 39.40

Margin [35] 65.08 68.41 61.79 46.03 57.67 34.79 51.37 52.46 50.27

Rep./Div.

KMeans [30] 61.30 68.27 54.40 40.79 52.99 29.03 51.58 51.08 52.07

CoreSet [37] 63.44 65.95 60.96 42.52 52.00 33.37 45.03 51.68 38.38

BADGE [3] 65.84 69.00 62.71 45.82 54.41 37.53 52.03 51.68 52.37

Ours Adaptive-Novel 66.62 66.54 66.70 48.36 57.73 39.34 53.74 51.50 55.98

Table 4. Novelty metrics of all the selected data over 5 rounds on

CIFAR100 and Stanford Cars.

AL Strategies
CIFAR100 Stanford Cars

Nov-C Nov-R Nov-U Nov-I Nov-C Nov-R Nov-U Nov-I

Random 1.00 0.52 0.97 0.50 0.93 0.57 0.96 0.55

Entropy 0.90 0.44 0.91 0.40 0.85 0.64 0.92 0.59

Margin 0.96 0.63 0.95 0.60 0.90 0.66 0.93 0.61

CoreSet 0.96 0.61 0.94 0.57 0.89 0.69 0.94 0.65

BADGE 1.00 0.63 0.98 0.62 0.95 0.64 0.97 0.62

Ours 1.00 0.71 0.98 0.70 0.98 0.69 0.97 0.67

Adaptive-Novel achieves more balanced results be-

tween old and new classes. For all six datasets, the differ-

ence in accuracy between old and new classes of our method

is minimal, indicating that our method effectively addresses

the imbalanced issue in Sec. 3.2. One of the key insights is

to prioritize samples from new classes for annotation, which

helps to alleviate the inherent imbalanced labeling condition

of GCD. For example in CUB, the divergence of old and

new accuracy is 0.16%, while for other methods ranging

from ∼ 4% to ∼ 14%. And in ImageNet-100, our method

reduces the gap from ∼ 28% to 13.72%.

Adaptive-Novel significantly improves GCD with a

limited budget size. As in Table 3, when selecting only

∼ 2.5 samples per class for annotation, the accuracy of new

classes improves by 25.52%/25.22% on CUB/SCars, show-

casing the efficiency and practicality of AGCD.

Do more novel samples necessarily lead to better perfor-

mance? By comparing the results in Table 2, Table 3 and

Table 4, our method generally samples more novel samples

with more comprehensive class coverage, which contributes

to the remarkable results. However, on Scars, BADGE se-

lects more novel samples than Margin, but its performance

is worse. As a result, solely sampling more novel class sam-

ples does not necessarily work fine, it is also important to

consider the value of different samples.

Table 5. Ablations on three key factors, i.e., novelty, informative-

ness and diversity for sample selection in AGCD.

ID Novelty Informativeness Diversity
CIFAR100 CUB

All Old New All Old New

(a) ✗ ✗ ✗ 67.28 74.52 60.04 62.74 64.88 60.62

(b) ✓ ✗ ✗ 69.33 72.76 65.90 63.58 63.31 63.85

(c) ✓ ✓ ✗ 69.65 75.56 63.74 64.28 65.33 63.23

(d) ✓ ✓ ✓ 71.25 75.72 66.78 66.62 66.54 66.70

5.3. Ablation Studies

In this section, we implement extensive experiments to val-

idate the effectiveness of each component, including three

aspects for sample selection in Table 5, the adaptive mech-

anism in Fig. 6 and model EMA in Fig. 7.
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Figure 6. Ablation on adaptive sampling.

The effect of three factors: Novelty & Informativeness

& Diversity. In Table 5, (a) denotes Random, (b) is ran-

dom selection within new classes according to predictions,

(c) denotes sampling informative instances from the entirety

of samples predicted as new classes, and (d) is our method.

The difference between (c) and (d) is that (d) samples in-

formative instances in a class-wise manner, with ⌊b/Knew⌋
of each new class to ensure diversity. (b) outperforms (a)

by 2.05% and 0.84% on two datasets. (c) is slightly better

than (b) for considering informativeness. Compared with

(c), our method obtains consistent improvements in both

old and new classes (+1.21% and +3.47% in old and new

on CUB), indicating the importance of diversity.
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Figure 7. Ablation on model EMA.
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Figure 8. Confidence distribution before and after AGCD.

The effect of adaptive sampling. Our adaptive mecha-

nism selects confident novel samples at early rounds while

informative samples at later rounds. We compare our re-

sults with two singular baseline strategies in Fig. 6. Ours

consistently outperforms the other two strategies. For base-

line methods, informative sampling outperforms confident

sampling after five rounds. However, as shown in Fig. 6

(b), confident sampling works better at early rounds, which

aligns with our rationale in Sec. 4.3. That is, models require

more confident samples for early learning of stable clusters.

The effect of model EMA. As in Fig. 7 (b), we compute

the consistency of label mapping function computed on lim-

ited Dt
l and the whole test data. Results validate that EMA

provides a more stable and consistent M, which is suitable

for inductive evaluation, and obtains better results on vari-

ous datasets in Fig. 7 (a).

5.4. Further Analysis

Confidence consistency. Fig. 8 reveals that AGCD im-

proves confidence consistency between old and new classes.

Before AGCD, there was a noticeable gap between the con-

fidence distributions of new and old classes, with a peak

difference of ∼ 0.5. After AGCD, the peak gap is almost

reduced to zero. As a result, our method effectively ad-

dresses two issues of GCD including imbalanced accuracy

and confidence with an affordable annotation budget.

Table 6. Results of All Acc on CUB of various initial label ratios.

label ratio 0 0.01 0.05 0.1 0.2 0.3

w/o AGCD 14.15 18.12 27.68 37.49 50.17 58.49

Random 31.46 32.00 45.88 53.16 62.74 66.45

Entropy 32.02 36.95 46.32 53.78 62.82 60.55

Ours 33.36 38.73 46.88 55.30 66.62 69.47

Table 7. Results on CUB with various budge sizes per round b.

Models are trained with 3 AGCD rounds.

b 30 50 100 300 500

Random 52.92 56.44 58.54 66.78 72.68

Entropy 52.90 54.47 58.87 68.69 70.87

Ours 53.40 56.50 59.86 69.59 73.56

Table 8. Results of AGCD with an unknown class number (esti-

mated class number) on ImageNet-100 and CUB.

Strategies
CUB ImageNet-100

All Old New All Old New

Random 60.68 63.31 58.08 77.86 90.34 65.38

Entropy 60.48 64.84 56.15 76.12 71.52 60.72

Ours 64.14 66.09 62.20 82.46 89.84 70.64

Various label ratios and budget sizes. We conduct ex-

periments with different settings, including various initial

labeling ratios in Table 6 and various budget sizes b in

Table 7. The proposed strategy Adaptive-Novel con-

sistently outperforms others across various settings, which

showcases the sample selection aspects are general and ro-

bust to different settings in AGCD.

Unknown class number. We also consider the scenarios

with unknown class number Knew in Table. 8. We perform

an off-the-shelf number estimation algorithm [42] to get an

estimation of Knew in advance, and use it to construct clas-

sifiers. Results in Table 8 show that Adaptive-Novel is

robust to the unknown class numbers, indicating the superi-

ority of our method. Details are shown in the appendix.

6. Conclusions

In this paper, we propose a new setting of Active Gen-

eralized Category Discovery (AGCD) to address the in-

herent and intractable issues of GCD. Moreover, we pose

two unique challenges in AGCD, i.e., new classes in un-

labeled data and the clustering nature of GCD. To solve

these challenges, we propose an adaptive query strategy

Adaptive-Novel considering novelty, informativeness

and diversity, which adaptively selects samples with proper

uncertainty. Besides, we further propose a stable label map-

ping algorithm to address the issue of different ordering of

label indices between ground truth labels and models’ label

space. Experiments show that our method achieves state-

of-the-art performance across different scenarios.
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