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Abstract

In this paper, we showcase the effectiveness of optimizing
monocular camera poses as a continuous function of time.
The camera poses are represented using an implicit neural
function which maps the given time to the corresponding
camera pose. The mapped camera poses are then used for
the downstream tasks where joint camera pose optimization
is also required. While doing so, the network parameters —
that implicitly represent camera poses — are optimized. We
exploit the proposed method in four diverse experimental
settings, namely, (1) NeRF from noisy poses; (2) NeRF from
asynchronous Events; (3) Visual Simultaneous Localization
and Mapping (VSLAM); and (4) vSLAM with IMUs. In all
four settings, the proposed method performs significantly
better than the compared baselines and the state-of-the-art
methods. Additionally, using the assumption of continuous
motion, changes in pose may actually live in a manifold that
has lower than 6 degrees of freedom (DOF) is realized. We
call this low DOF motion representation as the intrinsic mo-
tion and use the approach in vSLAM settings, showing im-
pressive camera tracking performance. We release our code
at: https://github.com/qimaqi/Continuous-Pose-in-NeRF.

1. Introduction

The concept of motion, the change of position and orienta-
tion of an object in its surroundings, is fundamentally con-
tinuous in nature. This continuity is evident in the ways
we achieve, perceive and measure motion, with velocity
and acceleration being the most common measures for both
linear and angular motion. This idea of continuity is also
true for the 3D poses of navigating cameras. Often the
camera motion needs to be estimated from its measure-
ments — also known as the camera localization problem.
In most common settings, the inputs are RGB-only frames,
depth frames, asynchronous event streams, or a combina-
tion thereof. In some cases, these measurements are aug-
mented by Inertial Measurement Unit (IMU) outputs, which
measure a change in pose directly. In all those settings,
the camera motion is estimated via some optimization tech-
nique that searches SFE(3) pose parameters. While doing

S0, existing techniques choose to optimize a discrete set of
SE(3) parameters, ignoring the inter-frame continuity of
camera poses. This choice can be primarily attributed to the
otherwise difficulty in optimization.

While handling high-frequency IMUs or asynchronous
events in common practice, pose optimization at every mea-
surement time is avoided, for computational reasons. In-
stead, the measurements between two arbitrarily chosen
keyframes are accumulated before utilizing them. Then the
poses are optimized only for those keyframes. We argue that
this raises three major concerns: (i) inaccurate accumula-
tion of intermediate measurements; (ii) loss of fine-grained
motion details; (iii) lack of the continuous motion prior.

In order to address these concerns, we represent and op-
timize the pose of a moving camera as a continuous function
of time. Unlike classical state estimation method [2, 12, 35]
which models continuous pose with Gaussian Process or
B-spline, our neural pose function can be easily optimized
jointly with other task-specific implicit neural representa-
tion (INR) [30, 32, 39]. More precisely, for translation
v € R3 and rotation R(q) € SO(3) parameterized by

quaternions q € R* with ||q|| = 1, the continuous pose
of the monocular camera is given by,
[a;v] = fo (1), (D

where fy(.) is the contineous neural function parameterized
by 6 that maps the time ¢ € R to the pose in SFE(3). While
being simple, this representation has numerous benefits in-
cluding ease of optimization and its cosmopolitan applica-
bility. Some example applications are illustrated in Fig-
ure 1. In the following, we further discuss how our simple
approach addresses the previously raised concerns.

No error due to measurement accumulation: High fre-
quency or asynchronous measurements can be utilized di-
rectly without accumulation, integral, or rounding. We in-
fer the camera pose precisely at the measurement time. For
example, in the case of an event camera, each asynchronous
event’s pose is inferred precisely at the event time. Simi-
larly, in the case of IMUs, no motion integration before su-
pervision is required. These abilities protect our approach
against error injection due to any form of accumulation.
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Figure 1. We showcase the benefits of optimizing the poses as a continuous function of time in diverse settings. We conduct exhaustive
experiments on (a) rectifying inaccurate poses in RGB-only settings; (b) utilizing the asynchronous stream of events, (c) performing
vSLAM in RGB-D camera settings; (d) integrating high-frequency IMUs in vSLAM. All experiments use neural functions for both camera
poses and scene representations. Additionaly we exploit low dof motion representation in intrinsic motion frame 77.

Fine-grained motion details: By virtue of the continu-
ous representation, temporally fine-grained details of the
pose can be captured. This is particularly interesting with
high-frequency IMUs or asynchronous event cameras. Our
approach allows for the recovery of the pose at the very mo-
ment of measurement, which otherwise often is an ill-posed
problem and could only be interpolated with an assumed
smoothness and order.

Continuous motion prior: The inductive bias of contin-
uous monocular camera motion is meaningfully injected by
the proposed method. This resulted in very encouraging
results in our experiments. In particular, while denoising
the inaccurate camera poses and during the vSLAM experi-
ments, the benefits were evident under the standard settings
of BARF [27] and NICE-SLAM [63], respectively. It is
important to note that our representation offers first- and
second-order derivatives via auto-differentiation of the neu-
ral network. Consequently, quantities such as velocity and
acceleration do not require additional care. Thus the fusion
of IMU measurements is natural and straightforward.

In addition to the above, we further show the utility of
the neural pose in order to optimize the continuous pose by
decomposing each change in pose into a slowly changing
reference and a low DOF motion. We define this as the
intrinsic motion. In our experiments we observed that our
continuous pose representation improves the tracking per-

formance significantly in the vSLAM tasks. This can be
primarily attributed to the reasons mentioned above, which
serve to facilitate the optimization process. Inspired by the
fact that actual motion always possesses a lower degree of
freedom, we define the intrinsic motion frame as a coor-
dinate system that can express the camera motion with the
lowest dimensional manifold. For example: Rotational mo-
tion around a fixed axis can be expressed in the coordinate
system aligned with the rotational axis with only one de-
gree of freedom. A natural observation is that the relative
motion with respect to intrinsic motion is usually sparse,
moreover, the continuous motion tends to share the same
intrinsic motion frame which can be well modeled as a con-
tinuous function of time. By exploiting it we decompose
the camera relative motion with a low-dimensional intrinsic
motion [Ry,v;] and the rigid transformation from camera
frame to the intrinsic motion frame [R,, v, ] as follows:

[R’V] = [ROaVO][RlvVI]a 2

Our major contributions can be summarized as follows:
* We propose a simple yet effective way to represent the
monocular camera motion via a neural function of time
that can be optimized efficiently together with implicit
neural representations.
* We demonstrate the utility of the proposed representation
in four diverse applications with different camera setups,
including IMUs and moving event cameras.
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* Through exhaustive experiments, we demonstrate clear
benefits of the proposed representation over the existing
alternatives and classical method. These benefits include
ease of optimization, widespread use for different camera
and sensor types, and notable performance gain with no
additional effort.

* We further improve the full 6-DOF pose of monocular
camera by exploiting the sparsity of the intrinsic motion,
which fits neatly into the proposed framework of contin-
uous neural pose. The final pose thus obtained shows re-
markable improvement over the conventional baselines.

2. Related work
2.1. Camera Poses in NERF

NEREF [32] consists of joint optimization of the surface den-
sity and the rendered color given the images with known
camera rays. Consequently NERF models are highly sensi-
tive to camera pose errors [8, 27, 29, 55, 58, 59]. Recently
several works have tackled the pose error by jointly optimiz-
ing poses with the radiance field. [0, 7, 19, 27] optimizes
camera poses in bundle adjustment fashion in order to solve
the same issue. While these methods use the smooth pose
prior, the poses are still optimized as discrete variables. On
the other spectrum [55] optimizes noisy poses for sparse
camera views with the radiance fields opting for a different
class of applications. [3] enforces the inter-frame consis-
tency by incorporating monocular depth prior.

2.2. Camera Poses with IMUs

The inertial measurement unit (IMU) serves as a scene-
independent sensor that is the ideal complement to cameras
in order to achieve robustness in low texture, high speed,
and HDR scenarios. Fusing visual information and IMU
tightly [48] to estimate pose as discrete states is proposed
first by MSCKF [34] (an extended Kalman Filter (EKF)),
[25] further improves it with keyframes and bundle adjust-
ment. [11, 17,41, 56] improve in robustness compared to
feature matching by using the direct photometric error. [5]
propose fast and accurate IMU initialization based on MAP
estimation. Recent research has also focused on integrating
IMU and visual priors with neural network, e.g., the camera
pose is implicitly used for image deblurring [37] or video
stabilization [49]. [14] proposes neural inertial localization
with IMU alone for indoor scenes.

2.3. Camera Poses in Dense SLAM

Visual SLAM [10, 23, 43] is a key 3D vision application
where an agent camera is localized simultaneously while
building the map using visual information. We again focus
on methods in the context of radiance fields [1, 44, 53, 63,
64]. IMAP [53] is a recent seminal work which works on
RGBD images to optimize an implicit scene representation

with a single MLP network. It optimizes the camera pose
while representing them as discrete sets of parameters for
the keyframes. NICE-SLAM [63] improves on it by using
3D voxel features along with corresponding 2D image fea-
tures thus providing a better scene representation. Indeed
most approaches [26, 44, 47, 64] focus on improving the
scene representation for better localization and mapping or
with RGB-only input.

2.4. Camera Poses in Event Cameras

Unlike standard frame-based camera imaging, event cam-
eras provide image signals as asynchronous events in mi-
crosecond intervals [22]. Thus, it forms the perfect use
case for a continuous time representation of camera poses.
Similar to NERF-less SLAM [10], this is traditionally done
using variations of Kalman Filter with motion models [22,
33]. A recent work [62] represents camera tracking as a
function of time but uses a Levenberg-Marquardt optimiza-
tion directly on the sets of poses without intermediate rep-
resentation. Recently, there have been efforts to use event-
based radiance fields in the neural network [18, 24, 28, 46].
However, camera pose optimization as a function of time is
still not fully explored in the radiance field literature with
events.

2.5. Continuous Pose representation

While discrete-time representations are commonly em-
ployed in Simultaneous Localization and Mapping (SLAM)
tasks, they face challenges when integrating data from high-
frequency sensors like Inertial Measurement Units (IMUs)
and asynchronous events. [12] address this issue by propos-
ing representing the continuous-time state using temporal
basis functions such as B-spline basis.[2] model the contin-
uous state using Gaussian processes, defining continuous-
time priors through covariance functions.[40] leverage cu-
mulative cubic B-splines to mitigate rolling-shutter arti-
facts. Notably, spline-based continuous-time trajectory rep-
resentations have found application in laser-based SLAM
methods [21, 38].

3. Time-to-Pose Mapping Network
3.1. Architecture of the Proposed PoseNet

In order to learn time-to-pose mapping, we use 8-layer MLP
parameterized by f(6,,) with ReLU activation functions and
256-dimensional hidden units, which we refer to as pose-
network (PoseNet). PoseNet first embeds the time vari-
able into high-dimensional space using sinusoidal harmonic
functions [32]. The outputs of this network are [v, q]: trans-
lation vector v € R3 and the rotation represented by a
quaternion q € R*. Finally, we use the tanh activation in
the last layer to map output to the range [—1, 1], and nor-
malize it as a unit quaternion. We study different embed-
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ding dimensions and architectures in the context of NeRF
from the inaccurate pose, which is reported in Tables 3.
The best-performing embedding and architecture, in these
experiments, are then used for the other applications. Ad-
ditional information concerning network size and computa-
tional details is provided in the supplementary material.

3.2. Implementation Variances across Applications

The simplicity of PoseNet allows us to use it in diverse ap-
plications in a plug-and-play manner. In all applications
that we report in the following sections, we optimize the
PoseNet parameters 6, as a surrogate of the direct pose op-
timization. We denote the network parameters for the INR
of the scene as 6. In NeRF from inaccurate poses, the ob-
jective is to minimize the radiance field loss [27, 32] given
N images and corresponding timestamp ¢; for image ¢:

min ZHI 9 (s, F(Op, )] 3)

5‘1 D i—1

g(0s,T;) represents the mapping from the camera pose
T; to the RGB value, including ray composition and ra-
diance field model. In case of NeRF with asynchronous
events [46], N refers to the number of the sampled events.
Note that in both cases, we output the predicted trans-
formation and compose it with the initial pose: T; =
Tinit; © Trefine,- The refined transformation is obtained
as Trefine, = P(f(0p,1t;)), P(.) being the vector to rigid
transformation conversion operator.

In the task of Dense-SLAM tracking, for each tracking
iteration we optimize PoseNet with the following objective:

ep»ti)))+)‘p£p(li7p(f(9p>tz‘))))- “4)

mlnz (D;,P(f

We use the same geometric loss £, and photometric loss £,
as in NICE-SLAM [63]. D, I, represent depth and RGB
measurements for M sampled pixels respectively, obtained
via volume rendering.

3.3. Intrinsic Motion Frame

Within the neural dense SLAM application, we addition-
ally introduce intrinsic motion frame in order to improve
tracking within a low-dimensional manifold. This is ac-
complished through motion decomposition and enforcing
minimal DOF. More specifically, we use two PoseNet
fo(6p,), fr(6p,) in order to model the intrinsic motion
T, = [Ro, Vo], Tr = [Ry, V1], such that ' = T, o T;. Here,
T, is the transformation to the intrinsic frame or in short,
intrinsic transform. 77 then denotes the intrinsic motion.

Therefore we can rewrite Eq (4) as:

M
min Z(

) (Dj,fo( Po» ) fI( pI>s ))
poVpr i=1

[’P(Ijafo( Do ) fI( PI> ))
+‘Cd0f(fl( PIs 1)) o(fo( ;Dovti))'

Note that the operator P should be included for absolute
correctness in the function compositions in Eq (5). The
DOF loss L, is computed as follows:

* Stepl: Obtain [R;, v;] from intrinsic motion PoseNet f;
* Step2: Convert rotation matrix R; to Euler angles oy €

R3, normalize with angle of view 7, d; = 2a; /Y

* Step3: Normalize translation vector with vy = vy /||vz]|.
* Stepd: DOF Loss Lqo¢ = ||[cir, V1] 0-

We relax the £y norm to #; norm for optimization. In
steps 2 and 3, normalization also serves to balance transla-
tion and rotation components during optimization. We em-
ploy view angle normalization with the assumption that the
angle between two relative views in vSLAM tasks is always
smaller than half of the viewing angle. To handle the cases
where unconstrained intrinsic motion tends move to infin-
ity in cases of small rotation, we introduce an additional £1
regularization term for the translation £, = |v,|.

3.4. IMU fusion

Up to our knowledge we are the first to integrate IMU
data in NeRF + SLAM setting. The IMU fusion is
straightforward in PoseNet taking advantage of the auto-
differentiation of the neural network. We propose two dif-
ferent IMU fusion methods with details as follows:

Loose coupling. Given 3-axis angular velocity measure-
ment from gyroscope W = (&g, Wy, w,) We get the time step
from frequency At = l We can express the rotation an-

0

&)

gle to be At||@| around axis HwH [50]. This instantaneous
rotation from the local sensor between previous and current
timestamp can be represented as follows:

as = (S0 5y ) ©

By continuously integrating the measurements we can

get the rotation estimation at time ¢; with respect to £;_;
from gyroscope: q’ti = qti-1)qa. We add ¢4 10ss Lipose =
lgs, — q;,| into Eq 4, where q,, integrate all gyroscope mea-
surements from timestamps ¢;_1 to ¢;.
Tight coupling. However, simply integrating IMU infor-
mation leads to large drift and noise over time. As an im-
mediate consequence of our continuous pose representation
over time, we can directly fuse the angular velocity using
the quaternion derivative [50]:

4= 50(0). @
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Figure 2. Patch Reconstruction Color-coded
patch correspond to Fig 3.Note that patch 2D rigid
motion exhibits continuity over time (left to right)

Method ‘ Cat
| CE(pixel) | PSNR1 SR 1
BARF[2] 13.55 27.61 30%
B-spline 35.14 21.95 0%
Ours 0.01 37.00  100%
| Girl
BARF[2] 29.94 22.09 15%
B-Spline 39.08 1942 10%
Ours 6.92 3240 95%

Table 1. Image alignment experiment. Results of
average 20 sampled 2D rigid motion, CE refer to
Corner Error and SR refer to successful rate.

Thus we can supervise PoseNet by constraining the ja-
cobian with the measured angular velocity. We use ¢; loss
as Liigne = |§ — 2Q(@)] and jointly optimize it with the
tracking target function in Eq 4.

It is noteworthy that, in the aforementioned equation, our
PoseNet outputs pose with respect to the body frame rather
than the camera frame. Further details regarding the coor-
dinate change can be found in the supplementary materials,
along with an explanation of how acceleration is utilized.

4. Experiments
4.1. NeRF from Inaccurate Poses

We validate the effectiveness of our proposed method
through 2D planar image alignment experiments and 3D
scene experiments similar to BARF [27]. During this pro-
cess, BARF refines a discrete set of inaccurate camera poses
while our method leverages the continuous pose informa-
tion and is therefore less prone to local minima.

(a) BARF[27]

(c) Ours (d) GT

(b) B-Spline

Figure 3. Qualitative results of 2D planar Alignment. We report the results
of planar image alignment. Given input as ground truth (d) shown in Fig. 2,
the goal is to find the 2D rigid transformation for each patch and optimize the
entire neural image. Our method optimizes for accurate alignment and high-
fidelity image reconstruction, while baselines fail due to local minima.

4.1.1 Planar Image Alignment (2D)

We choose the same images as [7, 27] as shown in Fig 3. To
obtain a continuous rigid transformation, we initially ran-
domly sample 10 data points from 7' € SE(2), we then in-
terpolate a cubic spline along each dimension. Finally, we
interpolate on 7 uniformly spaced points at previous time
instants. As a result, the rigid transformation demonstrates
temporal correlation, as illustrated in Fig 2. The initialized
pose is identity with respect to center crop.

Experimental settings. We compare our method against
BAREF [27] and BaRF with B-spline. For the latter, we in-
troduce continuity by resetting the learned T € SFE(2) for
every 100 steps using B-spline interpolation. The learning
rate is 1e — 3 for translation and 2e — 4 for rotation. For the
B-Spline method we report with 5 knots placed time-wise
uniformly with degree = 3.

Results. The results are visualized in Fig 2,3. The align-
ment performance of BARF suffers from local minima,
resulting in sub-optimal performance. Experiments are
deemed successful if the corner error is below 1 pixel.
Although some patches correctly learn the transformation,
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(b) BARF [27] (¢) Ours & (0.448)  (0.391) | (0.318) (0.276) | (19.23) (19.95) | (0.492) (0.520) | (0.252) (0.238)

Figure 4. We introduce continuous errors
on the camera trajectories and perform pose
refinement in the NeRF setting. (a) Ini-
tial pose error; (b) results obtained using
BAREF [27] that uses a discrete set of poses;
(c) results obtained using our continuous
pose representation.

Method RE, TE] PSNR{ SSIMt LPIPS |
LE, C 13.62 4805  9.79 0.59 0.56
Sinusoidal(2), C 370 1584  14.05 0.66 0.20
Sinusoidal(5), C, 007 032 2725 091 0.05
Sinusoida(10), C 0.18 0.88  24.88 0.88 0.06
Sinusoidal(2), D 286 1053 1597 0.69 0.14
Sinusoidal(5), D 0.07 028 2730 0.92 0.06
Sinusoidal(10), D 0.07 028 2720 091 0.05
Sigmoid, D 1431 3721  11.28 0.67 0.55
Sinusoidal(10) c2f, D 14.74 49.07  9.78 0.60 0.60

Table 3. Ablation study. We investigate the effectiveness of our
PoseNet with diverse architecture. LE refers to linear encoder and
C, D refer to coupled and decoupled representations. RE, TE refer
to rotational and translation error. The best and second-best results
are in bold and underlined.

they do not effectively contribute to neighbouring patches.
Merely introducing B-spline directly does not work, as it
can over-smooth or under-smooth the poses, whereas our
proposed method successfully captures all rigid transforma-
tions resulting in high-fidelity neural image. Furthermore as
demonstrated in Table 1 our method performs consistently
well across 20 different trajectories.

4.1.2 Synthetic and Real NeRF (3D)

We explore the more challenging problem of learning 3D
Neural Radiance Field with inaccurate poses. For the syn-
thetic data, we render Lego [32] with a circular movement
as shown in Figure 4. The simulated camera orbits the Lego
model in the xy-plane, moving up and down at a constant
speed in the z-direction.

Table 2. Real data with unknown pose. Our PoseNet compared to BARF [27] for the
real dataset, simulating different camera moving speeds. Whenever BARF diverges and
provides very inaccurate results, we consider them failures and denote them as *. The av-
erage across all experiments is provided for all (and averaged only when BARF succeeds).
In addition to the 12/12 (Ours) vs. 9/12 (BARF) success rate, PoseNet performs better than
BAREF also in cases when BARF succeeds.

Experimental settings. Similar to the 2D experiment, we
introduce temporal correlation between neighboring S E(3)
disturbances with interpolation. We use spherical linear in-
terpolation for rotation. The introduced error corresponds
to 55° in rotation and 110% in translation. For real data,
we use the Fern, Fortress, Orchids, and Room datasets in
LLFF [31], since these sequences allow us to perform ex-
periments with varying numbers of images, thus simulating
fast-moving cameras. Unlike in the synthetic case, we do
not use any pose initialization in the real data experiments.
Following [27] we report the MSE distance and rotational
angle after alignment using Procrustes analysis for registra-
tion evaluation and PSNR, SSIM [57] and LPIPS [61] to
evaluate view synthesis quality.

Results. We report our experimental results in Table 3 and
Table 2, for synthetic and real data, respectively. In Ta-
ble 2, the proposed continuous pose representation clearly
offers better results than the discrete BARF. Ablation exper-
iments further illustrate that the rotation and translation de-
coupled representation, i.e., two MLPs instead of one, per-
forms better, offering the best results with the embedding
frequency bands F' = 5. In real data with completely un-
known camera poses, PoseNet performs significantly better
than BARF. These results are reported in Table 2, where
dataset/n refers to 1/n'" fraction of uniformly downsam-
pled cases. It can be seen that PoseNet successfully handles
all three failure cases of BARF. This is particularly evident
when only sparse images are available. At the same time,
even when BARF succeeds, PoseNet performs significantly
better than BARF. More results and experiments using B-
Spline can be checked in supplementary material.
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| TE | | PSNR 1 | ssMt | LPIPS|
Num ‘ without  ours ‘ without  ours ‘ without ours ‘ without ours
Chair
20 3.66 1.74 2636  26.58 0.89 0.91 0.19 0.15
10 15.63 3.38 2248  25.02 0.81 0.86 0.34 0.18
6 59.31  22.68 | 21.45 22.06 0.70 0.80 0.57 0.34
Hotdog
20 3.66 2.42 23.59  25.64 0.90 0.92 0.14 0.10
10 15.63 4.87 21.85 2315 0.85 0.87 0.20 0.16
6 59.31 6.70 21.06  22.03 0.79 0.85 0.34 0.18

Table 4. Interpolation error experiments. We improve the
EventNeRF [46] using PoseNet. A small number of sparsely
known poses are used to estimate the poses in between. PoseNet
improves EventNeRF significantly in all six experimental setups.

offset 0.2388 ° offset 2.85 °©
{1 e

PLENN -

EventNeRF

P4 B4 |

RGB Ours
with known calibration

Figure 5. With and without calibration experiments. We inves-
tigate the effectiveness of our method under different deviations
from the actual rotational axis. Our method can successfully repo-
sition the object back to the center without additional calibration.

4.2. Continuous Pose for Asynchronous Events

By virtue of continuous pose representation, handling asyn-
chronous event streams acquired by event cameras becomes
natural. Hence, we use our PoseNet to learn the radi-
ance field-based 3D scene representation from only colour
event streams. This experimental setup is similar to recent
work EventNeRF [46]. Note that EventNeRF accumulates
asynchronous events to high-frequency synchronous event
frames. The poses of each of those event frames are then as-
sumed to be known. We argue that these assumptions limit
the potential of the event cameras which come from their
asynchronous nature. Therefore, we query for the pose of
every event precisely at their trigger times. We conduct two
experiments to address two practical issues of using events
in EventNeRF setup using both synthetic and real datasets.

4.2.1 Unknown continuous pose for single event

Events are triggered asynchronously, and in practice where
there is no precisely measured control available such as with
a turntable [46] or a motorized linear slider [42], event

pose can only be interpolated from measured discrete poses
(from Vicon or Colmap [15]). However, this introduces in-
terpolation errors.

Experimental settings. For synthetic data, we use chair
and hotdog sequences from [46]. The events are simulated
using the model in [45]. While EventNeRF performs inter-
polation, our method jointly learns intermediate poses as a
continuous function of time.

Results. In Table 4, we reveal that integration of our
PoseNet significantly enhances the overall performance
with a notable reduction in translation errors and better
scene reconstruction. More visual results can be found in
supplementary material.

4.2.2 Unknown calibration in practice

EventNeRF [46] uses turntable to achieve stable and consis-
tent object rotation speed. This setup also requires the ac-
tual rotational axis. Therefore, an additional checkerboard-
based calibration technique, to estimate the axis offset, is
also proposed in [46].

Experimental setting. For real cases, we use sewing ma-
chine datasets, which hold difficulties in reconstructing thin
structures, view-dependent effects, and colored texts.
Results. We show that when PoseNet is used, additional
calibration may not be required. The qualitative results of
these experiments are shown in Figure 5. We demonstrate
that when some offset is introduced, the 3D object devi-
ates from the center for EventNeRF, while our method can
reduce artifacts, learn the offset angle, and reposition the
object back to the image center.

4.3. Visual SLAM with Depth and IMUs

While the previously discussed tasks are offline, vSLAM is
an online method with different considerations. In this ap-
plication we approach the problem as incremental SLAM.
For each incoming frame, our objective is to determine its
transformation with respect to the last frame T-¢;q¢i0e. Sim-
ilar to NICE-SLAM [63] we maintain a list of all optimal
relative poses. It is trivial to solve the forgetting issue by
retraining our PoseNet with such a list.

Experimental settings. We report the tracking results of
our method compared with the standard NICE-SLAM. We
report results of intrinsic motion on Replica [51], Scannet
[9] and TUM-RGBDI[52]. Note that during tracking we as-
sume intrinsic motion reference slowly changes over time
and only optimize f, for every keyframe, with a frequency
set to 10 for our experiments. In EUROC dataset [4] we
follow the same pre-processing step as [13] and use near-
est interpolation to get dense depth map. In order to evalu-
ate the trajectory quality we report the ATE-RMSE [cm] of
all sequences. More details regarding convergence rate and
run-time can be found in the supplementary material.
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Method Rm0O Rm1l Rm2 Off0 Offl Off2 Off3 Off4 Avg

Vox-Fusion* [60] 1370 470 147 848 2.04 258 111 294 3.09
ESLAM[20] 0710 070 052 057 055 058 072 063 0.63
NICE-SLAM[63] 0970 1.31 1.07 088 1.00 106 110 1.13 1.06
Ours 053 045 084 054 033 048 0.66 051 054
Ours(world) 062 052 091 060 062 036 054 072 058
Ours(rand) 3584 929 3467 N/A 9.69 2692 NA NA NA
Ours (intrinsic) 053 047 081 035 024 043 0.64 050 049

Table 5. Tracking performance on Replica [51]. By integrating
our method into the tracking branch of NICE-SLAM, we observe
significant improvements. We investigate the impact of varying
reference coordinates on tracking. It is evident that our proposed
low DOF motion further improves the tracking performance.

Method 0000 0059 0106 0181 0207 Avg

DI-Fusion [16] 62.99 128.00 18.50 87.88 100.19 78.89
Vox-Fusion* [60] 68.84 24.18 841 2330 941 26.90
NICE-SLAM[63] 12.00 14.00 790 1340 6.20 10.70

Ours 1098 1198 7.10 1350 5.76 9.86
Ours(intrinsic) 11.21 8.78 7.57 1221  4.87 8.93

Table 6. Tracking performance on ScanNet [9]. Our approach
yields consistently better results than the baseline. Note that the
gain of utilizing intrinsic motion is relatively small, possibly at-
tributed to the challenges posed by the noisy ground truth poses.

Results. We report all tracking results using ATE-RMSE
[cm]. The numbers for the baselines are taken from [47] ex-
cept EUROC. We showcase the effectiveness of our method
for tracking across all scenes in Table 5, 6, 7. We observe
significant improvements in both relatively easy and chal-
lenging scenarios.

Moreover as illustrated in Table 5, we underscore the im-
portance of defining the coordinate system for relative pose
optimization. The tracking is unstable and difficult when
fixed on world origin or random coordinates. Figure 6 fur-
ther demonstrates that, through our estimation of intrinsic
motion and its transformation with PoseNet, we attain pose
within a low-dimensional manifold, resulting in a substan-
tial enhancement of tracking performance.

Finally, we validate the effectiveness of our IMU-Fusion
method. While baseline methods fail in the face of large
illumination changes and noisy depth, our approach main-
tains robust tracking and achieves accuracy comparable to
state-of-the-art sparse feature-based tracking methods.

5. Conclusion

We proposed a simple yet effective technique for optimiz-
ing camera pose as a continuous function of time. The ben-
efits of this approach were illustrated through several exper-
iments of diverse applications, namely NeRF from the inac-
curate pose, NeRF using Event Cameras, and visual SLAM
with Depth and IMUs. We also studied different designs of
the time-to-pose mapping continuous function, leading us to
prefer a decoupled architecture. Furthermore, we justified

Method frl/desk fr2/xyz fr3/office  Avg
DI-Fusion [16] 4.4 2.0 5.8 4.1

Vox-Fusion* [60] 3.52 1.49 26.01 10.34
NICE-SLAM[63] 4.26 31.73 3.87 13.28
Ours 2.97 7.38 3.76 4.70
Ours(intrinsic) 2.72 1.98 2.74 2.48

Table 7. Tracking performance on TUM-RGBD [52] Our
method consistently outperforms NICE-SLAM and other dense
neural RGBD methods. The effectiveness of intrinsic motion is
also demonstrated for reducing the tracking error significantly.
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Figure 6. DOF Comparison on Replica room 1 dataset, we report

that DOF of actual motion drop 41% from 5.22 to 3.08, demon-
strating the sparsity of intrinsic motion.

Method vi0l  v102 v103 v201 v202 v203 Avg
VINS-MONO[41] 79 110 180 80 160 27.0 146
ORB-SLAM [36] 1.5 20 NA 21 1.8 N/A NA
DROID-SLAM [54] 3.7 1.2 2.0 1.7 1.3 14 22
NICE-SLAM]63] 258 N/A 566 656 N/A NA NA
Ours(loose) 220 674 5.04 452 387 19.06 6.77
Ours(tight) 198 6.09 555 499 3.03 1534 6.16

Table 8. Tracking performance on EUROC [4]. Our IMU-
fusion improves tracking with lower error and robustness, out-
performing NICE-SLAM. We report results with sparse tracking
method for reference. Despite the gap, our method narrows differ-
ences with state-of-the-art sparse tracking.

the ease of using the proposed PoseNet in a plug-and-play
manner. We first propose IMU-Fusion in NeRF-SLAM and
analyze the advantage of adopting intrinsic motion frame
for camera tracking tasks. Clear advantages in terms of per-
formance were also observed in all settings, thanks to the
continuous motion prior.
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