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Abstract

Test-time adaptation (TTA) is a technique to improve the
performance of a pre-trained source model on a target dis-
tribution without using any labeled data. However, existing
self-trained TTA methods often face the challenges of un-
reliable pseudo-labels and unstable model optimization. In
this paper, we propose an Improved Self-Training (IST) ap-
proach, which addresses these challenges by enhancing the
pseudo-label quality and stabilizing the adaptation process.
Specifically, we use a simple augmentation strategy to gen-
erate multiple views of each test sample, and construct a
graph structure to correct the pseudo-labels based on the
similarity of the latent features. Moreover, we adopt a pa-
rameter moving average scheme to smooth the model up-
dates and prevent catastrophic forgetting. Instead of using
a model with fixed label space, we explore the adaptabil-
ity of the foundation model CLIP to various downstream
tasks at test time. Extensive experiments on various bench-
marks show that IST can achieve significant and consistent
improvements over the existing TTA methods in classifica-
tion, detection, and segmentation tasks.

1. Introduction
Deep Neural Networks have performed superiorly in a
broad scope of tasks, and exhibit surprising zero-shot gen-
eralization capabilities. However, in practical applications,
behavior decline may occur owing to the distribution shifts
of unknown domains, which leads to laborious efforts in
data collection and model retraining. To address this issue,
Test-Time Adaptation (TTA), aims to adapt the model to
the target domain at test time, has emerged as a promising
paradigm of increasing attention and research [19, 29, 30].

Early methods of TTA [22, 27, 30, 32] explore adapting
the activation statistics and updating the affine transforma-
tion parameters of batch normalization layers to mitigate the
distribution shifts from clean to corrupted images. These
approaches are easily scalable to deep neural networks with
different architectures, but their performance is often con-
fined to specific ranges of distribution shifts due to the lim-

Figure 1. An illustration of test-time adaptation. The approach
employs source models from a model zoo, where the source data is
unknown. Source models adapt to target domains using one batch
of test samples at a time. Self-training is a key component for
updating models and providing more accurate online predictions.

ited adaptive capacity of batch normalization [2]. A series
of works [4, 8, 20, 29] leverage self-supervised learning
for test-time training (TTT) to update the model parameters
before making predictions, which is conditional on having
correlated gradients between the loss functions of the auxil-
iary and main tasks. However, an inappropriate pretext task
may be detrimental to the learned model [20]. Moreover,
although TTT is not restricted by the type of main task, it
typically requires modifying the training process to accom-
modate a self-supervised task, which increases the cost of
applying TTT to pre-trained models [36].

Another line of research seeks to utilize the predictions
of the model itself as pseudo-labels and re-train the model,
which is known as the self-training strategy. Owing to the
poor calibration of neural networks [10], pseudo-labels gen-
erated by the source model may be inaccurate and noisy for
target data. Liang, et al. [19] propose to attain class-wise
prototypes by clustering and further obtain cleaner pseudo-
labels. Recent works [3, 18, 28, 31, 35] suggest performing
different data augmentations on a test sample to improve
the model’s prediction. On the other hand, some works
[3, 24, 31, 32] focus on stabilizing the adaptation proce-
dure at test time by adopting active selection, re-weighting
strategy, or knowledge distillation. Generally, self-training-
based approaches make no strong assumptions about distri-
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bution shifts and types of task, thus they are more ubiqui-
tous for real-world applications. However, existing methods
still suffer from the following limitations: 1) Test-time aug-
mentation may degrade performance for voluminous and
aggregated categories, 2) Pseudo-label correction has not
fully exploited the model’s intermediate representations of
the target domain. 3) Error accumulation and catastrophic
forgetting may occur during the adaptation process.

In this paper, we aim to address the above issues by an-
alyzing the key components of self-training, i.e., pseudo-
label generation, correction, and model optimization. We
challenge the task of fully test-time adaptation [30], which
supposes that any information about source data is unavail-
able, including original samples, intermediate features, and
all kinds of statistics. To this end, we propose an Improved
Self-Training (IST) method. In contrast to applying com-
plex transformations, IST generates pseudo-labels with a
simple test-time augmentation strategy to mitigate the poor
calibration caused by unused functions. Moreover, an algo-
rithm is proposed to correct the pseudo-labels by leveraging
graph structures constructed with target samples in the la-
tent space. Furthermore, we compare common optimization
polices and propose parameter moving average to stabilize
the adaptation process and alleviate catastrophic forgetting.
Finally, we scale up IST to basic computer vision tasks and
conduct extensive experiments on various benchmarks. The
results demonstrate that IST achieves credible and consis-
tent performance gains over existing TTA methods. 1

In summary, our main contributions are as follows:
• We propose a plug-and-play strategy for generating and

correcting pseudo-labels, which is effective and efficient
for test-time augmentation without additional retraining.

• We propose an improved self-training method for fully
test-time adaptation, which is scalable to a variety of pre-
trained models and application tasks.

• We exhibit the effectiveness and robustness of our method
on various benchmarks, including image classification,
object detection, and semantic segmentation.

2. Related Work
Test-Time Adaptation (TTA) is a challenging task, that aims
to adapt the model to arbitrary distributions and achieve im-
proved performance at test time. BN Adapt [27] replaces
the activation statistics of batch normalization layers with
the estimated statistics of the corrupted images to improve
the robustness of the model. Further, Tent [30] discards the
statistics from the source data and updates the affine trans-
formation parameters by entropy minimization. Sun, et al.
[29] propose introducing the self-supervised pretext task to
adapt the main task by updating the model parameters be-
fore making predictions. Following this way, TTT [29] and

1The code is available at https://github.com/JingInAI/
IST4TTA

TTT-MAE [8] employ rotation prediction and image gener-
ation as auxiliary tasks, respectively. TTT++ [20] and ITTA
[4] rely on more general contrastive learning tasks. To ef-
fectively utilize a model without source data to solve do-
main adaptation problems, SHOT [19] exploits information
maximization and self-supervised pseudo-labeling to align
the target representation to the source hypothesis. MEMO
[35] and SFOD [18] augment test samples to obtain ro-
bust pseudo labels and self-train the model with entropy de-
scent. AdaContrast [3] denoises pseudo-labels via soft vot-
ing among nearest neighbors and applies weak-strong aug-
mentation consistency as a regularizer. For non-stationary
and continually changing environments, RoTTA [32] and
CoTTA [31] are proposed to effectively stabilize the adap-
tation procedure and avoid catastrophic forgetting.

Existing approaches tend to address the distribution shift
caused by image corruption, but infrequently consider un-
constrained conditions in nature, such as label shift and
correlation shift. Hence, we propose to employ the Con-
trastive Language-Image Pre-trained model (CLIP) [25] as
the source model for test-time adaptation. In this way, we
have no need to pre-train models on different benchmarks,
thus avoiding additional assumptions of the label distribu-
tion. Meanwhile, CLIP can provide a suitable starting point
for the adaptation process due to its zero-shot capability and
generalized feature properties, which have been proven to
have a significant impact on post-adaptation [36]. From an
application perspective, exploring how to improve the per-
formance of CLIP in realistic environments at test time has
important practical value for foundation models.

3. Method
We address the problem of adapting a pre-trained model to
new domains at test time. Given a source model fθ with
parameters θS trained on the source domain DS , the goal
is to adapt it to the target domain DT with only unlabeled
data {xi}ni=1. We explicitly divide the model into encoder
gφ and predictor hϕ, and denote f = h ◦ g. By default, we
define the final linear layer as the predictor and the rest as
the encoder. A data point xi ∈ X is projected into a latent
space zi ∈ Z by the encoder, and then mapped to a label
space yi ∈ Y by the predictor. Our proposed method ap-
plies a Simple Augmentation (SimpAug) to the original im-
age and produces augmented points x̃ ∼ U(x). Expanded
data sets {x} ∩ {x̃}, consisting of original and augmented
samples, are fed into the encoder to generate intermediate
features {z}. Subsequently, we perform a Pseudo-Label
Correction Algorithm (PLCA) to reinforce the prediction
of unlabeled data by utilizing the graph structure in the la-
tent space. To stabilize the self-training process at test time,
we analyze the primary optimization algorithms and adopt
Parameter Moving Average (PMA) for iterative updating.
The pipeline of our method can be referred to Fig. 3.
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Figure 2. (a) Visualization of images in ImageNet [6] with two kinds of test-time augmentation polices. Predictions are provided by CLIP
(ViT-B/32), with correct and incorrect classes marked in green and red, respectively. (b) Error rate of pseudo-labeling counted on the
test/validation set for each benchmark. (c) Computational speed of three pseudo-label correction algorithms on a fixed-size 10K sample
set, averaged over 10 runs. The dimension of latent space is 1024 for RN50 and 512 for ViT-B/32.

3.1. Simple Augmentation Strategy

Typically, existing test-time augmentation methods tend to
employ sophisticated augmentation functions to be applied
to the test image [35]. Although this is a reasonable ap-
proach to extract invariant encodings from data augmenta-
tions, it may lead to serious corruption of original attributes.
Fig. 2 (a) shows that the differences between classes are re-
flected in a few attribute variations for class-dense or fine-
grained tasks. Complex augmentations, such as altering the
brightness, contrast, saturation, and hue of the image, will
impair the representative attributes of the category. Another
type of augmentation, such as image rotation and adding
Gaussian noise, will cause high-confidence erroneous pre-
dictions, especially for models without the use of similar
transformations during training, e.g. CLIP [25].

To this end, we consider the standard policy (crops,
scales, and horizontal flips) for test-time augmentation. On
the one hand, crops and scales can zoom in on the local re-
gions of the image, reduce the interference of background
pixels, and increase the model’s attention to tiny objects.
On the other hand, we preserve the position information of
augmented versions in the original coordinate system and
project the predictions to the primal image space, which is
beneficial for solving regression problems, e.g. detection
and segmentation. Specifically, we define the ratio of the
cropped region to the original area as r ∼ U(rmin, rmax)
and the aspect ratio as a ∼ U(amin, amax). Given an im-
age x with the size of H ×W , the length and width of the
cropped region are calculated as

w =
√
H ×W × r × a, h =

√
H ×W × r / a. (1)

Then, we randomly select the top-left corner of the cropped
region (i, j) from U(0, H − h) and U(0,W − w), respec-
tively. The cropped sub-image is flipped horizontally with a
probability of phf and scaled to the original size H×W . In
general, we set rmin = 0.7, rmax = 1.0 to ensure the clar-
ity of augmented images, and amin = 0.75×H/W, amax =
1.33 × H/W to avoid the distortion of the aspect ratio.
phf is set to 0.5 by default. We save the set of parame-
ters (i, j, h, w, hf) for each augmented version, where hf
is a binary variable indicating whether the image is flipped.

We discard the operation of averaging the predictions
of augmented samples, since it implicitly assumes that the
augmentation functions have no influence on which predic-
tions are corrected and which are corrupted [28]. Instead,
motivated by Non-Maximum Suppression (NMS) [23], we
extract the predictive probabilities of images in the augmen-
tation space {x̃j}mj=1 ∼ U(xi), and select the most confi-
dent class as the final prediction, which is formulated as

ŷ(xi) = argmax
c

{pc(x̃j)}mj=1, (2)

where c ∈ Y is the class label, and pc is the probability of
class c. In contrast to the image classification task, NMS
is applied to the set of detected boxes with high confidence
scores and IOU values for object detection, and applied to
the set of predictions for a single pixel from augmented ver-
sions for semantic segmentation.

We compare the performance with MEMO [35], using
AugMix [13] and averaging predictive probabilities for test-
time augmentation, referred to Fig. 2 (a, b). Results demon-
strate that SimpAug is more robust in class-dense and fine-
grained benchmarks, e.g. ImageNet [6] and Food101 [1].
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Figure 3. The framework of our approach. At the beginning of test-time adaptation, the model is initialized with the source parameters
θ̂0 = θS . A target sample xt arriving at time step t is transformed by SimpAug. We maintain a fixed-size memory queue for storing feature
vectors and probabilities of target samples and their augmented versions. PLCA utilizes the graph structure formed by the stored vectors
to correct the pseudo-labels generated by the model θ̂t−1, and then employs NMS to select the most reliable prediction. PMA modifies
the optimized parameters θt to preserve the knowledge of the source model. We visualize the features extracted by the image encoder of
CLIP (RN50) on CIFAR10. Translucent-colored dots represent correctly classified images, gray dots represent failure cases, and opaque
dots represent misclassified samples corrected by PLCA.

3.2. Pseudo-Label Correction Algorithm

Although test-time augmentation can improve the robust-
ness of distribution shifts, the pseudo labels annotated by
the source model are still inaccurate and noisy for target
data. To obtain cleaner labels, a series of methods [3, 19]
explore the latent space of the source model to correct er-
roneous labeling. By visualizing the features on target do-
mains using CLIP’s visual encoder [25] in Fig. 3, we ob-
serve that the representation of different classes in the latent
space exhibits clustering patterns. However, numerous tar-
get samples in the same cluster or manifold are misclassi-
fied. Inspired by [37], we propose a pseudo-label correction
algorithm through learning from the graph structure con-
structed with only target data.

We consider feature vectors in the latent space {zi}ni=1 ∈
Z as vertices in a graph, and the edges between vertices are
defined by the distances between a point and its K-nearest
neighbors. Specifically, the edges are weighted by

wij =


1, i = j,

1− ∥zi−zj∥2

maxj ∥zi−zj∥2
, zj ∈ NK(zi),

0, otherwise.
(3)

Note that self-reinforcement is added to prevent the instabil-
ity caused by the accumulation of erroneous predictions in
the spread process. By default, we set K = 50. To guaran-
tee the information spread symmetrically, we build a sym-
metric non-negative matrix W = (wij)n×n + (wji)n×n,
and normalize it by S = D−1/2WD−1/2 for following it-
erations, where D is a diagonal matrix with Dii =

∑
j wij .

We define an initial label matrix Y (0) = (yij)n×m,
where yij = pj(xi) is the predictive probability of the sam-
ple xi belonging to the class j. Afterward, we iteratively
update the label matrix by

Y (t+ 1) = αSY (t) + (1− α)Y (0), (4)

where α is a hyper-parameter to balance the influence of
initial labels and the information spread. By repeating the
Eqn. 4 for T times, we obtain the final label matrix

Y (T ) = αTSTY (0) + (1− α)

T−1∑
t=0

αtStY (0). (5)

Since 0 < α < 1 and the spectral radius of S is less than or
equal to 1, we have

lim
T→∞

αTSTY (0) = 0,

lim
T→∞

T−1∑
t=0

αtStY (0) = (I − αS)−1Y (0). (6)

Therefore, the final label matrix can be approximated by 2

Y ∗ = lim
T→∞

Y (T ) = (1− α)(I − αS)−1Y (0). (7)

Finally, we correct the pseudo labels in Eqn. 2 by

ŷ(xi) = argmax
c

{pc(x̃j)× 1argmaxk y∗
jk=c}mj=1, (8)

2This linear system can be solved by the conjugate gradient method
because I − αS is symmetric and positive definite. By default, we set
α = 0.99 and iterate for at most 20 times following [14].
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Figure 4. Online test-time adaptation following [29]. We compare the impact of updating different parts of CLIP and show the top-
1 accuracy (%) in five benchmarks with RN50 (a) and ViT-B/32 (b). To explore the impact of three optimizers on CNN-based and
Transformer-based models, we freeze the text encoder in CLIP and update the image encoder. The adaptation process is visualized in (c).
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Ours (Offline) 84.6±0.1 54.1±0.5 81.0±0.0 65.9±0.1 60.2±0.0 92.1±0.1 63.4±0.1 85.1±0.0 71.4±0.2 62.6±0.0
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Ours (SimpAug) 89.6±0.1 62.1±0.1 82.3±0.0 58.9±0.0 61.1±0.0 90.1±0.1 65.7±0.1 87.6±0.0 64.3±0.0 65.5±0.0

Ours (PLCA) 92.8±0.1 69.7±0.1 86.1±0.0 65.7±0.0 65.8±0.0 94.3±0.0 73.0±0.1 90.3±0.0 71.0±0.0 69.9±0.0
Ours (Online) 92.9±0.1 72.1±0.2 86.3±0.1 62.1±0.3 62.1±0.1 94.8±0.0 74.6±0.1 90.2±0.0 67.0±0.1 67.2±0.1
Ours (Offline) 95.7±0.0 75.9±0.1 87.1±0.1 69.3±0.0 66.2±0.0 96.4±0.0 78.5±0.1 91.8±0.0 73.4±0.1 72.0±0.1

Table 1. Top-1 Classification Accuracy (%) for five benchmarks with CLIP models. Higher is better. For ease of reading, we highlight the
highest accuracy in bold and the second best as underline, which also applies to the following tables.

where y∗jk is the k-th element of the j-th row of the matrix
Y ∗, and 1· is the indicator function.

Similarly, SHOT [19] employs class-wise prototypes for
K-means clustering, and AdaContrast [3] utilizes KNN to
rectify the pseudo-labeling bias by averaging the probabili-
ties of K-nearest neighbors. In contrast to SHOT which fo-
cuses on the global distribution in the latent space and KNN
which concentrates on local similarity, our PLCA builds a
local relation network for a sample and iteratively updates
its pseudo-label in the global graph structure. We compare
the effectiveness and computational speed for these three al-
gorithms in Fig. 2 (b, c). Our PLCA achieves fewer pseudo-
labeling errors and maintains a more stable speed in the la-
tent space with different dimensions.

Remark. We treat the corrected pseudo-labels as targets
for test-time training and adopt the same loss functions as
the training stage, which scales our method to various tasks.

3.3. Test-Time Optimization

In this subsection, we explore a scalable and efficient opti-
mization method for test-time adaptation, and this problem
involves two key questions: Which parameters need to be
updated and how to update them?

To analyze the impact of updating different parts of
CLIP, we compare several common policies:
• BN Adapt [27] advices to combine the normalization

statistics computed on the training dataset with the esti-
mated ones on target samples, which is suitable for image
corruption and has no extra training cost at test time.

• Tent [30] removes the statistics from the source data and
updates the affine transformation parameters of BN lay-
ers, which is widely used in recent methods [22].

• Full-tune the model, which is the most expensive one.
We show the experimental results in Fig. 4 (a, b) and ensure
that only the updated scopes are different. Because count-
ing the mean and variance of target domains on a mini-batch
leads to severe bias, especially when the batch size is small,
it brings hard-to-recover errors to pseudo-labeling at the
first few iterations. However, for Vision Transformer (ViT)
[7] with LayerNorm, normalization statistics are counted
for each sample, and it will not suffer from the above prob-
lem. Therefore, we freeze all the normalization layers and
update other parameters to avoid such model corruption.

The choice of optimizer has a great impact on test-time
adaptation [8]. We experiment with various learning rates
for three representative optimizers, including stochastic gra-
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Methods SF Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

Source 28.8 22.9 26.2 9.5 20.6 10.6 9.3 14.2 15.3 17.5 7.6 20.9 14.7 41.3 14.7 18.3±0.00
TTT++ (Offline) [20] 12.8 11.1 11.2 7.3 17.1 8.2 6.5 9.4 9.9 7.9 5.0 5.1 13.7 8.8 10.6 9.6±0.00
SHOT (Offline) [19] 13.4 11.6 16.3 7.3 15.9 8.2 7.1 9.4 9.4 10.2 6.3 8.3 12.8 9.8 13.6 10.6±0.00

BN Adapt [27] 15.9 13.7 18.0 7.8 18.3 8.9 8.0 10.8 9.6 12.7 6.1 9.4 13.5 14.3 14.5 12.1±0.01
TENT [30] 14.5 12.4 17.7 7.7 17.7 8.8 7.9 10.3 9.6 12.0 6.1 9.0 13.4 11.3 14.5 11.5±0.02

MEMO [35] 13.9 12.2 16.3 7.4 16.6 8.2 7.4 9.8 9.3 10.7 6.1 9.3 12.6 10.0 14.3 10.9±0.02
TTT++ (Online) [20] 15.5 14.1 23.6 9.1 25.1 11.4 8.1 13.2 13.1 13.4 6.6 6.9 17.6 12.5 13.6 13.6±0.03
SHOT (Online) [19] 14.5 12.3 17.7 7.8 17.8 8.7 7.9 10.4 9.6 12.1 6.1 9.0 13.4 11.4 14.4 11.5±0.02

Ours (Online) 12.8 11.4 14.9 6.7 15.8 7.7 6.9 8.9 8.6 10.1 5.6 8.0 11.9 10.5 12.8 10.2±0.04

Table 2. Top-1 Classification Error (%) for all corruptions on CIFAR-10C (level 5). Lower is Better. SF denotes source free.

Methods SF Gauss Shot Impul Defcs Gls Mtn Zm Snw Frst Fg Brt Cnt Els Px Jpg Mean

Source 98.4 97.7 98.4 90.6 92.5 89.8 81.8 89.5 85.0 86.3 51.1 97.2 85.3 76.9 71.7 86.2±0.00
SHOT (Offline) [19] 73.8 70.5 72.2 79.2 80.6 58.5 54.0 53.6 63.0 47.3 39.2 97.7 48.7 46.1 53.0 62.5±0.00

BN Adapt [27] 87.1 90.6 89.5 87.6 93.4 80.0 71.9 70.6 81.5 65.9 46.8 89.8 73.5 63.2 67.5 77.3±0.30
TTT [29] 73.7 71.4 73.1 76.3 93.4 71.3 66.6 64.4 81.3 52.4 41.7 64.7 55.7 52.2 55.7 66.3±0.00

MEMO [35] 85.4 81.0 83.5 94.1 92.5 72.5 60.5 64.0 72.5 52.0 41.4 97.1 55.8 50.7 57.5 70.7±0.05
TENT [30] 80.8 78.6 80.4 82.5 82.5 72.1 60.5 63.7 66.7 52.1 39.2 84.2 55.5 50.8 58.2 67.2±0.02

SHOT (Online) [19] 83.9 82.3 83.7 83.9 83.8 72.6 61.9 65.7 68.6 54.8 39.4 85.9 58.1 53.1 62.3 69.3±0.03
Ours (Online) 72.9 70.8 73.1 80.7 79.7 69.6 57.4 59.8 63.1 50.0 39.3 83.9 51.8 48.5 50.8 63.4±0.03

Table 3. Top-1 Classification Error (%) for all corruptions on ImageNet-C (level 5). Lower is Better. SF denotes source free.

Methods Source BN Adapt TENT MEMO CoTTA Ours

CIFAR-10C 18.3±0.0 13.8±0.4 12.1±0.7 10.9±0.3 11.5±0.1 10.4±0.1

ImageNet-C 86.2±0.0 74.9±0.4 70.7±0.6 79.8±1.0 67.8±0.3 65.4±0.1

Table 4. Continuous online adaptation following CoTTA [31]. We
report the top-1 classification error (%). Lower is Better.

dient descent (SGD), SGD with momentum, and Adam
[15]. Fig. 4 (c) exhibits the online adaptation process under
the best learning rate. Optimizers with first/second-order
momentum can adapt fast to the target distribution in most
cases, but also cause fluctuations (e.g., SGD with momen-
tum for RN50) and even continuing decline due to error ac-
cumulation (e.g., Adam for ViT-B/32). In contrast, vanilla
SGD with a small learning rate can achieve stable and as-
cending performance. Since vanilla SGD can update the
model parameters in the current optimal direction without
being affected by historical gradients.

Avoiding catastrophic forgetting during long-time adap-
tation is a problem worth paying attention to [24, 31]. This
issue is also important for maintaining the zero-shot robust-
ness of CLIP. We propose the parameter moving average
to preserve the knowledge from the source model. Specifi-
cally, at any iteration t ≥ 1, we define the parameters after
optimization as θt and update the moving average θ̂t as

θ̂t = π · θ̂t−1 + (1− π) · θt, (9)

where θ̂0 is initialized as the parameters of source model θS
and π ∈ [0, 1] is the momentum coefficient, which deter-
mines the degree of knowledge preservation.

4. Experiment
4.1. Setup

Datasets. We evaluate on the following datasets:
• CIFAR10 [17] and CIFAR100 [17] are two datasets con-

sisting of low-resolution images, which differ from the
common size of the training data of CLIP. We use them to
evaluate the adaptability of our method to the distribution
shift from image distortion caused by resize operations.

• Food101 [1] and Stanford Cars [16] are fine-grained
datasets contains 101 food categories and 196 car cate-
gories, respectively. We use them for fine-grained tasks.

• ImageNet [6] is a large-scale dataset with 1000 classes,
which is suitable for evaluating our method on category-
intensive and real-world classification tasks.

• CIFAR-10C [12] and ImageNet-C [12] are created by test
images of CIFAR10 and ImageNet with 15 types of cor-
ruptions in 5 levels, which are widely used to evaluate
the robustness of test-time adaptation methods. Follow-
ing the common protocol [27, 29, 30], we evaluate our
method on the 5-level (worst) corruptions of all 15 types.

• For object detection, we use KITTI [9] to evaluate our
method for automotive applications. KITTI comprises 8
categories of traffic participants and is mostly recorded in
clear weather conditions. We follow Mirza et al. [22] to
simulate degrading weathers of fog, rain and snow.

• For semantic segmentation, we use CarlaTTA [21] to
conduct experiments. CarlaTTA contains five gradu-
ally changing scenarios, including day2night, clear2fog,
clear2rain, dynamic, and highway. It challengs the meth-
ods to adapt to distribution shift over time.
Implementation details. For test-time adaptation with
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Figure 5. Visualization of the detection results on KITTI in the weather conditions of fog, rain, and snow.

Methods SF Fog Rain Snow

Source 22.8±0.0 65.5±0.0 25.6±0.0
ActMAD [22] 47.7±1.0 81.4±0.2 64.5±0.0

BN Adapt [27] 32.3±0.1 70.6±0.1 44.9±0.2
TTT [29] 29.4±0.5 71.5±0.4 47.5±0.7

Ours (SimpAug) 27.3±0.4 75.2±0.4 36.0±0.3
Ours (Online) 43.2±0.3 81.6±0.2 52.3±0.2

Table 5. Mean Average Precision (mAP@50) in KITTI with the
most severe weather conditions, i.e. fog with only 30m visibility,
rain with 200mm/hr intensity, and snow in level 5. Higher is better.
SF denotes source free.

CLIP [25], we use the publicly available pretrained model
as the source model, and evaluate our method on the
test/validation sets of CIFAR10, CIFAR100, Food101,
Cars, and ImageNet. We uniformly use “a photo of a
{class}” as the prompt template, where the class token is
replaced by the specific class name, such as ”airplane”,
”deer”, and ”frog”. Our method is run with a learning rate of
1e-6 for ResNet [11] backbone and 1e-5 for Vision Trans-
former [7] backbone. A batch size of 64 is adopted con-
sidering the memory constraint, while different batch sizes
have little impact on our method, analyzed in the ablation
study 4.4. Following Mirza et al. [22], we adapt a Wide-
ResNet-40-2 [34] (WRN-40-2) pre-trained with AugMix
[13] on CIFAR-10C, and an ImageNet pre-trained ResNet-
18 [11] from PyTorch model zoo on ImageNet-C. We adopt
a batch size of 128 and a learning rate of 1e-3, while all
the compared methods and baselines use the hyperparame-
ters reported by their authors. For object detection task, we
adapt a YOLOv3 [26] pretrained on KITTI in clear weather
to fog, rain and snow. For semantic segmentation task, we
adapt a DeepLab-V2 [5] with a ResNet-101 backbone pre-
trained on clear split of CarlaTTA to the other five scenarios.
We run experiments on 5 random seeds and report the mean
and standard deviation for these runs.

Offline and online adaptation. We evaluate our method
in both offline and online settings. In the offline scenario,
we can access all the test data and train the model on the en-
tire test sets for 50 epochs, without considering the storage
limitation. In the online scenario, the test samples arrive
sequentially and do not reappear. We maintain a memory
queue to store a certain amount of feature vectors, 10K by
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Source 58.4 52.8 71.8 46.6 28.7

BN Adapt [27] 62.0 56.8 71.4 52.6 32.8
TENT [30] 61.5 56.0 70.9 50.3 32.0

MEMO [35] 61.0 55.1 71.6 50.3 35.2
CoTTA [31] 61.4 56.8 70.7 46.4 33.8

Ours (SimpAug) 60.1 53.9 72.6 48.9 31.9
Ours (Online) 62.4 56.8 73.9 51.5 34.7

Table 6. Mean Intersection over Union (mIoU, %) on CarlaTTA.
Higher is Better. SF denotes source free.

default, for our PLCA. We also study the effect of adopt-
ing different memory capacities on our method in Sec. 4.4.
Furthermore, our method maintains the performance in the
more challenging single sample online adaptation task.

4.2. Image Classification

Results for adapting CLIP model are reported in Table 1.
We find that updating both image and text encoders simulta-
neously can further improve the adaptability of CLIP model
than freezing the text encoder as shown in Fig. 4 (c). We
also compare with the method of using SimpAug and PLCA
without re-training. The number of augmented verions for
each test sample is set to 8 by default, which contains an
original version. PLCA outperforms the our online method
on multiple benchmarks, which may be due to the fact that
online training does not sufficiently learn from the test sam-
ples with pseudo-labels, while offline adaptation addresses
this issue by training repeatedly and providing more accu-
rate pseudo-labels after each epoch.

We present the results on CIFAR-10C and ImageNet-C
in Table 2 and 3. Our method outperforms other online
methods by a fair margin. Compared to works designed
for offline adaptation, our method achieves comparable or
even higher performance. It is noteworthy that MEMO [35]
achieves higher performance than other baselines on adapt-
ing WRN-40-2, perhaps because of applying the same aug-
mentation strategy, AugMix [13], for TTA as the training
stage. However, when adapting ResNet-18 pre-trained with
standard augmentation, MEMO does not maintain advan-
tages due to the poor calibration of deep neural networks to
augmented images with complex unseen transformations.
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Models Methods ImageNet -V2 -Sketch -A -R
R

N
-5

0 CLIP (zero-shot) 55.8 51.1 33.2 21.8 56.0
Ours (π = 0) 57.2 53.1 33.8 22.5 59.2

Ours (π = 0.9) 58.3 53.8 36.0 24.0 60.3
Ours (π = 0.99) 57.4 52.6 36.2 24.0 59.1

R
N

-1
01 CLIP (zero-shot) 58.2 54.3 38.0 28.1 63.9

Ours (π = 0) 59.7 55.9 39.8 27.0 66.9
Ours (π = 0.9) 60.1 56.2 40.9 30.4 67.3

Ours (π = 0.99) 59.3 55.4 40.8 31.0 66.6

V
iT

-B
/3

2 CLIP (zero-shot) 59.8 54.7 40.9 30.2 66.7
Ours (π = 0) 63.7 58.1 44.1 32.7 71.4

Ours (π = 0.9) 62.1 57.1 43.6 33.4 70.5
Ours (π = 0.99) 60.9 56.5 43.2 33.1 69.7

V
iT

-B
/1

6 CLIP (zero-shot) 64.5 60.6 46.0 47.8 73.8
Ours (π = 0) 69.1 63.6 50.1 51.4 79.1

Ours (π = 0.9) 67.2 62.5 49.1 52.9 77.6
Ours (π = 0.99) 65.9 61.8 48.5 52.0 76.6

Table 7. Comparison with different π values on robustness to dis-
tribution shift. Higher is Better.

Continuous online adaptation. Following CoTTA [31]
to continuously adapt the model to different corruptions, we
test our method on CIFAR-10C and ImageNet-C, referred to
Table 4. Our method outperforms other baselines.

4.3. Object Detection and Semantic Segmentation

To evaluate the effectiveness of our method in solving re-
gression problems, we conduct experiments on KITTI us-
ing YOLOv3. We report the results in Table 5 and visualize
the detecting boxes in Fig. 5. Our method outperforms BN
Adapt [27] and TTT [29], which are scalable to other mod-
els and not limited by the main task, and also beats Act-
MAD [22], which utilizes statistics in source data to TTA,
in clear-to-rain task. Note that when only using SimpAug
for test-time augmentation, we improve the source model up
to 10.4%. The visualization shows that SimpAug helps the
model recognize distant and occluded objects that are hard
to detect, while online training with pseudo-labels further
boosts the accuracy and filter out duplicate boxes.

For the semantic segmentation task, building a graph
with all pixels is computationally expensive. We are in-
spired by COMUS [33] and collect object-level features,
which represent the nodes in the graph. The results are
listed in Table 6. BN Adapt exhibits robustness in the dis-
tribution shifts over time, while other methods seem to have
limited improvement in gradually changing environments.
Our method outperforms CoTTA [31], which is designed
for continuous test-time adaptation.

More implementation details and comparison results can
be found in the supplemental material.

4.4. Ablation Study

Number of augmentations. We study how the number
of augmentation for single sample affects the performance
of SimpAug, and conduct experiments on KITTI using
YOLOv3, referred to Table 8. SimpAug improves the ac-

Num 128 64 32 16 8 4 2 1 (Source)

Fog 28.2 27.7 27.3 26.4 25.9 25.0 24.6 22.8
Rain 75.9 75.9 75.2 73.8 73.4 72.1 68.9 65.5
Snow 37.6 37.0 36.0 34.6 32.8 30.6 28.7 25.6

Table 8. mAP@50 of SimpAug with different augmentation num-
bers on KITTI. Higher is Better.

Memory Size 100K 10K 1K 100 10 0 Source

RN50 CIFAR10 83.0 83.0 83.4 82.9 82.2 82.1 68.7
ViT-B/32 Food101 86.4 86.3 85.8 85.7 85.7 85.7 80.7

Table 9. Accuracy (%) of our online method with CLIP model in
different sizes of memory queue. Higher is Better.

Batch Size 128 64 32 16 8 1 Source

RN50 CIFAR10 82.8 83.0 83.5 82.9 83.3 81.0 68.7
ViT-B/32 Food101 86.4 86.3 86.3 86.6 86.5 87.1 80.7

Table 10. Accuracy (%) of our online method with different batch
sizes. Source denotes zero-shot performance of the CLIP model.

curacy with the increase of augmentation numbers until the
performance bottleneck. Large number of augmentation re-
quires computational resources and storage.

Size of memory queue. The memory size affects the in-
ference speed and the accuracy of corrected pseudo-labels
by PLCA. We conduct ablation experiments for online
adaptation, as shown in Table 9. A large memory improves
the ability of graph modeling the relations between sam-
ples. However, in online settings, old stored feature vectors
have a higher error rate than the new ones, which affects the
prediction of pseudo-labels for the current image.

Momentum coefficient. π is a momentum coefficient
that affects the models’ update speed and avoids catas-
trophic forgetting. We test the performance of the CLIP
model without using PMA and with two π values. The re-
sults listed in Table 7 show that ViT backbone is more resis-
tant to catastrophic forgetting than ResNet, and our method
can maintain the robustness of the CLIP model to distribu-
tion shift while performing test-time adaptation.

Batch size. Most existing methods suffer from a small
batch size in online adaptation, especially for those that
rely on modifying normalization statistics of BN layers. As
shown in Table 10, our method maintains comparable per-
formance even in single sample online adaptation.

5. Conclusion
In this work, we propose an improved self-training method
for fully test-time adaptation. In contrast to previous TTA
methods, our IST explores the adaptability of the founda-
tion model by employing CLIP as the source model. It goes
beyond image classification and can be applied to object
detection and semantic segmentation. IST outperforms ex-
isting TTA methods on different benchmarks and tasks by
improving the quality of pseudo-labels and stabilizing the
adaptation process. Experiments show that IST is scalable
to a variety of pre-trained models and application tasks.
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