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Abstract

Both limited annotation and domain shift are preva-
lent challenges in medical image segmentation. Tradi-
tional semi-supervised segmentation and unsupervised do-
main adaptation methods address one of these issues sepa-
rately. However, the coexistence of limited annotation and
domain shift is quite common, which motivates us to in-
troduce a novel and challenging scenario: Mixed Domain
Semi-supervised medical image Segmentation (MiDSS). In
this scenario, we handle data from multiple medical cen-
ters, with limited annotations available for a single do-
main and a large amount of unlabeled data from multi-
ple domains. We found that the key to solving the prob-
lem lies in how to generate reliable pseudo labels for the
unlabeled data in the presence of domain shift with la-
beled data. To tackle this issue, we employ Unified Copy-
Paste (UCP) between images to construct intermediate do-
mains, facilitating the knowledge transfer from the do-
main of labeled data to the domains of unlabeled data.
To fully utilize the information within the intermediate do-
main, we propose a symmetric Guidance training strategy
(SymGD), which additionally offers direct guidance to un-
labeled data by merging pseudo labels from intermediate
samples. Subsequently, we introduce a Training Process
aware Random Amplitude MixUp (TP-RAM) to progres-
sively incorporate style-transition components into inter-
mediate samples. Compared with existing state-of-the-art
approaches, our method achieves a notable 13.57% im-
provement in Dice score on Prostate dataset, as demon-
strated on three public datasets. Our code is available at
https://github.com/MQinghe/MiDSS
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Figure 1. The upper figure illustrates SSMS, UDA, and MiDSS.
The lower figure shows the comparison between different methods
on the labeled domain (BIDMC) [23] and other domains.

1. Introduction

Semi-supervised medical image segmentation (SSMS) has
aroused lots of attention in recent years, due to its advan-
tage of improving performance while reducing the labeling
burden [13, 20, 21, 43]. Surprisingly, the performance of
semi-supervised methods [12, 22] is sometimes close to or
even better than that of its upper bound—supervised meth-
ods [8, 32]. With 1) only a few labeled data as guidance, and
2) the development of unsupervised learning techniques,
e.g., contrastive learning [18], SSMS is becoming a promis-
ing direction to utilize unlabeled data. In traditional SSMS
tasks, it is typically assumed that labeled and unlabeled data
come from the same distribution [1, 3, 42]. In this case, the
model applies the information gained from labeled data di-
rectly to predict pseudo labels for unlabeled data.

Despite their success, we notice a significant yet eas-
ily underestimated issue: During clinical data collection,
do we really check and guarantee, whether each unlabeled
sample belongs to the same distribution as labeled sam-
ples? For example, given a certain amount of labeled data
collected and well annotated from a typical center, since
unlabeled data are easily accessed and collected, when the
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physicians have a massive number of unlabeled data, they
possibly lack sufficient time to verify whether the data be-
longs to the same distribution [10, 29].

As this dilemma mentioned above, which refers to “do-
main shift” [16, 38], could cause a large performance de-
generation, we should pay more attention to this issue dur-
ing our development of a general SSMS model. A more
practical setting could be: given labeled data from a con-
sistent distribution, the unlabeled data is allowed to come
from the same distribution or even multiple different dis-
tributions. It is important to note that this issue could not
be directly solved by current unsupervised domain adapta-
tion (UDA) methods. Although UDA is promising to ad-
dress domain shift, these methods [6, 11, 30, 41] demand
abundant labeled source domain data, which is the primary
reason for the existence of SSMS.

Despite the significance of the domain shift issue in
SSMS, according to our best knowledge, our work is first to
attempt to investigate this issue, which we termed as Mixed
Dmains Semi-supervised medical image Segmentation (ab-
breviated as MiDSS in our paper). As illustrated in Fig. 1,
confronted with the coexistence of limited annotation and
domain shift, it is challenging to effectively utilize a large
quantity of unlabeled medical images from multiple do-
mains. Additionally, from the lower figure in Fig. 1, we
found that achieving satisfactory results in our setting is dif-
ficult when relying solely on SSMS or UDA methods.

The key to addressing the problem lies in how to gen-
erate reliable pseudo labels for unlabeled data, especially
in the presence of domain shift. However, the domain gap
among training samples results in the model producing poor
pseudo labels for unlabeled data. Thus, our key insight is
first to construct several intermediate domains among origi-
nal domains to narrow the domain gap, and then emphasize
knowledge transfer approaches upon these constructed do-
mains. CutMix [44], also referred to as Copy-Paste (CP), is
a simple yet highly effective technique for generating inter-
mediate samples by embedding patches from labeled sam-
ples into unlabeled samples along a single direction. To
fully leverage the data generation capability of CP, we em-
ploy a Unified Copy-Paste (UCP) approach. UCP generates
a great quantity of diverse intermediate samples by unified
applying both embedding directions between labeled and
unlabeled samples, narrowing the domain gap and effec-
tively mitigating the issue of error accumulation.

Besides, the intermediate domains may not align per-
fectly with the domains of the unlabeled data. Solely train-
ing within the intermediate domains neglects the model per-
formance on the unlabeled data, which are of great inter-
est. The information from intermediate domains should
be harnessed to promote the model to generate high qual-
ity pseudo labels for unlabeled data. Moreover, medical
images of the same organ or lesion often exhibit similar

structures [37], with stylistic differences being the primary
source of domain shift [24]. Local semantic mixing meth-
ods (e.g., CP) fail to address these differences, leading to
a lack of stylistic transition in intermediate domains. Ad-
ditionally, it is crucial that an aggressive stylistic transition
hinders the gradual construction of intermediate domains.

Therefore, to fully harness the information from in-
termediate domains and ensure comprehensive and stable
knowledge transfer, we propose a Mixed Domains Semi-
supervised medical image segmentation approach. In terms
of training strategy, we design Symmetric Guidance train-
ing strategy (SymGD), which is composed of guidance from
unlabeled data to intermediate samples and vice versa. This
dual-perspective integration of pseudo labels enhances the
precision of guidance. Concerning intermediate samples,
we introduce a Training Process aware Random Ampli-
tude MixUp module (TP-RAM) to promote smooth stylistic
knowledge transfer. Our main contributions are three folds:
• We investigate a new yet underestimated semi-supervised

medical image segmentation setting (namely MiDSS).
• A novel SymGD training strategy based on UCP, pro-

motes the training on the unlabeled data with intermediate
domains information.

• A TP-RAM module to make domain knowledge transfer
comprehensive and stable.
Extensive experiments validate the effectiveness of our

method on three public datasets. For example, on Prostate
dataset, we achieved a remarkable Dice score improvement
of 13.57% compared with all state-of-the-art methods.

2. Related Work
Semi-supervised Medical Image Segmentation. Man-
ually annotating medical images is challenging and
costly [49]. Semi-supervised medical image segmentation
methods have shown promise in addressing limited-label
segmentation tasks. Entropy minimization and consistency
regularization are widely adopted techniques in this con-
text. Yu et al. [43] encouraged consistent predictions under
different perturbations. Luo et al. [26] proposed a dual-
task network that predicts pixel-wise segmentation maps
and geometry-aware level set representations. Li et al. [19]
introduced a shape-aware strategy using a multi-task deep
network that jointly predicts semantic segmentation and
signed distance maps. Wu et al. [40] addressed challenges
in SSMS by simultaneously enforcing pixel-level smooth-
ness and inter-class separation. Miao et al. [27] pointed
out the importance of algorithmic independence between
two networks or branches in SSMS. Unfortunately, existing
methods often face challenges when domain shift occurs,
causing decreased performance due to the shared distribu-
tion assumption between labeled and unlabeled data.

Unsupervised Domain Adaptation. UDA methods
train the model by leveraging abundant labeled source do-
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Figure 2. The overall framework of our method emphasizes domain knowledge transfer through data augmentation and training strategy.
We generate intermediate samples through UCP between labeled data and unlabeled data. During training, we gradually introduce style
transfer components to the intermediate samples, constructing intermediate domains at both semantic and stylistic levels. Further details
about UCP and TP-RAM are provided in Fig. 3 and Fig. 5. Moreover, we design a symmetric guidance for model training. In addition to
guiding from unlabeled data to intermediate samples, we merge unlabeled regions of intermediate samples to obtain the pseudo label of
unlabeled data from another perspective. The integration of pseudo labels through ensemble from two perspectives guides the prediction
of unlabeled data. Best viewed in color.

main data and unlabeled target domain data to achieve ap-
pealing performance in the target domain. In medical image
segmentation tasks, domain shift issues arise from varia-
tions in device parameters, disease severity, imaging prin-
ciples, etc. Thus, UDA plays a crucial role in address-
ing these issues. Adversarial learning based UDA meth-
ods achieve alignment at multiple levels to narrow domain
gap, including input alignment [5, 30] and feature alignment
[11, 15, 35, 47]. Self-training based UDA methods [46, 48]
train the model by generating reliable pseudo labels for un-
labeled data. Methods like [7, 41] promote domain knowl-
edge transfer by generating intermediate domains. These
methods typically rely on a sufficient amount of source do-
main data and focus on a single target domain, making it
challenging to be effective in the MiDSS scenario.

Data Augmentation via Copy-Paste. Copy-paste
(CP) [44] involves pasting the content of a particular re-
gion of one image onto the corresponding region of another
image, creating a new image that retains the semantic infor-
mation from both original images. Compared to other pixel-
level fusion strategies, such as MixUp [45], CP excels in
preserving and blending semantic information from source
images. In contrast, MixUp combines global source images
proportionally, potentially leading to ambiguity issues when

pixels from different classes are blended. Therefore, CP
is a more suitable augmentation technique for medical im-
age segmentation tasks. In line with this research direction,
BCP [2] takes into account the dual embedding directions
between unlabeled and labeled samples, randomly select-
ing one of them to generate intermediate samples. To mit-
igate domain shift, previous works [2, 14] employed CP to
transfer knowledge from labeled data to unlabeled data by
generating intermediate samples. Despite the progress, they
fall short in fully leveraging information from intermediate
domains, leading to sub-optimal transfer effects.

3. Method
In the MiDSS scenario, the domain gap exists among im-
ages originating from K data centers {Di}Ki=1. The training
set comprises N labeled images {(xi, yi)}Ni=1 from a single
domain Dj ∈ {Di}Ki=1 and M unlabeled images {ui}Mi=1

from multiple domains D1, . . . ,DK , where M > N . The
image resolution of H × W × D sequentially represents
height and width and channel, and yi ∈ {0, 1}H×W×C is
the ground truth of xi, where C is the number of class. We
aim to train a model based on the aforementioned training
set, capable of delivering outstanding segmentation perfor-
mance across all domains with or without labeled data.
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Figure 3. The illustration of UCP between images. Cut refers
to splitting the image into two parts according to Mα, while Mix
implies merging two parts of images back together.

Based on the mean teacher framework [34], for each la-
beled data x, teacher model f t generates probability map
pw and pseudo label p̂ for weakly augmented unlabeled data
uw, guiding the student model fs in making predictions ps

for strongly augmented unlabeled data us:

xw = Aw(x);uw = Aw(u);us = As(u),

pw = f t(uw); ps = fs(us); p̂ = argmax(pw),
(1)

where argmax(·) applied to probability distributions pro-
duces valid “one-hot” probability distributions, and f t is
updated by the EMA of fs [34]. The weak augmentation
Aw includes cropping, rotation, flip, and elastic distortion,
while the strong augmentation As builds upon Aw by in-
corporating non-geometric operations like color jitter and
Gaussian blurring [33, 36]. The overall framework of our
method is shown in Fig. 2.

3.1. Intermediate Samples Generation by UCP

Given a pair of labeled data (xw, yw) and unlabeled data
(us, pw, p̂), we simultaneously apply both embedding di-
rections of CP. This enables unified Copy-Paste (UCP) be-
tween labeled and unlabeled data with distribution discrep-
ancy. Through this approach, we obtain intermediate sam-
ples along with their pseudo-labels and probability maps:

us
in = xw ⊙Mα + us ⊙ (1−Mα),

pwin = yw ⊙Mα + pw ⊙ (1−Mα),

p̂in = yw ⊙Mα + p̂⊙ (1−Mα),

us
out = us ⊙Mα + xw ⊙ (1−Mα),

pwout = pw ⊙Mα + yw ⊙ (1−Mα),

p̂out = p̂⊙Mα + yw ⊙ (1−Mα),

(2)

where Mα ∈ {0, 1}W×H is a randomly generated one-
centered mask, indicating the region for CP operation. In
this context, 1 indicates an all-one matrix, and ⊙ means
element-wise multiplication. Referring to Fig. 3, the illus-
tration explains UCP between images, with the same oper-
ation applied to both probability maps and pseudo labels.

(a) SSMS (b) SSMS with UCP
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Figure 4. The results depict the quality of pseudo labels in a
SSMS method (FixMatch) with and without UCP, utilizing 40 la-
beled data from the BIDMC domain in Prostate dataset [23]. Each
colored bar represents samples from different domains, with the
bar height indicating the quality of pseudo labels generated by the
model for unlabeled data from that domain.

3.2. Symmetric Guided Training with UCP

In the case of a labeled data (xw, yw) and unlabeled data
(uw, us) pair, we aim to facilitate the transfer of knowledge
from the labeled domain while maximizing the extraction
of latent information from the unlabeled data.

During the training phase, the teacher model firstly pre-
dicts uw to generate probability map pw and pseudo label
p̂ for us. Then we employ UCP between (xw, yw) and
(us, pw, p̂) to generate intermediate samples (us

in, u
s
out),

probability maps (pwin, p
w
out) and pseudo labels (p̂in, p̂out)

by Eq. (2). We set weight map w to indicate whether the
pseudo label is reliable:

wi = 1(max(pwi ) ≥ τ), (3)

where wi is ith pixel of w, and τ is a pre-defined confidence
threshold used to filter noisy labels. The indicator function
is denoted as 1(·). The pseudo labels p̂in and p̂out will
be used as the supervision to guide the student model in
predicting psin and psout for us

in and us
out:

Lin = Lce(p̂in, p
s
in, win) + Ldice(p̂in, p

s
in, win),

Lout = Lce(p̂out, p
s
out, wout) + Ldice(p̂out, p

s
out, wout),

(4)
where Lce and Ldice respectively represent the cross-
entropy loss and dice loss, which are formulated as:

Lce(y, p, w) = − 1

H ×W

H×W∑
i=1

wiyi log pi,

Ldice(y, p, w) = 1−
2×

∑H×W
i=1 wipiyi∑H×W

i=1 wi(p2i + y2i )
,

(5)

where pi, yi denote the probability of foreground and
pseudo label of the ith pixel, respectively.

The supervision provided by the fusion of p̂ with yw to
psin and psout effectively promotes the model training in the
intermediate domains, facilitating adaptation to the domains
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Figure 5. The illustration of TP-RAM. Fast Fourier transform
(FFT) extracts the amplitude and phase maps of xw and yw. The
low-frequency regions (determined by Mβ) of the two phase maps
are mixed. Through inverse Fast Fourier transform (IFFT), xu is
synthesized, preserving consistent semantics while introducing a
different style compared to xw.

of unlabeled data. With the assistance of UCP, the quality
of pseudo labels for unlabeled data in each domain is signif-
icantly improved as shown in Fig. 4. However, this single-
direction supervision lacks further utilization of informa-
tion acquired in the intermediate domains, resulting in sub-
optimal performance in the domains of unlabeled data. To
address such limitation, we design a Symmetric Guidance
training strategy (SymGD) to fully utilize the information
from the intermediate domains. In addition to the consis-
tency mentioned above, we also explore the direct guidance
of unlabeled data through intermediate domain information.

Similarly, we employ Mα to mix xw and uw, generat-
ing intermediate samples uw

in and uw
out. The teacher model

predicts them to generate pseudo labels p̂win and p̂wout. We
merge the unlabeled regions of the pseudo labels:

p̂mg = p̂wout ⊙Mα + p̂win ⊙ (1−Mα). (6)

We obtain the pseudo label for us from the pseudo la-
bels of intermediate samples, then integrate it with pw to
provide more accurate guidance for the prediction of the
student model on us. The weight map wens of p̂mg is de-
termined as follows:

wens = (1− (p̂⊕ p̂mg))⊙ w ⊙ wmg, (7)

where ⊕ is the pixel-wise XOR operator to indicate the con-
sistency between pseudo labels from two perspectives, and
w and wmg represent the weight map of p̂ and p̂mg respec-
tively. The loss of such direction can be defined as:

Lsym = Lce(p̂
mg, ps, wmg) + Ldice(p̂

mg, ps, wmg), (8)

To generate reliable pseudo labels for unlabeled data
from the perspective of intermediate samples, it is neces-
sary that the model performs well in the intermediate do-
main. Therefore, the guidance from p̂mg to ps maintains
a relatively low weight in the early stages of training and
rapidly increases in the middle to later stages.

3.3. Style Transition in Intermediate Samples

The intermediate sample generation method based on UCP
primarily focuses on local semantic blending while over-
looking the transition of stylistic differences between dif-
ferent domains. Distribution information (i.e., style) is typi-
cally represented in low-frequency components, while edge
information is often found in high-frequency components
[24]. By interpolating low-frequency information between
data from different domains, amplitude MixUp generates
samples with a new style. Then we mix these samples with
uw by UCP to introduce style-transition components in the
intermediate domains.

However, arbitrary style transfer is not conducive to the
stable model learning of the intermediate domain. We aim
for the intermediate samples to exhibit a gradual transi-
tion in style between domains during the training process
without compromising the diversity introduced by random
MixUp. Therefore, we propose Training Progress aware
Random Amplitude Mixup (TP-RAM).

Overall, as exhibited in Fig. 5, we obtain the frequency
space signals of each channel of the image x through Fast
Fourier transformation F as follows:

F(x)(u, v) =

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v), j2 = −1.

(9)
Let FA,FP be the amplitude and phase components
of F . For a pair of labeled and unlabeled data pair
(xw, uw), we obtain their amplitude (FA(xw),FA(uw))
and phase (FP (xw),FP (uw)). After that, we blend the
low-frequency information of FA(uw) into FA(xw), and
obtain a new image xu through inverse Fast Fourier trans-
formation F−1 as follows:

xu = F−1[Mβ⊙FA(uw)+(1−Mβ)⊙FA(xw),FP (xw)],
(10)

where Mβ is a mask with values of 0 except in the cen-
tral 2βW × 2βH region, where the values range from 0
to Φ, indicating the mixing ratio for low-frequency ampli-
tude. Φ is a parameter that increases during model training:
Φ(t) = t

ttotal
, where t denotes the current training itera-

tion and ttotal is the maximum training step, controlling the
gradual enhancement of low-frequency components of un-
labeled data in the intermediate samples.

3.4. Loss Function

For each pair of labeled and unlabeled data, the overall
training objective function consists of two parts. The super-
vised loss is trivial, while the unsupervised loss is calculated
through consistency regularization of symmetric guidance:

Ltotal = Ls + λ(Lin + Lout + λLsym), (11)

where λ is a weight coefficient decided by a time-dependent
Gaussian warming-up function: λ(t) = e−5(1−t/ttotal).
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Table 1. Comparison of different methods on Fundus dataset. #L represents the number of labeled samples. In the line of Upper bound,
* denotes the Upper bound using all training samples in a domain as labeled data. ↑ indicates that a higher value corresponds to better
performance, while ↓ suggests the opposite. The best performance is marked as bold, and the second-best is underlined.

Task Optic Cup / Disc Segmentation

Method #L DC ↑ DC ↑ JC ↑ HD ↓ ASD ↓
Domain 1 Domain 2 Domain 3 Domain 4 Avg. Avg. Avg. Avg.

U-Net 20 59.54 / 73.89 71.28 / 74.23 50.87 / 64.29 35.61 / 63.30 61.63 52.65 48.28 28.86
UA-MT MICCAI’19 20 59.35 / 78.46 63.08 / 74.45 35.24 / 47.73 36.18 / 55.43 56.24 47.00 48.64 31.35
FDA CVPR’20 20 76.99 / 89.94 77.69 / 89.63 78.27 / 90.96 64.52 / 74.29 80.29 71.05 16.23 8.44
SIFA TMI’20 20 50.67 / 75.30 64.44 / 80.69 61.67 / 83.77 55.07 / 70.67 67.78 54.77 20.16 10.93
FixMatch NeurIPS’20 20 81.18 / 91.29 72.04 / 87.60 80.41 / 92.95 74.58 / 87.07 83.39 73.48 11.77 5.60
CPS CVPR’21 20 64.53 / 86.25 70.26 / 86.97 42.92 / 54.94 36.98 / 46.70 61.19 52.69 34.44 26.79
CoraNet TMI’21 20 61.64 / 87.32 65.56 / 87.05 66.12 / 83.54 49.01 / 77.73 72.25 60.50 20.52 10.44
UDA-VAE++ CVPR’22 20 55.01 / 80.76 68.87 / 85.94 63.23 / 84.92 68.42 / 80.89 73.51 61.40 17.60 9.86
SS-Net MICCAI’22 20 59.42 / 78.15 67.32 / 85.05 45.69 / 69.91 38.76 / 61.13 63.18 53.49 44.90 25.73
BCP CVPR’23 20 71.65 / 91.10 77.19 / 92.00 72.63 / 90.77 77.67 / 91.42 83.05 73.66 11.05 5.80
CauSSL ICCV’23 20 63.38 / 80.60 67.52 / 80.72 49.53 / 63.88 39.43 / 49.43 61.81 51.80 41.25 23.94
Ours this paper 20 83.71 / 92.96 80.47 / 89.93 84.18 / 92.97 83.71 / 93.38 87.66 79.10 8.21 3.89
Upper bound * 85.53 / 93.41 80.55 / 90.90 85.44 / 93.04 85.61 / 93.21 88.46 80.35 7.41 3.70

GTOursCauSSLBCPSS-NetUDA-VAE++CoraNetCPSFixMatchSIFAFDAUA-MTU-Net

Figure 6. Visual results from Fundus dataset. The first row shows results for a test sample from the labeled domain (Domain 1), and the
second row displays results for one from another domain (Domain 4). Red and green represent the Optical Cup and Disc, respectively.

Noting that the coefficient λ2 for Lsym increases relatively
slowly in the early stages of training because the quality of
pseudo labels generated through mergence depends on the
effective training of Lin and Lout.

3.5. Discussion of Inference and Parameter Size

Following previous work [34], our method consists of two
models, both implemented based on U-Net [28], without
introducing any additional network structures. We pro-
mote domain knowledge transfer through a training strat-
egy and data augmentation to mitigate error accumulation
in SSMS caused by domain shift. During the testing phase,
given a test image xtest, we obtain the probability map
ptest = fs(xtest) through the student model and subse-
quently derive the segmentation result. The inference pa-
rameters only involve those from the student model, result-
ing in efficiency comparable to U-Net [28].

4. Experiments
4.1. Datasets

Fundus dataset [39] comprises retinal fundus images col-
lected from four medical centers, primarily for optic cup
and disc segmentation tasks. Each image has been cropped
to form a region of interest with a 800×800 bounding-box.

We resize and randomly crop images to 256× 256.
Prostate dataset [23] contains prostate T2-weighted

MRI data (with segmentation mask) collected from six dif-
ferent data sources out of three public datasets. We ran-
domly split the dataset into training and testing sets based
on a ratio of 4 : 1, with each 2D slice resized and randomly
cropped to 384 × 384. Labeled samples are selected from
consecutive slices within cases, with at most one case of in-
tersection and no slice intersection with unlabeled samples.

M&Ms dataset [4] contains 320 subjects scanned by
four different magnetic resonance scanner vendors, primar-
ily for the left ventricle (LV), left ventricle myocardium
(MYO), and right ventricle (RV) segmentation tasks. Only
the end-systole and end-diastole phases are annotated. We
divide the data with annotation into training and testing sets
following the same criteria as Prostate dataset. Each slice is
resized and randomly cropped to 288× 288.

There are 20 labeled data in Fundus dataset and M&Ms
dataset, and 40 labeled data in Prostate dataset. We nor-
malized the data to [-1,1]. The detailed dataset partition
information is presented in the supplementary material.

4.2. Implementation Details

Our method is implemented based on Pytorch and an
NVIDIA GeForce RTX 4090 GPU. We set β = 0.01,
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Table 2. Comparison of different methods on Prostate dataset.

Task Prostate Segmentation

Method #L DC ↑ DC ↑ JC ↑ HD ↓ ASD ↓
RUNMC BMC HCRUDB UCL BIDMC HK Avg. Avg. Avg. Avg.

U-Net 40 31.11 35.07 20.04 38.18 19.41 26.62 28.41 23.24 95.11 65.84
UA-MT MICCAI’19 40 29.44 4.68 12.49 39.42 17.94 18.22 20.37 14.88 112.07 77.58
FDA CVPR’20 40 47.44 35.37 24.54 61.01 28.19 40.51 39.51 32.17 76.67 47.87
SIFA TMI’20 40 72.67 70.37 64.08 73.49 71.62 65.16 69.57 56.78 29.43 13.03
FixMatch NeurIPS’20 40 83.58 69.17 73.63 79.21 56.07 84.78 74.41 65.96 24.18 14.09
CPS CVPR’21 40 29.83 9.21 11.84 43.84 13.51 14.56 20.47 15.12 115.96 78.51
CoraNet TMI’21 40 69.43 31.16 16.29 69.33 24.66 22.16 38.84 31.48 67.91 44.98
UDA-VAE++ CVPR’22 40 68.73 69.36 65.49 67.19 63.29 65.15 66.54 52.80 34.20 15.48
SS-Net MICCAI’22 40 29.10 13.49 14.20 51.96 23.83 13.23 24.30 18.74 109.54 71.13
BCP CVPR’23 40 70.15 71.97 46.15 58.93 74.21 67.47 64.81 55.17 52.60 27.22
CauSSL ICCV’23 40 24.10 27.46 16.94 27.23 15.28 14.56 20.93 15.48 114.62 73.30
Ours this pape 40 88.76 86.35 87.61 88.34 88.62 88.20 87.98 80.21 10.36 4.20
Upper bound * 88.52 88.61 85.71 88.61 88.98 89.49 88.32 80.71 10.05 4.12

Table 3. Comparison of different methods on M&Ms dataset.

Task LV / MYO / RV Segmentation

Method #L DC ↑ DC ↑ JC ↑ HD ↓ ASD ↓
Vendor A Vendor B Vendor C Vendor D Avg. Avg. Avg. Avg.

U-Net 20 57.29 / 37.85 / 34.65 73.44 / 64.20 / 53.58 55.83 / 48.47 / 44.84 63.85 / 52.25 / 49.85 53.01 44.30 38.07 22.88
UA-MT MICCAI’19 20 38.02 / 25.51 / 14.94 61.85 / 54.27 / 47.33 43.13 / 35.66 / 28.54 41.89 / 38.25 / 26.11 37.96 29.14 72.35 40.84
FDA CVPR’20 20 61.66 / 36.32 / 34.71 80.67 / 70.99 / 56.75 73.80 / 63.62 / 58.36 77.23 / 68.87 / 64.33 62.28 53.33 25.99 16.10
SIFA TMI’20 20 63.97 / 34.64 / 37.25 66.46 / 44.97 / 43.22 56.52 / 39.63 / 38.55 59.57 / 40.63 / 40.26 47.14 34.96 25.01 11.45
FixMatch NeurIPS’20 20 87.26 / 77.78 / 77.14 91.06 / 82.78 / 79.07 87.84 / 80.07 / 78.03 90.86 / 81.75 / 81.84 82.96 73.99 6.21 3.51
CPS CVPR’21 20 46.40 / 29.01 / 16.70 71.48 / 63.08 / 49.39 44.38 / 39.43 / 32.42 47.71 / 40.75 / 29.75 42.54 33.82 58.30 34.94
CoraNet TMI’21 20 65.70 / 27.79 / 22.16 63.32 / 48.63 / 46.56 64.89 / 48.59 / 45.30 68.38 / 55.88 / 46.79 50.33 40.54 32.98 19.22
UDA-VAE++ CVPR’22 20 51.14 / 36.20 / 12.99 71.95 / 53.16 / 36.68 57.88 / 41.64 / 30.19 31.71 / 27.32 / 20.48 39.28 28.82 53.90 24.94
SS-Net MICCAI’22 20 48.98 / 27.02 / 20.65 59.67 / 52.69 / 40.86 54.92 / 41.40 / 39.62 55.04 / 52.07 / 35.88 44.07 35.89 49.50 32.55
BCP CVPR’23 20 85.91 / 73.82 / 78.08 85.66 / 74.85 / 76.04 61.61 / 54.05 / 51.87 76.57 / 62.22 / 79.16 71.65 62.67 30.91 18.22
CauSSL ICCV’23 20 40.20 / 21.93 / 10.46 50.99 / 42.66 / 31.94 41.05 / 34.00 / 29.95 53.78 / 37.92 / 30.44 35.44 26.73 72.90 37.99
Ours this paper 20 87.77 / 76.36 / 80.65 91.48 / 83.68 / 81.46 89.25 / 82.65 / 82.27 90.91 / 82.34 / 82.86 84.31 75.18 5.15 2.42
Upper bound * 91.37 / 83.61 / 84.13 92.33 / 85.12 / 84.43 92.20 / 84.43 / 84.56 92.08 / 83.78 / 83.77 86.82 78.64 4.32 2.14

τ = 0.95 as the default value in experiments. We use
Stochastic Gradient Descent (SGD) with a momentum of
0.9 and weight decay of 0.0001 as optimizer, with an ini-
tial learning rate of 0.03. The batch size is set as 8, in-
cluding 4 labeled data and 4 unlabeled data. The itera-
tion is set to 30,000 for Fundus dataset and 60,000 for
Postate and M&Ms dataset. In the testing stage, the fi-
nal segmentation results are determined by the student
model. We compare our method with other state-of-the-
art (SOTA) methods, including supervised methods such as
UA-MT [43], FixMatch [33], CPS [9], CoraNet [31], SS-
Net [40], BCP [2], and CauSSL [27] as well as domain un-
supervised adaptation methods like FDA [41], SIFA [6] and
UDA-VAE++ [25]. In each experiment, a small amount of
data from one domain is labeled (e.g., Domain 1 in Tab. 1),
while the remainder serves as unlabeled data. For the up-
per bound, we employ UCP in FixMatch, and use all avail-
able training data from a certain domain as labeled data,
providing the model with sufficient source domain infor-
mation. We adopt the Dice coefficient (DC), Jaccard co-
efficient (JC), 95% Hausdorff Distance (HD), and Average
Surface Distance (ASD) as evaluation metrics. Except for

SIFA, which uses ResNet blocks [17] for the generator and
decoder, all other methods use U-Net [28] as the backbone.

4.3. Comparison with State-of-the-Art Methods

Results on Fundus dataset. We conduct experiments on
Fundus dataset with only 20 labeled data, which is a dual
object segmentation task with overlapping regions. As
shown in Tab. 1, our method consistently outperforms other
approaches in all metrics, and exhibits a minimal gap from
the upper bound. Some SSMS methods exhibit perfor-
mance degradation due to error accumulation, to the extent
that their performance is even worse than training with la-
beled data alone. UDA methods face challenges in achiev-
ing effective knowledge transfer with limited labeling and
multiple target domains. The segmentation result examples
are shown in Fig. 6, demonstrating that our method achieves
superior segmentation for samples from the same domain as
labeled data and those from different domains.

Results on Prostate dataset. In the case of Prostate
dataset, which is a single object segmentation task, our
method demonstrates a more significant advantage and in-
creased robustness when trained with 40 labeled data. The
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Table 4. Ablation experiments on Fundus dataset.

Task Optic Cup / Disc Segmentation

Method UCP VanillaGD SymGD TP-RAM RAM DC ↑
Domain 1 Domain 2 Domain 3 Domain 4 Avg.

#1 ✓ 82.67 / 93.11 72.08 / 88.86 82.97 / 92.78 80.84 / 92.94 85.78
#2 ✓ ✓ 83.19 / 93.45 73.57 / 89.48 82.16 / 92.91 80.42 / 93.35 86.07
#3 ✓ ✓ 83.21 / 93.48 76.13 / 89.06 83.04 / 92.87 83.63 / 93.69 86.89
#4 ✓ ✓ 83.41 / 93.54 77.18 / 88.96 82.69 / 92.88 83.54 / 93.39 86.95
#5 ✓ ✓ ✓ 83.27 / 93.41 76.14 / 88.46 83.27 / 92.90 83.64 / 93.40 86.82
#6 ✓ ✓ ✓ 83.71 / 92.96 80.47 / 89.93 84.18 / 92.97 83.71 / 93.38 87.66

Table 5. Varying the low-frequency region size parameter β on
Fundus dataset.

β 0.1 0.05 0.01 0.005
Avg. DC ↑ 87.32 87.49 87.66 87.52

disparity from the upper bound is also minimal. Given
the larger differences between domains in Prostate dataset,
SSMS methods are notably influenced by more severe error
accumulation. UDA methods also demonstrate poor perfor-
mance in this scenario. The segmentation result examples
are presented in the supplementary material.

Results on M&Ms dataset. We conducted experiments
on M&Ms dataset using 20 labeled data. The results in
Tab. 3 demonstrate that our approach is effective in multi-
object segmentation tasks, achieving optimal performance.
Due to the abundance of samples in M&Ms dataset, the sub-
stantial increase in labeled data significantly enhances the
performance of the upper bound. The segmentation result
examples are presented in the supplementary material.

It is worth noting that while BCP considers the distri-
bution difference between labeled and unlabeled data in
SSMS, our method still exhibits significant advantages in
the scenario where there is distribution difference within
unlabeled data and between unlabeled and labeled data. We
also compare our method with more SSMS methods aimed
at mitigating distribution differences, and detailed analysis
results can be found in the supplementary material.

4.4. Ablation Study

In this paragraph, to validate the effectiveness of each com-
ponent, we conduct a series of ablation experiments on Fun-
dus dataset. The investigated settings are introduced as fol-
lows: 1) UCP: Generating intermediate samples based on
UCP, 2) VanillaGD: Guiding ps with p̂, 3) SymGD: Guiding
ps with mergence of p̂out and p̂in, 4) TP-RAM: Gradually
increasing the range of value for β, 5) RAM: β is uniformly
sampled from the distribution in the range from 0 to 1. The
results are shown in Tab. 4.

The Efficiency of SymGD. Compared to #1, #3 intro-
duces an additional guidance branch that guides the predic-
tions of unlabeled data by integrating pseudo labels from
dual perspectives. SymGD effectively leverages the inter-

mediate domain information, aiding the model in making
more accurate predictions for unlabeled data. In #2, we
use the pseudo label p̂ generated from the teacher model to
guide the student model’s prediction ps, and this straightfor-
ward additional consistency constraint has a limited impact
on the model performance improvement.

The Efficiency of TP-RAM. Moreover, in #4, we grad-
ually introduce stylistic transition components to interme-
diate samples, not limited to local semantic fusion. The
comprehensive and stable construction of intermediate do-
mains facilitates the transfer of domain knowledge from the
domain of labeled data to the domains of unlabeled data.
In #5, we replace the TP-RAM in our method with RAM,
introducing stylistic transition arbitrarily for intermediate
samples. Training with significant stylistic differences from
labeled data in the early stages is detrimental to the stable
construction of the intermediate domains, and compared to
#2, it might even harm the model’s performance.

In #6, we incorporate two new modules to form a unified
domain knowledge transfer framework, ultimately achiev-
ing the best performance in the MiDSS scenarios.

Size of Low-frequency Region in Mβ . We also explore
the relationship between the selection of low-frequency re-
gion size and model performance. Here, Mβ represents the
low-frequency region of an image with a size of 2βW ×
2βH , β ∈ {0.1, 0.005, 0.01, 0.005}. Tab. 5 reveals that the
model is quite robust to the choice of β. Overall, there is a
slight trend of performance improvement followed by a de-
cline, with the best performance achieved when β = 0.01.

5. Conclusion

In this paper, we explore a novel and practical setting,
MiDSS, which involves the simultaneous challenges of lim-
ited labeled data and domain shift. To address the issue of
declining pseudo label quality due to domain shift, we con-
struct intermediate domains by UCP. Additionally, we in-
troduce SymGD to enhance the utilization of intermediate
domains information. Considering the stylistic differences
between different domains, we design TP-RAM to intro-
duce comprehensive and stable style transition components
to intermediate domains. Extensive results on three datasets
demonstrate the effectiveness of our method.
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