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Figure 1. Accelerating Stable Diffusion V1.5 and LDM-4-G by 2.3× and 7.0×, with 50 PLMS steps and 250 DDIM steps respectively.

Abstract

Diffusion models have recently gained unprecedented
attention in the field of image synthesis due to their re-
markable generative capabilities. Notwithstanding their
prowess, these models often incur substantial computa-
tional costs, primarily attributed to the sequential denoising
process and cumbersome model size. Traditional methods
for compressing diffusion models typically involve extensive
retraining, presenting cost and feasibility challenges. In
this paper, we introduce DeepCache, a novel training-free
paradigm that accelerates diffusion models from the per-
spective of model architecture. DeepCache capitalizes on
the inherent temporal redundancy observed in the sequen-
tial denoising steps of diffusion models, which caches and
retrieves features across adjacent denoising stages, thereby
curtailing redundant computations. Utilizing the property
of the U-Net, we reuse the high-level features while up-

dating the low-level features in a very cheap way. This
innovative strategy, in turn, enables a speedup factor of
2.3× for Stable Diffusion v1.5 with only a 0.05 decline
in CLIP Score, and 4.1× for LDM-4-G with a slight de-
crease of 0.22 in FID on ImageNet. Our experiments also
demonstrate DeepCache’s superiority over existing prun-
ing and distillation methods that necessitate retraining and
its compatibility with current sampling techniques. Fur-
thermore, we find that under the same throughput, Deep-
Cache effectively achieves comparable or even marginally
improved results with DDIM or PLMS. Code is available at
https://github.com/horseee/DeepCache.

1. Introduction
In recent years, diffusion models [9, 18, 59, 61] have
emerged as a pivotal advancement in the field of genera-
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tive modeling, gaining substantial attention for their impres-
sive capabilities. These models have demonstrated remark-
able efficacy across diverse applications, being employed
for the generation of images [21, 62, 66], text [11, 30], au-
dio [6, 46], and video [19, 38, 58]. A large number of attrac-
tive applications have been facilitated with diffusion mod-
els, including but not limited to image editing [2, 22, 40],
image super-enhancing [28, 53], image-to-image transla-
tion [7, 51], text-to-image generation [43, 47, 48, 52] and
text-to-3D generation [32, 37, 45].

Despite the significant effectiveness of diffusion mod-
els, their relatively slow inference speed remains a ma-
jor obstacle to broader adoption, as highlighted in [31].
The core challenge stems from the step-by-step denois-
ing process required during their reverse phase, limiting
parallel decoding capabilities [57]. Efforts to accelerate
these models have focused on two main strategies: reduc-
ing the number of sampling steps, as seen in approaches
[36, 41, 54, 60], and decreasing the model inference over-
head per step through methods like model pruning, distilla-
tion, and quantization [10, 13, 23].

Our goal is to enhance the efficiency of diffusion models
by reducing model size at each step. Previous compres-
sion methods for diffusion models focused on re-designing
network architectures through a comprehensive structural
analysis [31] or involving frequency priors into the model
design [68], which yields promising results on image gen-
eration. However, they require large-scale datasets for re-
training these lightweight models. Pruning-based meth-
ods, as explored by [10, 23], lessen the data and training
requirements to 0.1% of the full training. Alternatively,
[34] employs adaptive models for different steps, which is
also a potential solution. However, it depends on a collec-
tion of pre-trained models or requires optimization of sub-
networks [67]. Those methods can reduce the expense of
crafting a new lightweight model, but the retraining process
is still inevitable, which makes the compression costly and
less practical for large-scale pre-trained diffusion models,
such as Stable Diffusion [49].

To this end, we focus on a challenging topic: How to
significantly reduce the computational overhead at each de-
noising step without additional training, thereby achieving
a cost-free compression of Diffusion Models? To achieve
this, we turn our attention to the intrinsic characteristics
of the reverse denoising process of diffusion models, ob-
serving a significant temporal consistency in the high-level
features between consecutive steps. We found that those
high-level features are even cacheable, which can be calcu-
lated once and retrieved again for the subsequent steps. By
leveraging the structural property of U-Net, the high-level
features can be cached while maintaining the low-level fea-
tures updated at each denoising step. Through this, a con-
siderable enhancement in the efficiency and speed of Diffu-

sion Models can be achieved without any training.
To summarize, we introduce a novel paradigm for the ac-

celeration of Diffusion Models, which gives a new perspec-
tive for training-free acceleration. It is not merely compati-
ble with existing fast samplers but also shows potential for
comparable or superior generation capabilities. The contri-
butions of our paper include:
• We introduce a simple and effective acceleration algo-

rithm, named DeepCache, for dynamically compressing
diffusion models during runtime and thus enhancing im-
age generation speed without additional training burdens.

• DeepCache utilizes the temporal consistency between
high-level features. With the cacheable features, the re-
dundant calculations are effectively reduced. Further-
more, we introduce a non-uniform 1:N strategy, specifi-
cally tailored for long caching intervals.

• DeepCache is validated across a variety of datasets, in-
cluding CIFAR, LSUN-Bedroom/Churches, ImageNet,
COCO2017 and PartiPrompt, and tested under DDPM,
LDM, and Stable Diffusion. Experiments demonstrate
that our approach has superior efficacy compared to prun-
ing and distillation algorithms that require retraining un-
der the same throughput.

2. Related Work
High-dimensional image generation has evolved signifi-
cantly in generative modeling. Initially, GANs [1, 12]
and VAEs [16, 24] led this field but faced scalability is-
sues due to instability and mode collapse [25]. Recent ad-
vancements have been led by Diffusion Probabilistic Mod-
els [9, 18, 49, 63], which offer superior image generation.
However, the inherent nature of the reverse diffusion pro-
cess [61] slows down inference. Current research is focused
on two main methods to speed up diffusion model inference.

Optimized Sampling Efficiency focuses on reducing the
number of sampling steps. DDIM [60] reduces these
steps by exploring a non-Markovian process, related to neu-
ral ODEs. Studies [3, 35, 36, 71] further dive into the
fast solver of SDE or ODE to create efficient sampling of
diffusion models. Some methods progressively distilled
the model to reduced timestep [54] or replace the remain-
ing steps with a single-step VAE [39]. The Consistency
Model [64] converts random noise to the initial images with
only one model evaluation. Parallel sampling techniques
like DSNO [72] and ParaDiGMS [57] employ Fourier neu-
ral operators and Picard iterations for parallel decoding .

Optimized Structural Efficiency. This approach aims to
reduce inference time at each sampling step. It leverages
strategies like structural pruning in Diff-pruning [10] and
efficient structure evolving in SnapFusion [31]. Spectral
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Diffusion [68] enhances architectural design by incorpo-
rating frequency dynamics and priors. In contrast to these
methods, which use a uniform model at each step, [34] pro-
poses utilizing different models at various steps, selected
from a diffusion model zoo. The early stopping mechanism
in diffusion is explored in [29, 42, 65], while [13, 56] fo-
cus on low-precision weights and activations. Some other
works [17, 20, 23] transferred the knowledge into the dis-
tilled model. Additionally, [4, 5] present novel approaches
to concentrate on inputs, with the former adopting a unique
forward process for each pixel and the latter merging to-
kens based on similarity in attention modules. Our method
is categorized under an objective to minimize the average
inference time per step. Uniquely, our approach reduces the
average model size substantially for each step, accelerating
the denoising process without necessitating retraining.

3. Methodology
3.1. Preliminary

Forward and Reverse Process. Diffusion models [18]
simulate an image generation process using a series of ran-
dom diffusion steps. The core idea behind diffusion models
is to start from random noise and gradually refine it until it
resembles a sample from the target distribution. In the for-
ward diffusion process, with a data point sampled from the
real distribution, x0 ∼ q(x), Gaussian noises are gradually
added in T steps:

q (xt|xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
(1)

where t is the current timestep and {βt} schedules the noise.
The reverse diffusion process denoises the random noise
xT ∼ N (0, I) into the target distribution by modeling
q (xt−1|xt). At each reverse step t, the conditional prob-
ability distribution is approximated by a network ϵθ (xt, t)
with the timestep t and previous output xt as input:

xt−1 ∼ pθ(xt−1|xt) =

N
(
xt−1;

1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ (xt, t)

)
, βtI

)
(2)

where αt = 1− βt and ᾱt =
∏T

i=1 αi. Applied iteratively,
it gradually reduces the noise of the current xt, bringing it
close to a real data point when we reach x0.

High-level and Low-level Features in U-Net. U-
Net [50] was originally introduced for biomedical image
segmentation and showcased a strong ability to amalgamate
low-level and high-level features, attributed to the skip con-
nections. U-Net is constructed on stacked downsampling
and upsampling blocks, which encode the input image into a
high-level representation and then decode it for downstream

tasks. The block pairs, denoted as {Di}di=1 and {Ui}di=1,
are interconnected with additional skip paths. Those skip
paths directly forward the rich and relatively more low-level
information from Di to Ui. During the forward propaga-
tion in the U-Net architecture, the data traverses concur-
rently through two pathways: the main branch and the skip
branch. These branches converge at a concatenation mod-
ule, with the main branch providing processed high-level
feature from the preceding upsampling block Ui+1, and
the skip branch contributing corresponding feature from the
symmetrical block Di. Therefore, at the heart of a U-Net
model is a concatenation of low-level features from the skip
branch, and the high-level features from the main branch,
formalized as:

Concat(Di(·), Ui+1(·)) (3)

3.2. Feature Redundancy in Sequential Denoising

The inherent sequentiality of the denoising process in dif-
fusion models presents a primary bottleneck in inference
speed. Previous methods primarily employed strategies that
involved skipping certain steps to address this issue. In this
work, we revisit the entire denoising process, seeking to un-
cover specific properties that could be optimized to enhance
inference efficiency.

Observation. Adjacent steps in the denoising process ex-
hibit significant temporal similarity in high-level features.

In Figure 2, we provide empirical evidence related to
this observation. The experiments elucidate two primary
insights: 1) There is a noticeable temporal feature similar-
ity between adjacent steps within the denoising process, in-
dicating that the change between consecutive steps is typi-
cally minor; 2) Regardless of the diffusion model we used,
for each timestep, at least 10% of the adjacent timesteps
exhibit a high similarity (>0.95) to the current step, sug-
gesting that certain high-level features change at a gradual
pace. This phenomenon can be observed in a large num-
ber of well-established models like Stable Diffusion, LDM,
and DDPM. In the case of DDPM for LSUN-Churches and
LSUN-Bedroom, some timesteps even demonstrate a high
degree of similarity to 80% of the other steps, as highlighted
in the green line in Figure 2 (c).

Building upon these observations, our objective is to
leverage this advantageous characteristic to accelerate the
denoising process. Our analysis reveals that the compu-
tation often results in a feature remarkably similar to that
of the previous step, thereby highlighting the existence of
redundant calculations for optimization. We contend that
allocating significant computational resources to regener-
ate these analogous feature maps constitutes an inefficiency.
While incurring substantial computational expense, yields
marginal benefits, it suggests a potential area for efficiency
improvements in the speed of diffusion models.
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Figure 2. (a) Examples of feature maps in the up-sampling block U2 in Stable Diffusion. We present a comparison from two adjacently
paired steps, emphasizing the invariance inherent in the denoising process. (b) Heatmap of similarity between U2’s features in all steps on
three typical diffusion models. (c) The percentage of steps with a similarity greater than 0.95 to the current step.

3.3. Deep Cache For Diffusion Models

We introduce DeepCache, a simple and effective approach
that leverages the temporal redundancy between steps in
the reverse diffusion process to accelerate inference. Our
method draws inspiration from the caching mechanism in
a computer system, incorporating a storage component de-
signed for elements that exhibit minimal changes over time.
Applying this in diffusion models, we eliminate redundant
computations by strategically caching slowly evolving fea-
tures, thereby obviating the need for repetitive recalcula-
tions in subsequent steps.

To achieve this, we shift our focus to the skip connec-
tions within U-Net, which inherently offers a dual-pathway
advantage: the main branch requires heavy computation
to traverse the entire network, while the skip branch only
needs to go through some shallow layers, resulting in a very
small computational load. The prominent feature similarity
in the main branch allows us to reuse the already computed
results rather than calculate it repeatedly for all timesteps.

Cacheable Features in denosing. To make this idea
more concrete, we study the case within two consecutive
timesteps t and t − 1. According to the reverse process,
xt−1 would be conditionally generated based on the pre-
vious results xt. First, we generate xt in the same way
as usual, where the calculations are performed across the
entire U-Net. To obtain the next output xt−1, we retrieve
the high-level features produced in the previous xt. More
specifically, consider a skip branch m in the U-Net, which
bridges Dm and Um, we cache the feature maps from the
previous up-sampling block at the time t as the following:

F t
cache ← U t

m+1(·) (4)

which is the feature from the main branch at timestep t.
Those cached features will be plugged into the network in-
ference in the subsequent steps. In the next timestep t − 1,
the inference is not carried out on the entire network; in-
stead, we perform a dynamic partial inference. Based on
the previously generated xt, we only calculate those that are
necessary for the m-th skip branch and substitute the com-
pute of the main branch with a retrieving operation from
the cache in Equation 4. Therefore, the input for U t−1

m in
the t− 1 timestep can be formulated as:

Concat(Dt−1
m (·), F t

cache) (5)

Here, Dt−1
m represents the output of the m-th down-

sampling block, which only contains a few layers if a small
m is selected. For example, if we perform DeepCache at
the first layer with m = 1, then we only need to execute
one downsampling block to obtain Dt−1

1 . As for the second
feature F t

cache, no additional computational cost is needed
since it can be simply retrieved from the cache. We illus-
trate the above process in Figure 3.

Extending to 1:N Inference This process is not limited
to the type with one step of full inference followed by one
step of partial inference. As shown in Figure 2(b), pair-
wise similarity remains at a high value in several consecu-
tive steps. The mechanism can be extended to cover more
steps, with the cached features calculated once and reused in
the consecutive N−1 steps to replace the original U t−n

m+1(·),
n ∈ {1, . . . , N −1}. Thus, for all the T steps for denoising,
the sequence of timesteps that performs full inference are:

I = {x ∈ N |x = iN, 0 ≤ i < k} (6)

where k = ⌈T/N⌉ denotes the times for cache updating.
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Figure 3. Illustration of DeepCache. At the t−1 step, xt−1 is gen-
erated by reusing the features cached at the t step, and the blocks
D2, D3, U2, U3 are not executed for more efficient inference.

Non-uniform 1:N Inference Based on the 1:N strategy,
we managed to accelerate the inference of diffusion under
a strong assumption that the high-level features are invari-
ant in the consecutive N step. However, it’s not invariably
the case, especially for a large N, as demonstrated by the
experimental evidence in Figure 2(c). The similarity of the
features does not remain constant across all steps. For mod-
els such as LDM, the temporal similarity of features would
significantly decrease around 40% of the denoising process.
Thus, for the non-uniform 1:N inference, we tend to sample
more on those steps with relatively small similarities to the
adjacent steps. Here, the sequence of timesteps to perform
full inference becomes:

L =
{
li | li ∈ linear space

(
(−c)

1
p , (T − c)

1
p , k

)}
(7)

I = unique int ({ik | ik = (lk)
p
+ c, where lk ∈ L})

where linear space(s, e, n) evenly spaces n numbers from
s to e (exclusive) and unique int(·) convert the number to
int and ensure the uniqueness of timesteps in the sequence.
c is the hyper-parameter for the selected center timestep.
In this equation, the frequency of indexes decreases as it
moves away from a central timestep. It is essential to note
that the aforementioned strategy represents one among sev-
eral potential strategies. Alternative sequences, particularly
centered on a specific timestep, can also yield similar im-
provements in image quality.

4. Experiment

4.1. Experimental Settings

Models, Datasets and Evaluation Metrics To demon-
strate the effectiveness of our method is agnostic with the
type of pre-trained DMs, we evaluate our method on three
commonly used DMs: DDPM [18], LDM [49] and Stable

(a) DDPM for CIFAR10 (b) Stable Diffusion v1.5

Figure 4. MACs for each skip branch, evaluated on DDPM for
CIFAR10 and Stable Diffusion V1.5.

Diffusion [49]1. Except for this, to show that our method
is compatible with the fast sampling methods, we build our
method upon 100-step DDIM [60] for DDPM, 250-step for
LDM and 50-step PLMS [35] for Stable Diffusion, instead
of the complete 1000-step denoising process. We select six
datasets that are commonly adopted to evaluate these mod-
els, including CIFAR10 [26], LSUN-Bedroom [69], LSUN-
Churches [69], ImageNet [8], MS-COCO 2017 [33] and
PartiPrompts [70]. For MS-COCO 2017 and PartiPrompt,
we utilized the 5k validation set and 1.63k captions respec-
tively as prompts for Stable Diffusion. For other datasets,
we generate 50k images to assess the generation quality. We
follow previous works [10, 57, 68] to employ the evaluation
metrics including FID, sFID, IS, Precision-and-Recall and
CLIP Score (on ViT-g/14) [14, 15, 27, 55].

Baselines We choose Diff-Pruning [10] as the main base-
line for our method since Diff-Pruning also reduces the
training effort for compressing DMs. For the experiment on
LDM, we extend [68] as another baseline to represent one
of the best lightweight diffusion models. For the experiment
on Stable Diffusion, we choose BK-SDMs [23], which are
trained on 2.3M LAION image-text pairs, as baselines of
architectural compression and distillation.

4.2. Complexity Analysis

We first analyze the improvement in inference speed facili-
tated by DeepCache. The notable acceleration in inference
speed primarily arises from incomplete reasoning in denois-
ing steps, with layer removal accomplished by partitioning
the U-Net by the skip connection. In Figure 4, we present
the division of multiply-accumulate operations (MACs) on
two models. For each skip branch i, the MACs here contain
the MACs in down block Di and the up block Ui. There is
a difference in the amount of computation allocated to dif-
ferent skip branches for different models. Stable diffusion

1https://huggingface.co/runwayml/stable-diffusion-v1-5
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ImageNet 256 × 256
Method MACs ↓ Throughput ↑ Speed ↑ Retrain FID ↓ sFID ↓ IS ↑ Precision ↑ Recall ↑

IDDPM [44] 1416.3G - - ✗ 12.26 5.42 - 70.0 62.0
ADM-G [9] 1186.4G - - ✗ 4.59 5.25 186.70 82.0 52.0
LDM-4 [49] 99.82G 0.178 1× ✗ 3.60 - 247.67 87.0 48.0
LDM-4* 99.82G 0.178 1× ✗ 3.37 5.14 204.56 82.71 53.86

Spectral DPM [68] 9.9G - - ✓ 10.60 - - - -
Diff-Pruning [10]* 52.71G 0.269 1.51× ✓ 9.27(9.16) 10.59 214.42(201.81) 87.87 30.87

Uniform - N=2 52.12G 0.334 1.88× ✗ 3.39 5.11 204.09 82.75 54.07
Uniform - N=3 36.48G 0.471 2.65× ✗ 3.44 5.11 202.79 82.65 53.81
Uniform - N=5 23.50G 0.733 4.12× ✗ 3.59 5.16 200.45 82.36 53.31
Uniform - N=10 13.97G 1.239 6.96× ✗ 4.41 5.57 191.11 81.26 51.53
Uniform - N=20 9.39G 1.876 10.54× ✗ 8.23 8.08 161.83 75.31 50.57

NonUniform - N=10 13.97G 1.239 6.96× ✗ 4.27 5.42 193.11 81.75 51.84
NonUniform - N=20 9.39G 1.876 10.54× ✗ 7.11 7.34 167.85 77.44 50.08

Table 1. Class-conditional generation quality on ImageNet using LDM-4-G. The baselines here, as well as our methods, employ 250 DDIM
steps. *We reproduce Diff-Pruning to have a comprehensive comparison and the official results are shown in brackets.

CIFAR-10 32 × 32

Method MACs ↓ Throughput ↑ Speed ↑ Retrain Steps ↓ FID ↓

DDPM 6.1G 9.79 1× - 4.19
DDPM* 6.1G 9.79 1× - 4.16

Diff-Pruning 3.4G 13.45 1.37× 100k 5.29

Ours - N=2 4.15G 13.73 1.40× 0 4.35
Ours - N=3 3.54G 15.74 1.61× 0 4.70
Ours - N=5 3.01G 18.11 1.85× 0 5.73
Ours - N=10 2.63G 20.26 2.07× 0 9.74

LSUN-Bedroom 256 × 256

Method MACs ↓ Throughput ↑ Speed ↑ Retrain Steps ↓ FID ↓

DDPM 248.7G 0.21 1× - 6.62
DDPM* 248.7G 0.21 1× - 6.70

Diff-Pruning 138.8G 0.31 1.48× 200k 18.60

Ours - N=2 190.8G 0.27 1.29× 0 6.69
Ours - N=3 172.3G 0.30 1.43× 0 7.20
Ours - N=5 156.0G 0.31 1.48× 0 9.49

LSUN-Churches 256 × 256

Method MACs ↓ Throughput ↑ Speed ↑ Retrain Steps ↓ FID ↓

DDPM 248.7G 0.21 1× - 10.58
DDPM* 248.7G 0.21 1× - 10.87

Diff-Pruning 138.8G 0.31 1.48× 500k 13.90

Ours - N=2 190.8G 0.27 1.29× 0 11.31
Ours - N=3 172.3G 0.30 1.43× 0 11.75
Ours - N=5 156.0G 0.31 1.48× 0 13.68

Table 2. Results on CIFAR-10, LSUN-Bedroom and LSUN-
Churches. All the methods here adopt 100 DDIM steps. * means
the reproduced results, which are more comparable with our re-
sults since the random seed is the same.

demonstrates a comparatively uniform distribution across
layers, whereas DDPM exhibits more computational burden
concentrated within the first several layers. Our approach
would benefit from U-Net structures that have a larger num-
ber of skip branches, facilitating finer divisions of models,
and giving us more choices for trade-off the speed and qual-
ity. In our experiment, we choose the skip branch 3/1/2 for
DDPMs, LDM-4-G and Stable Diffusion respectively. We
provide the results of using different branches in Appendix.

To comprehensively evaluate the efficiency of our
method, in the following experiments, we report the
throughput of each model using a single RTX2080 GPU.
Besides, we report MACs in those tables, which refer to the
average MACs for all steps.

4.3. Comparison with Compression Methods

LDM-4-G for ImageNet. We conduct experiments on
ImageNet, and the results are shown in Table 1. When
accelerating to 4.1× the speed, a minor performance de-
cline is observed (from 3.39 to 3.59). Compared with the
pruning and distillation methods, a notable improvement
over those methods is observed in FID and sFID, even in
cases when the acceleration ratio of our method is more sub-
stantial. Furthermore, the augmentation in quality becomes
more obvious with a larger number N of caching intervals
if we employ the non-uniform 1:N strategy. Detailed results
and hyper-parameters for the non-uniform 1:N strategy with
small N are provided in the Appendix.

DDPMs for CIFAR-10 and LSUN. The results on CI-
FAR10, LSUN-Bedroom and LSUN-Churches are shown in
Table 2. From these tables, we can find out that our method
surpasses those requiring retraining, even though our meth-
ods have no retraining cost. Additionally, since we adopt
a layer-pruning approach, which is more hardware-friendly,
our acceleration ratio is more significant compared to the
baseline method, under similar MACs constraints.

Stable Diffusion. The results are presented in Table 3.
We outperform all three variants of BK-SDM, even with a
faster denoising speed. As evident in Figure 5, the images
generated by our method exhibit a greater consistency with
the images generated by the original diffusion model, and
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Figure 5. Visualization of the generated images by BK-SDM-Tiny and DeepCache. All the methods adopt the 50-step PLMS. The time
here is the duration to generate a single image. Some prompts are omitted from this section for brevity. See Appendix for details.

PartiPrompts COCO2017
Method MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑ MACs ↓ Throughput ↑ Speed ↑ CLIP Score ↑

PLMS - 50 steps 338.83G 0.230 1.00× 29.51 338.83G 0.237 1.00× 30.30

PLMS - 25 steps 169.42G 0.470 2.04× 29.33 169.42G 0.453 1.91× 29.99
BK-SDM - Base 223.81G 0.343 1.49× 28.88 223.81G 0.344 1.45 × 29.47
BK-SDM - Small 217.78G 0.402 1.75× 27.94 217.78G 0.397 1.68× 27.96
BK-SDM - Tiny 205.09G 0.416 1.81× 27.36 205.09G 0.415 1.76 × 27.41

Ours 130.45G 0.494 2.15× 29.46 130.45G 0.500 2.11× 30.23

Table 3. Comparison with PLMS and BK-SDM. We utilized prompts in PartiPrompts and COCO2017 validation set to generate images at
the resolution of 512. We choose N=5 to achieve a throughput that is comparable to or surpasses that of established baseline methods.
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Figure 6. Comparison between PLMS, DeepCache with uniform
1:N and non-uniform 1:N strategies.
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Figure 7. (a) MSE between images under 50-step PLMS and ac-
celerating algorithms. (b) Qualitative Comparison. Here we build
DeepCache upon the 20-step PLMS with the interval set to 3.

the image aligns better with the textual prompt. Results for
other choices of N can be found in Figure 6.

Method Throughput ↑ FID ↓ sFID ↓

DDIM - 59 steps 0.727 3.59 5.14
Ours 0.733 3.59 5.16

DDIM - 91 steps 0.436 3.46 5.06
Ours 0.471 3.44 5.11

Table 4. Comparison with DDIM under the same throughput. Here
we conduct class-conditional ImageNet using LDM-4-G.

4.4. Comparison with Fast Sampler.

We conducted a comparative analysis with methods fo-
cused on reducing sampling steps. In Table 3, Table 4
and Figure 6, we compared our method with PLMS [35]
and DDIM [60] under similar throughputs by increasing
the interval N or reducing the timesteps correspondingly.
Our method achieved slightly better results than the 25-step
PLMS on Stable Diffusion. Alternatively, we can combine
PLMS with DeepCache to achieve better performance. In
Figure 7, we incorporate DeepCache alongside PLMS, re-
sulting in improved consistency with the original images
at a faster speed compared to solely utilizing PLMS. More
comparisons can be found in the Appendix.
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Figure 8. Illustration of the evolution in generated images with increasing caching interval N.

4.5. Analysis

Ablation Study. DeepCache can be conceptualized as in-
corporating (N−1)×K steps of shallow network inference
on top of the DDIM’s K steps, along with more updates of
the noisy images. It is important to validate whether the
additional computations of shallow network inference and
the caching of features yield positive effectiveness: 1) Ef-
fectiveness of Cached Features: We assess the impact of
cached features in Table 5. Remarkably, we observe that,
without any retraining, the cached features play a pivotal
role in the effective denoising of diffusion models employ-
ing a shallow U-Net. 2) Positive Impact of Shallow Net-
work Inference: Building upon the cached features, the
shallow network inference we conduct has a positive im-
pact compared to DDIM. Results presented in Table 6 in-
dicate that, with the additional computation of the shallow
U-Net, DeepCache improves the 50-step DDIM by 0.32 and
the 10-step DDIM by 2.98.

Illustration of the increasing caching interval N. In
Figure 8, we illustrate the evolution of generated images
as we increment the caching interval. A discernible trend
emerges as a gradual reduction in time, revealing that the
primary features of the images remain consistent with their
predecessors. However, subtle details such as the color of
clothing and the shape of the cat undergo modifications.
Quantitative insights are provided in Table 1 and Figure 6,
where with an interval N < 5, there is only a slight reduc-
tion in the quality of the generated image.

5. Limitations

The primary limitation of our method originates from its de-
pendence on the pre-defined structure of the pre-trained dif-
fusion model. Specifically, when a model’s shallowest skip
branch encompasses a substantial portion of computation,
such as 50% of the whole model, the achievable speedup
ratio through our approach becomes relatively constrained.
Additionally, our method encounters non-negligible perfor-

Model Dataset DeepCache w/o Cached Features

DDPM Cifar10 9.74 192.98
LDM-4-G ImageNet 7.36 312.12

Table 5. Effectiveness of Cached Features. Under identical hyper-
parameters, we replace the cached features with a zero matrix.

Steps DDIM FID↓ DeepCache FID↓ ∆

50 4.67 4.35 -0.32
20 6.84 5.73 -1.11
10 13.36 10.38 -2.98

Table 6. Effectiveness of Shallow Network Inference on CIFAR-
10. Steps here mean the number of steps that perform full model
inference.

mance degradation with larger caching steps (e.g., N=20),
which could impose constraints on the acceleration ratio.

6. Conclusion
In this paper, we introduce a novel paradigm, DeepCache,
to accelerate the diffusion model. Our strategy employs the
similarity observed in high-level features across adjacent
steps of the diffusion model and leverages the structural
attributes in the U-Net architecture to facilitate the updat-
ing of low-level features. Empirical evaluations on several
datasets and diffusion models demonstrate that DeepCache
surpasses other compression methods that focus on the re-
duction of parameter size. Moreover, the proposed algo-
rithm demonstrates comparable and even slightly superior
generation quality compared to DDIM and PLMS, thereby
offering a new perspective in the field.
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