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Figure 1. Overview. HumanNeRF-SE efficiently synthesizes images of performers in diverse poses, blending simplicity with effectiveness.
It outperforms previous methods by creating a wider range of new poses (a), maintains generalization without overfitting with limited input
frames (b), and requires fewer than 1% of learnable parameters, reducing training time by 95% while delivering superior results in the
few-shot scenario (c). †LPIPS = 1,000⇥LPIPS. Project page: https://miles629.github.io/humanNeRF-se.github.io/

Abstract

We present HumanNeRF-SE, a simple yet effective
method that synthesizes diverse novel pose images with sim-
ple input. Previous HumanNeRF works require a large
number of optimizable parameters to fit the human images.
Instead, we reload these approaches by combining explicit
and implicit human representations to design both general-
ized rigid deformation and specific non-rigid deformation.
Our key insight is that explicit shape can reduce the sam-
pling points used to fit implicit representation, and frozen
blending weights from SMPL constructing a generalized
rigid deformation can effectively avoid overfitting and im-
prove pose generalization performance. Our architecture
involving both explicit and implicit representation is sim-
ple yet effective. Experiments demonstrate our model can
synthesize images under arbitrary poses with few-shot input
and increase the speed of synthesizing images by 15 times
through a reduction in computational complexity without
using any existing acceleration modules. Compared to
the state-of-the-art HumanNeRF studies, HumanNeRF-SE
achieves better performance with fewer learnable parame-
ters and less training time.

1. Introduction

Neural Radiance Field (NeRF) [33, 54, 55, 58, 63] repre-
sents the scene as an implicit field and utilizes volumetric
renderer to synthesize the scene has demonstrated remark-
able advancements in reconstruction and novel-view synthe-
ses of static scenes. However, they typically do not account
for object deformation and perform poorly on dynamic hu-
mans due to the complex deformation caused by motions.
Deformable NeRFs endow implicit fields with the capa-
bility to express dynamic objects [37, 38, 42, 53, 59] or
even humans [11, 16, 17, 56, 62]. Although these meth-
ods [11, 16, 17, 56, 62] could learn high-quality human
representations and synthesize images from arbitrary view-
points, they cannot synthesize images with novel poses that
are significantly different from that of the training videos.

We aim to automatically render photo-realistic human
images with arbitrary viewpoints and poses from monoc-
ular videos. Although there are some studies [5, 18, 26, 40,
41, 66] have attempted to learn animatable human represen-
tations by introducing neural blend weights or using UV-
referenced coordinate systems, their requirement for multi-
camera data limits their practical applicability. The prob-
lem becomes practical with monocular inputs but highly ill-
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Figure 2. Different weights for deformation. (a) Prior methods [26, 40, 56, 62] learn a weight volume for deformation through neural
networks or fine-tune blending weights obtained from fitting SMPL to the input frame. The weight volume optimized along with NeRF
parameters per human image is prone to over-fitting. When synthesizing novel pose images, the over-fitted weights will deform points
onto the canonical space incorrectly and lead to artifacts. (b) Our idea is to use SMPL’s blending weights directly because these weights
are pre-trained on numerous human images to avoid overfitting. However, simply utilizing the nearest SMPL vertex’s blending weights for
deformation fills the sampling space with incorrect colors as the training phase deforms irrelevant sampling points onto the human body.
(c) We propose to filter irrelevant points according to the human body information of SMPL. This way, we can avoid over-fitting and reduce
the number of sampling points.

posed due to the limited and patchy observations.
Existing monocular-based methods [11, 16, 17, 56, 62]

usually decompose the human implicit field into rigid and
non-rigid components, reducing the ill-posedness in joint
optimization. These two components deform sampling
points from the observation space to the canonical one. The
non-rigid field is learned by a neural network conditioned
on the human pose or frame index. On the contrary, the
rigid field uses an explicit model—Linear Blending Skin-
ning (LBS)—given blending weights learned from scratch
or fine-tuning SMPL’s [29] weights. Since the data for train-
ing NeRF is limited and the number of optimizable param-
eters is large, the blending weights could overfit the input
data and yield unsatisfactory results, especially when the
input poses become very restricted (Figure 2a).

In this paper, we present HumanNeRF-SE, which syn-
thesizes novel pose images with tens of simple inputs
and a few learnable parameters in hours. Our approach
distinguishes itself from previous methods like Human-
NeRF [56] by effectively leveraging prior knowledge pro-
vided by SMPL. On the one hand, we use the blending
weights from pre-trained SMPL without any change for
rigid deformation. This is because SMPL trained on nu-
merous human data is generalizable to diverse humans and
poses. On the other hand, we employ the SMPL’s vertices
for sampling points. The motivation is that we found sim-
ply using the blending weights is not enough (Figure 2b)
since there are a lot of irrelevant human points in the vol-
ume. These points could be deformed to the human body
to be reconstructed incorrectly. We propose the Conv-Filter
guided by SMPL’s vertices to reduce the irrelevant points
(Figure 2c). Our method not only avoids overfitting but also
greatly reduces the required sampling points from ⇠300K
to less than 100K. Besides sampling, we also use spatial-
aware features extracted from SMPL’s vertices to condition
non-rigid deformation.

Specifically, we first voxelize SMPL’s vertices by em-
ploying a sparse convolution to diffuse the vertices across
the voxel volume. Second, the spatial-aware feature and
occupancy of the sampling point can be easily queried in
this volume. Throughout this procedure, a significant num-
ber of points unrelated to the body are filtered out, leav-
ing behind only those points likely to be related to the hu-
man body. Third, these points can be deformed to a unified
canonical pose using the rigid deformation to get the coarse
coordinates. Fourth, we refine the coarse coordinates by
performing a non-rigid mapping conditioned on the point-
level spatial-aware feature obtained in the convoluted voxel
volume. Finally, we get the colors and densities of the sam-
pling points through a neural network and render the image
through a differentiable renderer.

Overall, we propose a simple yet effective HumanNeRF
method that synthesizes images of varying poses efficiently.
Our approach utilizes explicit SMPL prior knowledge to
design a generalized rigid deformation and a specific non-
rigid deformation to map points from observation space to
canonical space. Our experiments show that our method
can generate novel poses with significant differences from
the training poses, even when the input is limited to a few
shots. We also further demonstrate the superiority of our
method on our captured in-the-wild data, where the input
video involves a simple rotation of the user.

To sum up, we make the following contributions:
• We design modules to leverage the prior knowledge from

SMPL for deformations and point sampling. This dra-
matically reduces computational complexity and avoids
overfitting.

• Our architecture is simple yet effective. Compared to
methods with similar performance, HumanNeRF-SE uses
less than 1% learnable parameters, 1/20 training time, and
increases rendering speed by 15 times without using any
existing acceleration modules.
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2. Related Work
3D Performance Capture. Recently, deep neural net-
works are commonly used to learn scene or human repre-
sentation from images, with a range of methods now avail-
able including voxels [28, 45], point clouds [1, 12, 57, 61],
textured meshes [15, 23, 24, 43, 44, 52, 60, 68, 69], multi-
plane images [8, 70], and implicit functions [25, 27, 33,
36, 42, 46]. Most of these methods aim to optimize a de-
tailed 3D geometry, and then synthesize results into images
or videos for application, which limited their usage. Our
method can directly synthesize human body images.

Neural Rendering. To synthesize novel view images of a
static object without recovering detailed 3D geometry, pre-
vious neural rendering method [2, 13, 19, 30, 31, 35, 47,
51, 54, 55, 58, 63, 65] represent amazing image synthesis
result, but these methods typically assume multi-camera in-
put and usually don’t take object’s deformation into con-
sider. The deformable methods [9, 21, 37, 38, 42, 53, 59]
endow the implicit field with the ability to express dynamic
objects but don’t perform well in the human because of the
complexity of human deformation. Our method employs a
simple and effective architecture for human body deforma-
tion. The ability to synthesize the movements of specific
human bodies in different poses has a wide range of appli-
cations. Therefore, it is very meaningful to extend methods
to adapt to dynamic human bodies.

Multi-camera HumanNeRF. There has been some re-
search [4–6, 10, 14, 18, 22, 26, 40, 41, 66] on learning
dynamic human representation through NeRF from multi-
camera images. NeuralBody [41] uses structured pose fea-
tures generated from SMPL [29] vertices to anchor sam-
pling points in any poses from sparse multi-camera videos,
which inspired us to use spatial information of vertices.
[10, 14, 22, 26, 40, 66] transform sampling points of dy-
namic human to a canonical space for NeRF training. Be-
cause the information in monocular data is much more lim-
ited than in multi-camera data, some of them have the abil-
ity to train with only monocular video, but they are not de-
signed for monocular scenes and usually don’t perform well
in monocular data. Our method only requires few-shot input
and also performs well in monocular data.

Monocular HumanNeRF. Since obtaining monocular
videos is much easier than obtaining synchronized multi-
view videos, it is significant to extend the capabilities of
HumanNeRF to monocular videos. Inspired by [37, 38, 42],
which maps rays in dynamic scenes to canonical space,
[11, 16, 17, 56, 62] introduce priors to regularize the de-
formation. [11, 16, 39] greatly improve the speed of train-
ing and rendering by using more efficient spatial encod-

ing methods [3, 34], while these encoding methods don’t
perform well in terms of acceleration in our experiments.
[48] learn dynamic human bodies by modeling the relation-
ship between sampling points and joints. [17, 40] learns
the blending field by extending the deformation weight of
the closest correspondence from the SMPL mesh, which
leads to a significant increase in computational cost. Hu-
manNeRF [56] demonstrates amazing novel view results
by decoupling the motion field, which uses a significant
amount of neural networks to fit various modules and of-
ten takes a very long time to train. Monohuman [62] further
improves the pose generalization performance of Human-
NeRF by adding a reference image module and consist loss.
Our experiments aimed to explore the fundamental reasons
why HumanNeRF performs poorly in pose generalization,
and to achieve better results on more challenging data by re-
building a simple yet efficient architecture with SMPL ver-
tices to combine explicit and implicit human representation.

3. HumanNeRF-SE

We propose a simple yet effective approach for learning the
implicit representation of human bodies from limited in-
puts and being capable of synthesizing diverse novel poses.
Compared to other similar methods, each module of our ap-
proach is designed to map the explicit and implicit human
representation better and generalize to arbitrary novel poses
without overfitting. This results in fewer data demands and
computational load and improves pose generalization capa-
bilities compared to other approaches. The pipeline is illus-
trated in Figure 3.

The key to learning the deformable NeRF representation
of human bodies lies in canonicalizing the sampling points
within the dynamic observation space. Prior methods pre-
dominantly depend on neural network fitting or supplemen-
tary texture information to precisely anchor the sampling
points relative to the human body. These methods also in-
troduce frame-level features to augment the multi-view re-
sults, albeit at the expense of substantially diminishing the
pose generalization capabilities of the model.

Different from these methods, our method effectively
leverages the explicit vertices v to canonicalize the sam-
pling points x within the dynamic human observation
space. This process involves constructing voxel volume V
(Sec. 3.1), convoluting voxel volume channel-by-channel
to obtain spatially-aware features Fs and filtering out use-
less sampling points xo and get human-related points xr
(Sec. 3.2), mapping points to canonical space generally D
and specifically P (Sec. 3.3). It is important to emphasize
that we exclusively utilize point-level features throughout
the entire process, abstaining from the use of any frame-
level features, thereby ensuring the pose generalization ca-
pabilities of our model.
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Figure 3. Framework of HumanNeRF-SE. (a) We first voxelize the observation space as a voxel volume V. For a voxel containing
vertices, the value will be the number of vertices (as one occupancy channel) and the corresponding SMPL weight. (b) We performed
channel-by-channel convolution on the volume. All sampling points are queried in the convolutional volume to get their spatial-aware
features. Those points with zero occupancy will be filtered out. (c) We query the nearest weight of the remained points in the volume,
which is used for rigid deformation. Spatial-aware features are utilized in the neural network to correct the rigid results and obtain the final
point coordinates in the canonical space. The sampling points in the canonical space obtain their colors and densities through the NeRF
network. The densities of filtered points are forced to be zero.

In summary, our method can be represented as:

c,s = Ms (P(Fs,xr)+D(xr,K(xr,V),J)) (1)

where J represents the pose and Ms is the NeRF network
which is similar to baselines for better comparison. We use
K to query the nearest weights of points x in the volume V.
Our rigid deformation D is a general mapping process, and
it is not influenced by the training individual.

3.1. Voxelization
In order to more efficiently handle the relationship between
the sampling points and the SMPL model, we first voxelized
the SMPL space. However, since the vertices of the SMPL
model within the boundary of the human body are still rela-
tively sparse, and we used the Sparse Convolution Sp [7] to
construct our voxel volume V.

We processed data similarly to NeuralBody [41] in this
part. For a given set of SMPL vertices v, we first calculate
the maximum and minimum values on the coordinate axes
to get the bounding box, scale the bounding box to the set
voxel size vs, and find the least common multiple axes and
32, in preparation for subsequent sparse convolution. For
each SMPL vertex, we also scale it down according to voxel
size after subtracting the minimum value.

V = Sp(v,vs,W) (2)

In the generated voxel volume, each voxel that contains
vertices holds two values: the corresponding LBS weight

w j in SMPL weight Wsmpl and the count of contained ver-
tices nv as an occupancy indicator. For voxels without any
contained vertices, all channels are assigned a value of zero.
The value of a certain voxel is:

⇢
(nv,w1,w2...,w24), if contain vertices
(0,0,0...,0), if empty voxel (3)

3.2. Conv-Filter

We innovatively use spatial convolution to filter the sam-
pling points and extract features simultaneously. A convo-
lution kernel is initialized to one for convolving the value of
the voxel volume. To preserve high-frequency information,
we use channel-by-channel convolution.

Fsi =
h

Â
m=h0

w

Â
n=w0

d

Â
t=d0

⌫m,n,t,i ·Jm,n,t,i (4)

where h0 = h�k, w0 =w�k and d0 = d�k. The i-th channel
of Fs results from convolving i-th channel of voxel’s value
⌫ and kernel’s weight J . If the occupancy of the convo-
lution result is zero, it means that the current convolution
center coordinate is not related to the human body (Eq. 3).
We force these points not to participate in subsequent cal-
culations and set their density value d to zero.

⇢
xo filter out, d(xo) = 0 if Fs(x) = 0
xr remain if Fs(x)> 0 (5)
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3.3. Point Canonicalization
We compute the rotation R j and translation Tj of the current
pose relative to the joints in the T-pose of the human body
in a similar way of HumanNeRF [56]. Inspired by Neu-
ralBody [41]’s use of convolution to diffuse vertex occu-
pancy, we use a simpler method to query the nearest neigh-
bor SMPL weight Wsmpl = K(x,v)

xr
cnl = Â

j2J
w j ((xr ·R j)+Tj) (6)

where J denotes a set of joints, w j is the deformation weight
of the j-th channel of Wsmpl on the current sampled point,
and xr

cnl represents the coordinates of the sampled point in
the canonical space after rigid deformation.

Directly using the nearest weight amounts to giving up
non-rigid modeling of the possible clothing deformation
caused by human body deformation, which often leads to
unsatisfactory results. To enable the network to learn non-
rigid deformation from limited images as much as possible,
some methods [41, 56, 62] introduce frame-level features
to facilitate learning. These features may include frame in-
dex or body pose, and for a particular frame, the frame-
level features of all sampling points are generally consis-
tent. This method is useful in the task of synthesizing new
viewpoints in dynamic scenes, but it is not suitable for an-
imatable human body. We designed a new network here to
refine the coordinates of the sampled points in the canoni-
cal space. We use limited point-level features to learn the
offset of the sampling points in canonical space to improve
the novel-view evaluation metric. The spatial-aware feature
has shown significant advantages in this process because it
aggregates vertex information within the receptive field of
the sampling point in the current pose:

xcnl = xr
cnl +P(Fs,xr) (7)

where xcnl is the optimized result of the sampled point coor-
dinates in the canonical space, and P is the network module
for optimizing the sampled point coordinates in the canoni-
cal space.

3.4. Appearance Net and Rendering
In order to better compare with methods such as Human-
NeRF [56], which rely on neural networks to fit the de-
formation weights, we used the same neural radiance field
structure. The coordinates of the sampled points in the
canonical space were encoded using the same positional en-
coding as in NeRF, and the MLP was used to output the
corresponding colors and densities:

c,s = Ms (xcnl) (8)

Finally, we render the neural human by the volume renderer
[32]. The rendered color C(r) of the corresponding pixel

with Ns samples of ray r can be written as:

C̃t(r) =
Ns

Â
k=1

 
i�1

’
j�1

(1�a j)

!
ai c(xi) (9)

where ai = 1� exp(�s (xi)D ti) (10)

3.5. Training
Given a set of monocular videos, the frame images of the
video {In|n = 1,2, ...,N}. Most of the images are used for
training and the rest are used for evaluation. The foreground
mask Qfore is obtained from the density after the network
output. For each foreground ray r 2 R, the corresponding
loss function is defined as:

L= LLPIPS +lLMSE (11)

where LMSE =
1

kRk Â
r2R

��C̃(r)�C(r)
��2

2 (12)

and LLPIPS = l pips
�
Qfore(Ĩi),Qfore(Ii)

�
(13)

4. Experiments
Evaluation Metrics. We use three metrics: peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM),
and learned perceptual image patch similarity (LPIPS). It
should be noted that LPIPS is the most human-perceptually-
aligned metric among these indicators, while PSNR prefers
smooth results but may have bad visual quality [64].

Dataset. We use ZJU-MOCAP and our captured in-the-
wild videos to evaluate our method. We follow [56] [62] to
select the same six subjects in ZJU-MOCAP for our eval-
uation. ZJU-MOCAP is a dataset that captures the target
human body from 23 different perspectives synchronously
in a professional light stage room. We only use the first
view captured in each subject.

The previous work did not consider the issue of pose
leakage caused by the strong repetition of actions in ZJU-
MOCAP. In order to further validate the performance of the
model and make the task more applicable, we shot videos
using handheld devices. We limited the training videos to
a person spinning one round and used diverse action videos
for evaluation, which is a more real-world applicable eval-
uation method.

Competed Methods. We compared our method in terms
of the performance of image synthesis with the most influ-
ential method HumanNeRF [56] and the latest state-of-the-
art method MonoHuman [62] which improves the pose gen-
eralization of HumanNeRF and works better than [17, 41].
We also take Ani-NeRF [40] as one of the baselines be-
cause this work presents SMPL-based neural blend weight
that can better generalize novel poses.
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Figure 4. Qualitative results with few-shot training images. Because of limited information used in training, previous methods [40, 56,
62] cannot learn appropriate human weights. The official code of Ani-NeRF [40] did not produce reasonable results on our data since it
is designed for multi-camera input. HumanNeRF [56] exhibits distortion and artifacts. The performance of Monohuman [62] is heavily
influenced by the specific data.

Table 1. Average results of six subjects on ZJU-MOCAP. Our method (blue) exhibits excellent quantitative metrics, especially in terms
of LPIPS. This indicates that the results of our method are more in line with human visual perception. Our method demonstrated a better
ability to avoid overfitting compared to other methods on our custom data. The official code of Ani-NeRF did not produce reasonable
results on our custom data. †LPIPS = 1,000⇥LPIPS.

Methods
ZJU-MOCAP IN-THE-WILD DATA

Full Few-shot Full Few-shot

PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS# PSNR" SSIM" †LPIPS#

Ani-NeRF [40] 21.24 0.8458 68.221 22.18 0.8339 64.839 – – – – – –
HumanNeRF [56] 31.15 0.9739 24.822 29.90 0.9683 33.056 28.97 0.9629 48.128 28.82 0.9618 50.240
MonoHuman [62] 30.91 0.9718 31.292 30.10 0.9677 36.494 29.15 0.9639 51.623 29.21 0.9636 56.220
Ours 31.09 0.9740 24.085 30.11 0.9684 32.084 29.23 0.9666 46.308 29.26 0.9669 47.161

4.1. Quantitative Evaluation

For any set of data in ZJU-MOCAP, we divided the data
into training and testing data in a 4:1 ratio, which follows
the setting of previous work. Differently, we uniformly se-
lect only about 30 frames from the divided training data as
few-shot input. This setting can avoid pose leakage com-
pared to the full input in a certain space. Our experimen-

tal results in ZJU-MOCAP with few-shot training images
are shown in Figure 4, and all the experimental results are
shown in Table 1.

For our custom in-the-wild data, we train with a video
of a performer spinning one round and use another video of
the same person doing different poses for evaluation. The
results are shown in Figure 4.
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Figure 5. Rendering results with pose sequences from Subject-387 in ZJU-MOCAP. We use all the videos of the performers to train
and synthesize images with different pose sequences from Subject-387. The baselines produce noticeable artifacts, while our method
maintains high-quality image synthesis.

Table 2. Comparison of training and rendering time. Our
method does not use existing acceleration modules. The simple
yet effective architecture greatly reduces the computation required,
thereby improving the overall speed.

Training Rendering

Ani-NeRF [40] 40 h 2.73 s/it
HumanNeRF [56] 56 h 2.37 s/it
MonoHuman [62] 70 h 5.96 s/it

Ours 2.5 h 0.16 s/it

4.2. Qualitative Evaluation
In previous work, researchers often divide data into a certain
ratio as novel pose experiments for quantitative evaluation.
However, in the most widely used dataset ZJU-MOCAP,
performers repeat the same action in a set of data. This
leads to the poses in evaluation data being highly similar to
poses used for training. Although we mitigate pose leak-
age issues through few-shot input, a considerable portion
of poses in the evaluation data are still similar, resulting in
limited difference in the average results.

A simple way to avoid pose leakage problem is to use
completely different action sequences as evaluation. But as
there is no ground truth of ZJU-MOCAP, we provided com-
parison results as Figure 5, and synthesized over 200 zero-
shot pose images and converted them into 20 videos, which
were subjectively evaluated by six or more participants as
shown in Figure 6.

The entire evaluation process is single-blind, meaning
that the participants do not know which specific method
generated the results. We also included some test seeds,

(a) HumanNeRF [56] (b) Ours
Figure 6. Subjective evaluation results. We use cross-rendering
of different subjects in the ZJU-MOCAP to ensure that the eval-
uation of the novel pose is sufficiently novel. Our results show a
significantly higher perfect proportion than HumaneNeRF.

which serve as the Ground Truth, and all of these seeds
received high scores from the participants, indicating that
their evaluations were professional and objective. The par-
ticipants were asked to evaluate the video in terms of image
distortion, artifacts, details, plausibility, and precision, and
to provide a final score that was assigned to one of three
different levels.

As a result, almost all the participants subjectively think
our results have a better performance. Our results were clas-
sified as perfect in significantly higher numbers than Hu-
manNeRF, with fewer votes for flaws. However, both the
results performed poorly in cases of poor data quality.

4.3. Ablation Studies

Conv-Filter. In our method, the point filter is essential.
Our experiments showed that if the sampled points are not
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w/ Conv-Filter w/o Conv-Filter
Figure 7. Ablation study on Conv-Filter.

w/ Point Refinement w/o Point Refinement
Figure 8. Ablation study on Point Refinement.

Point-level feature (Ours) Frame-level feature
Figure 9. Ablation study on the input of Point Refinement.

filtered, we cannot learn the correct alpha map (see Fig-
ure 7) in our experiments, and it greatly increases the com-
putational complexity, requiring longer training time. We
further investigated the reason why the phenomenon of al-
pha map learning errors occurs due to color diffusion into
the surrounding space, and we believe that this is deter-
mined by the distribution of skin weight. As shown in Fig-
ure 2, the learnable weights tend to give negative values to
irrelevant joint weights, but this is unreasonable. It can be
explained by the fact that these methods do not require fil-
ters to avoid the phenomenon, because we observe similar
phenomena when we map the learnable weights to the same
distribution as ours through sigmoid.

Point-level Feature Refine. It is a common practice to
add offsets to the deformation process using neural net-
works, but previous methods often used time or the pose
of the current frame as control information. This frame-
level feature often leads to overfitting, but in previous ex-
periments, this phenomenon was not significant due to the
similarity and repetition of actions in ZJU-MOCAP. We ex-
tract point-level spatial-aware feature while filtering points
in ConvFilter. This not only corrects the unnatural joints
caused by rigid deformation (see Figure 8, Table 3) but also
avoids overfitting compared to the previous frame-level fea-
ture (see Figure 9).

Table 3. Quantitative ablation study in ZJU-MOCAP. We
evaluate the effectiveness of canonical points refined with Fs and
Conv-Filter.

PSNR" SSIM" †LPIPS#

w/o Fs refine 30.93 0.971 24.712
w/o filter 9.22 0.607 318.460

Full 31.09 0.974 24.085

5. Limitations

Our method is state-of-the-art in the task of learning implicit
human representations from limited input and synthesizing
diverse pose images. What’s required is only a monocular
video, even a few images, and easily obtainable SMPL in-
formation, without the need for additional calculations of
texture information, greatly expanding the method’s univer-
sality. However, our method still has certain limitations:
1) The effectiveness of our method depends on the accu-
racy of the estimated SMPL, and when the SMPL accuracy
is low, the results may be blurred. Currently, the accuracy
of SMPL estimation methods is not always satisfactory. 2)
Our method uses coordinate voxelization to assist calcula-
tion, which may cause image edge serrations. Fine-tuning
can be achieved by adjusting the voxel size and convolution
kernel size, which will increase computational cost. 3) Our
method uses basic SMPL information for training, so it is
difficult to drive hand and facial details.

6. Conclusion

We propose a human neural radiance field model that can
train with limited inputs and generalize to diverse zero-shot
poses. Unlike previous methods, our approach filters the
sampling points and obtains point-level features in a voxel
volume of explicit vertices, and subsequently deforms the
points to a canonical space using general and specific map-
ping. Our approach uses less than 1% learnable parame-
ters and achieves state-of-the-art novel pose metrics in our
experiments, and maintains the best performance with few-
shot input. Our approach only requires estimated SMPL
information, which can be easily obtained using existing
methods, thereby maintaining usability while being able to
generalize to industries such as video production.
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