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Abstract

Gait, a prevalent and complex form of human motion,
plays a significant role in the field of long-range pedes-
trian retrieval due to the unique characteristics inherent
in individual motion patterns. However, gait recognition
in real-world scenarios is challenging due to the limita-
tions of capturing comprehensive cross-viewing and cross-
clothing data. Additionally, distractors such as occlusions,
directional changes, and lingering movements further com-
plicate the problem. The widespread application of deep
learning techniques has led to the development of various
potential gait recognition methods. However, these methods
utilize convolutional networks to extract shared information
across different views and attire conditions. Once trained,
the parameters and non-linear function become constrained
to fixed patterns, limiting their adaptability to various dis-
tractors in real-world scenarios. In this paper, we present
a unified gait recognition framework to extract global mo-
tion patterns and develop a novel dynamic transformer to
generate representative gait features. Specifically, we de-
velop a trainable part-based prompt pool with numerous
key-value pairs that can dynamically select prompt tem-
plates to incorporate into the gait sequence, thereby provid-
ing task-relevant shared knowledge information. Further-
more, we specifically design dynamic attention to extract
robust motion patterns and address the length generaliza-
tion issue. Extensive experiments on four widely recognized
gait datasets, i.e., Gait3D, GREW, OUMVLP, and CASIA-B,
reveal that the proposed method yields substantial improve-
ments compared to current state-of-the-art approaches.

1. Introduction

Gait, as a distinct and intricate form of movement [4, 43],
holds significant implications for long-distance recognition
[36, 49, 60] owing to its remarkable uniqueness. However,
gait recognition suffers from various complicating factors
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Figure 1. Performance comparison of prevailing methods and the
proposed method in both real-world and laboratory scenarios.

in real-world scenarios. Silhouette data from the same indi-
vidual can exhibit significant variation depending on view-
ing angles and clothing conditions [44, 58], resulting in
more intra-class variation than inter-class variation. In ad-
dition, potential obstructions from crowds and actions of
the observed subjects [61, 63], such as turning, lingering,
or stopping, may manifest within a single gait sequence.
Despite the ability of human visual perception to seam-
lessly establish correspondences between occlusions, view-
point changes, and object transformations, it still poses a
formidable challenge for the gait recognition network.

Learning robust motion patterns from multiple varia-
tions all at once is not a trivial task. With the widespread
application of deep learning, some promising methods
[7, 14, 22, 33, 35] have emerged. However, these methods
preserve shared information across different viewpoints and
attire conditions while discarding task-relevant knowledge
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relevant to particular conditions. Intuitively, the knowledge
is crucial for the gait network to learn valuable invariances.
Thus, we aim to reveal it from the following aspects:

(i) Prompt Templates. A widely acknowledged as-
sumption [7, 35, 54] regarding gait is that individuals main-
tain consistent motion patterns regardless of external fac-
tors. Central to all of these capabilities is the ability to es-
tablish associations despite occlusions, viewpoint changes,
and varying object appearances. Indeed, in controlled labo-
ratory settings marked by abundant data and well-managed
conditions, stable associations tend to form readily. Con-
versely, addressing scenarios in the wild, constrained by
limited data and influenced by obstructions and crowded
environments, significantly increases the complexity of es-
tablishing stable associations. Consequently, a simple and
effective approach is to provide task-relevant knowledge us-
ing a learnable prompt pool, which is expected to adaptively
select prompt templates based on sequence attributes to es-
tablish stable associations under various disturbances.

(ii) Length Generalization. Similar to natural language
processing (NLP) tasks [47], gait also faces the problem of
length generalization [17, 42, 55]. In particular, the ma-
jority of the most promising gait recognition methods in-
volve training by randomly selecting a subset of the se-
quence and testing by extracting features from the entire
sequence. Nevertheless, these methods frequently neglect
the challenges presented by the longer sequence. To this
end, we implement a dynamic context window mask for
gait, enabling the network to focus its attention on the fea-
tures within the specified window. Furthermore, we propose
to establish a correlation between the localized window and
the prompt templates, with the aim of emphasizing the sig-
nificance of distinctive gait features within the sequence.

Based on the above analysis, we present a comprehen-
sive Visual Prompt Network (VPNet) for gait recognition.
VPNet leverages prompt templates to augment the task-
relevant information associated with the gait feature. Dy-
namic attention is employed to establish connections be-
tween prompt templates and local window features, en-
abling the network to capture crucial invariant gait fea-
tures. As illustrated in Fig. 2, VPNet initially extracts fea-
tures from the sampled sequence using a backbone net-
work. These features are then compared with a trainable
part-based prompt pool, with prompt templates dynamically
selected and integrated into the gait sequence. The merged
features are further input into the dynamic transformer to
enhance the learning of global motion patterns. VPNet ex-
hibits superior performance, especially in realistic scenar-
ios, compared to state-of-the-art (SOTA) methods on pub-
licly available datasets as shown in Fig. 1. A brief overview
of our main contributions can be summarized as follows:

• We introduce an innovative visual prompt that integrates
key-value pairs with gait features, encoding factors such

as viewpoint, attire, occlusion, etc. These prompt tem-
plates provide task-related information to the network, fa-
cilitating the extraction of representative gait features.

• We design an efficient dynamic transformer with a con-
text window mask structure to correlate prompt templates
with local motion patterns, addressing the length general-
ization problem for gait recognition.

• We present a unified framework that yields competitive
results on publicly accessible datasets, namely Gait3D
[61], GREW [63], OUMVLP [44], and CASIA-B [58].
In addition, a series of rigorous ablation experiments fur-
ther validate the effectiveness of our approach.

2. Relate Work
In this section, we present a review of the most relevant
studies on gait recognition and prompt engineering.

2.1. Gait Recognition

Gait recognition approaches can be broadly classified into
two categories based on their modeling methodology, i.e.,
model-based methods and appearance-based methods.
Model-based method. Model-based approaches [2, 48, 59]
aim to capture the inherent biomechanical characteristics
of pedestrians. Early approaches [3, 28, 56] focused on
distinguishing identities by estimating pedestrian motion
parameters. However, such methods were constrained by
predefined empirical points and yielded limited recognition
accuracy. With the rapid advancement of deep learning,
researchers have shifted their focus to extracting training
data using pose estimation or Skinned Multi-Person Linear
(SMPL) models. Subsequently, a well-designed network
[21, 29, 30, 45, 46] is employed to further learn the gait fea-
tures based on joint-based datasets. Despite substantial ad-
vancements, the efficacy of model-based methods remains
constrained by the empirical design of predefined points and
the estimation of results from low-quality images.
Appearance-based method. Appearance-based methods
aim to learn gait features directly from silhouette data. Pre-
vious methods [18, 37, 54] have employed an efficient ap-
proach by directly applying weighted averaging to the se-
quence, i.e., Gait Energy Image (GEI). These methods have
achieved significant advancements across various view-
points and clothing conditions. However, the weighted av-
eraging of video sequence data inevitably leads to the loss
of substantial motion details. To this end, current research
[22, 23, 26, 32] emphasizes the utilization of video input to
learn gait features in order to address this limitation. Some
of the 2D convolution-based methods [7, 14] independently
extract local spatial features from each frame and subse-
quently utilize set-based pooling techniques, i.e., MaxPool-
ing and MeanPooling, to directly extract global temporal
features from the variable-length sequence. These methods
have yielded impressive experimental results, significantly

594



Part-base 
Prompt Pool

keys

values

Querys

Select 
prompt

templates

HP

(a) Extract global motion patterns (c) Claculate Joint Loss :

Silhouette
sequence

1×
1×

1,
 6

4

3×
3×

3,
 6

4

1×
1×

1,
 6

4

FT
S 

Sy
nc

B
N

3d

3×
3×

3,
 6

4

1×
1×

1,
 1

28

3×
3×

3,
 1

28

1×
1×

1,
 1

28

FT
S 

1×
1×

1,
 2

56

3×
3×

3,
 2

56

1×
1×

1,
 2

56

FT
S 

1×
1×

1,
 5

12

3×
3×

3,
 5

12

1×
1×

1,
 5

12

FT
S

t=1 t=2 t=3 t=4 t=n

Shifting along the temporal dimension

Forward cycle Temporal Shift (FTS)
t=n

Original
features

3×3×3, 128 3D Convlution , kernel 3×3×3, 
feature dimension 128

1×1×1, 128 3D Convlution, kernel 1×1×1, 
feature dimension 128

DA Dynamic Attention

(b) Select part-based prompt templates

H
ei

gh
t (

H
)

Width (W
)

Temporal (T)
lookup the top-k keys rank list 

Backbone

Head

Figure 2. Overview of the proposed Visual Prompt Network (VPNet), where “HP” denotes the Horizontal Pooling. (a) VPNet incorporates
the FTS module into the backbone based on ResNet, focusing on the extraction of global motion patterns without any extra parameters.
(b) VPNet utilizes a trainable prompt pool comprising numerous key-value pairs, dynamically selecting prompt templates and integrating
them into gait features to provide task-relevant knowledge. (c) Three different loss functions are combined for supervised network training.

advancing the field of gait recognition. However, gait rep-
resents a coordinated whole-body motion process, and pro-
cessing the features of each frame individually disregards
the preservation of robust local motion patterns, which are
essential for accurate gait information. Consequently, some
3D convolution-based methods [6, 12, 33, 35, 36] pro-
posed to local spatio-temporal features from adjacent frame
images using a shared 3D convolution kernel, while fur-
ther modeling the unfixed length sequence to obtain robust
global features. The approach presented in this paper falls
within the category of appearance-based methods. In con-
trast to previous methods, we aim to explore further im-
provements within the deep network structure.

2.2. Prompt Engineering

Prompt Engineering [5, 9, 40] is a methodology that in-
volves the incorporation of additional information as a con-
dition in the inference process using a model. It has gained
considerable popularity [16, 19, 41] in the field of natu-
ral language processing (NLP) due to its ability to inte-
grate task-specific cues for each individual task. In recent
years, there has been a notable surge in prompt-based re-
search [31, 38, 57, 62] within the field of computer vision.
It integrates visual and linguistic tasks, using NLP to ref-
erence or define visual concepts. To address inherent dis-
parities in information densities between visual and NLP
tasks, researchers have developed methodologies [1, 24, 27]
that involve pre-filling model inputs with adaptive parame-
ters. These parameters, functioning as prompts, can be fine-
tuned through gradient-based optimization, thereby facili-
tating their contribution to visual tasks. Specifically, VPT
[27] and VP [1] load a set of trainable prompts into the
model inputs while maintaining the architectural integrity
of the core network. This strategic implementation consis-

tently yields noteworthy performance improvements across
a range of downstream tasks. In contrast, DAM-VP [24]
adopts a divide-and-conquer scheme, segregating datasets
associated with downstream tasks into smaller, homoge-
neous subsets. Each subset is endowed with its distinct cue,
and subsequently, optimization is carried out independently
for each subset. We extend the concept of prompt learn-
ing from prior research [52, 53], utilizing it to provide task-
related information and extract robust motion patterns.

3. Methodology
In this section, we present the overall architecture of the
proposed Visual Prompt Network (VPNet) for gait and pro-
vide an in-depth explanation of the motivation in Sec. 3.1.
We then provide a comprehensive elucidation of the back-
bone architecture in Sec. 3.2. Finally, we present the spe-
cific structure of the dynamic transformer in Sec. 3.3.

3.1. Preliminary and Motivation

A vanilla vision gait recognition framework typically com-
prises two essential components: the backbone B and the
head H. Formally, given a gait silhouette sequence X ∈
RT×H×W , where H , W , and T represent the height, width,
and number of frames, respectively. Firstly, the gait se-
quence is fed into the backbone to extract the local motion
patterns, followed by its passage through the head to derive
the global motion patterns. The extraction of gait features
can be briefly represented as

F = H(B(X)), (1)

where F ∈ RP×C denotes the output features, P is the
number of horizontal slices, and C is the feature dimension.
Most of the existing research [8, 15, 33] places a significant
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focus on improving the efficiency of the backbone compo-
nent for extracting complex spatio-temporal features. De-
spite their progress, these approaches struggle to address the
challenges of gait recognition in real-world scenarios. To
this end, as shown in Fig. 2, we intend to introduce a com-
prehensive framework for gait recognition. In particular, it
involves utilizing a common backbone to directly extract
global motion patterns, designing a trainable prompt pool
P that adaptively selects task-relevant templates to concate-
nate with the original gait features, and employing dynamic
attention to learn representative gait features, i.e.,

F = H(concat[

prompt templates︷ ︸︸ ︷
P(B(X)) ,B(X)]), (2)

where concat represents the concatenation along the tempo-
ral dimension. The prompt templates, functioning as train-
able embeddings, essentially encode the gait task. These
templates include various aspects such as viewpoint, attire,
carrying conditions, occlusion, and so on. They provide
instructions to the model, specifying the task it executes.

3.2. Backbone Architecture

We utilize the bottleneck structure in ResNet [20] to es-
tablish the backbone for gait recognition and introduce a
plug-and-play gait temporal-shift operation [34, 36], cou-
pled with a 3D convolutional network, as the foundational
motion pattern extraction element within the bottleneck.
By modifying the depth of the backbone network, we se-
quentially construct three models with distinct parameters
in Sec. 4.1, namely VPNet-T, VPNet-M, and VPNet-L.
Temporal Shift Bottleneck. 3D convolution is commonly
used in gait recognition tasks due to its proficiency in lo-
cal spatio-temporal aggregation. However, its ability to be
used in real-world scenarios with numerous long silhouette
sequences may pose certain challenges. Inspired by tempo-
ral shift operation [34, 36], as shown in Fig. 2, we design a
novel Forward cycle Temporal Shift (FTS) module for the
gait recognition network. Considering that forward walk-
ing is the predominant daily practice, whereas backward
walking is less frequent, we employ a forward cyclic shift-
ing approach along the temporal dimension instead of the
zero padding technique used in TSConv [34]. Specifically,
the FTS module divides the features f ∈ RC×T×H×W of
each pixel into four segments. It only cyclically shifts the
first segment f1 ∈ RC

4 ×T×H×W along the temporal dimen-
sion. The extraction of motion patterns with a global recep-
tive field can be achieved by incorporating the FTS module
before 3D convolution, without the additional parameters.

3.3. Dynamic Transformer

We present a dynamic transformer as an integral head layer
H in the network architecture. As shown in Fig. 2, it em-
ploys prompt engineering to provide task-specific shared
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Figure 3. The dynamic attention architecture. We utilize both
prompt templates and gait sequence as inputs, employing the Con-
text Window Mask to overcome the length generalization problem.

knowledge information for gait sequence and introduces a
dynamic context window mask to effectively alleviate the
problem of length generalization in real-world scenarios.
Part-based Prompt Pool. Prompt learning has emerged as
a methodology in NLP, and its application in gait recogni-
tion is motivated by three main considerations. Firstly, the
adaptable visual prompt templates facilitate the integration
of shared insights concerning the gait sequence. Secondly,
the shared knowledge seamlessly incorporates into the gait
sequence as a global feature through a flexible plug-and-
play process. Finally, specific visual prompts are associated
with salient features within the gait sequence. To address
this, we introduce a part-based prompt pool with shared
parameters, delivering task-specific information. The j-th
prompt pool can be defined as

Pj = {P j,1,P j,2, . . . ,P j,N |P j,i = (kj,i, vj,i)}, (3)

where {Pj |j = 1, ..., P} is the j-th prompt pool, P denotes
the number of horizontal slices, P j,i is the i-th prompt to-
ken, N denotes the number of trainable tokens in the prompt
pool, kj,i ∈ RC and vj,i ∈ RC represent the key and value,
respectively. We utilize key-value pairs as prompt tokens,
matching the key with the input gait sequence. Following
this alignment, the top-k values are selected as prompt tem-
plates based on their similarity, and these chosen templates
are smoothly integrated with the original sequence along
the temporal dimension. Specifically, given a gait sequence
feature S ∈ RP×T×C , for the j-th part sequence feature
Sj ∈ RT×C , we first compute the average feature along the
temporal dimension S̄j ∈ RC and then perform similarity
matching with key embeddings in the prompt pool to select
the top-k values with the highest similarity. Denote R as
the function to lookup the top-k keys in the ranked list, the
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selection process for the key can be represented as

Kj = R
(

S̄j ⊗ kj,i
∥S̄j∥ ⊗ ∥kj,i∥

)
, (4)

where Kj denotes a list of sets, generating a top-k index that
is linked to the query sequence, and ⊗ represents matrix
multiplication. The index value is employed to retrieve k
values, denoted as Vj = {vj,κ|κ ∈ Ks}. Subsequently, we
combine the indexed value Vj with the feature Sj , i.e.,

S∗
j = concat [Vj , Sj ] , (5)

where concat represents the concatenation of prompt tem-
plates and gait vectors along the temporal dimension. The
resulting gait sequence, denoted as S∗

j ∈ R(T+k)×C , in-
tegrates the prompt information, (T + k) is the length of
the gait sequence, and k is empirically set to 6. Similar
to the codebook collapse issue faced in VQ-VAE [10, 39],
there exists a risk that all index Kj map to a limited set of
prompt templates. To address this, we implement a ran-
domized restart strategy: the key vector in the prompt pool
is randomly reset to one of the encoder outputs if its average
utilization falls below a predefined threshold (τ = 0.001).
Dynamic Attention. As shown in Fig. 3, we propose to
extract global motion patterns for each body part based on
prompt templates using the multi-head attention [11, 47].
Formally, the j-th part sequence feature S∗

j is mapped as
query Q , key K and value V . The mapping process is as

Q = S∗
jW

Q,K = S∗
jW

K ,V = S∗
jW

V , (6)

where WQ ∈ RC×h·C
′

, WK ∈ RC×h·C
′

and WV ∈
RC×h·C

′

are learnable parameters, h denotes the number
of heads, and C

′
represents the feature dimension of each

head. Then, we employ Q and K to establish similarity
relationships between each frame. It is notable that prompt
templates can be associated with the features of each frame,
thereby giving rise to the establishment of correlations, i.e.,

sim(Q,K) = QKT , (7)

where sim(Q,K) denotes the similarity matrix. Similar
to natural language processing, gait recognition also faces
the challenge of length generalization [17, 42, 55]. During
training, a limited number of frames are randomly selected,
but during testing, the longer sequence can distract the at-
tention of the network. To effectively utilize the shared in-
formation provided by prompt templates in discerning dis-
tinctive global motion patterns within varying length se-
quences, we introduce a context window mask structure.
This design dynamically establishes connections between
prompt templates and gait sequence. As depicted in Fig. 3,

the architecture comprises a global branch on the left and
a local branch on the right. The global branch allows each
feature in the sequence to focus on establishing relation-
ships with prompt templates, while the local branch fosters
associations between each feature and other features within
a defined local length range. Features outside of these two
branches are excluded from the attention process, i.e.,

Att(Q,K,V ) = softmax(
sim(Q,K)√

C ′
⊕M)V , (8)

where
√
C ′ is the scaling factor, M is the dynamic context

window mask, and ⊕ denotes element-wise sum operation.

3.4. Learning Details

In this work, we introduce three loss functions during train-
ing: triplet loss Ltp, cross-entropy loss Lcet, and cosine em-
bedding loss Lcem in Fig. 2. The Ltp and Lcet serve to
supervise part-based features individually, while the Lcem

is applied to supervise the key embedding (kj,i) within the
prompt pool. Lcem requires that the selected key embed-
ding be closely related to the query sequence S̄i, i.e.,

Lcem = argmin
κ∈Kj

P∑
i=1

−1

Ncem

(
S̄i ⊗ kj,κ

∥S̄i∥ ⊗ ∥kj,κ∥

)
, (9)

where Ncem is a positive integer obtained by multiplying
the batch size with the number of parts. In each training
step, we adhere to the previously described strategy to select
Ks. The selected prompt templates are then merged with
gait sequence vectors and fed into the dynamic transformer
and BNNeck [15] to extract representative gait features. In
general, the training process involves the use of a combined
loss following the end-to-end method, i.e.,

Lsum = Ltp + αLcem + βLcet, (10)

where α and β are the hyper-parameters to balance the com-
bined loss, α is empirically set to 0.01 and β is set to 0.3.

4. Experiments
4.1. Datasets and Implementation Details

The gait datasets are divided into two subsets, i.e., in-the-
wild and in-the-lab, distinguished by their respective collec-
tion environments in Tab. 1. A standardized preprocessing
procedure [7] is uniformly applied to these datasets, and the
data sizes used in this paper are all resized to 64× 64.
In-the-wild datasets. In-the-wild datasets introduce nu-
merous unforeseen challenges, such as occlusions, cloth-
ing changes, viewpoint variations, and carrying conditions.
Pedestrians may also pause or alter their walking patterns.
These datasets are essential benchmarks for evaluating gait
recognition methods under various external disturbances.
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Table 1. Comparison of the specific values of the adopted datasets and corresponding parameters. Where “#Ide., #Seq., #Cam.” refer to
numbers of identities, sequences, and cameras respectively. Additionally, “lr, dr, wd” denote learning rate, decay rate, and weight decay.

Environment Datasets Train Test # Cam. Batch Size Optimizer Scheduler
# Ide. # Seq. # Ide. # Seq. step size epochs

In-the-wild Gait3D [61] 3,000 18,940 1,000 6,369 Diverse (32, 4) SGD
lr = 0.1
dr = 0.1

wd = 0.0005

20 80
GREW [63] 20,000 102,887 6,000 24,000 Diverse (64, 4) 50 200

In-the-lab OUMVLP [44] 5,153 144,284 5,154 144,312 14 (32, 8) 50 200
CASIA-B [58] 74 8,140 50 5,500 11 (8, 16) 10 40

Table 2. The detailed structure of the backbone in VPNet-L, where
FTSConv denotes the combined of FTS module and convolution.

Layer Output size

conv1 3× 3× 3, 64, stride (1, 1, 1) T ×H ×W

stage1

 1× 1× 1, 64, (0, 0, 0)
FTSConv, 64, (1, 1, 1)
1× 1× 1, 64, (0, 0, 0)

× 3 T ×H ×W

stage2

 1× 1× 1, 128, (0, 0, 0)
FTSConv, 128, (1, 2, 2)
1× 1× 1, 128, (0, 0, 0)

× 4 T × H
2 × W

2

stage3

 1× 1× 1, 256, (0, 0, 0)
FTSConv, 256, (1, 2, 2)
1× 1× 1, 256, (0, 0, 0)

× 6 T × H
4 × W

4

stage4

 1× 1× 1, 512, (0, 0, 0)
FTSConv, 512, (1, 1, 1)
1× 1× 1, 512, (0, 0, 0)

× 3 T × H
4 × W

4

We evaluate our method on the widely adopted Gait3D [61]
and GREW [63] datasets in Tab. 1. To enhance the ro-
bustness of our model, we employ three data augmentation
techniques: rotation, flipping, and perspective. We con-
duct training using VPNet-L on both Gait3D and GREW
datasets and report rank-1 (%) and rank-5 (%) accuracy.
In-the-lab datasets. In-the-lab datasets encompass various
controllable conditions, including camera angles, predeter-
mined walking routes, and dress variations. These datasets
play a pivotal role in evaluating the ability of the gait net-
work to handle cross-viewing and cross-dressing scenar-
ios. We select the well-established OUMVLP [44] and
CASIA-B [58] datasets to evaluate our approach in Tab. 1.
Specifically, the OUMVLP provides an abundance of cross-
viewing data, while the CASIA-B offers valuable cross-
dressing data. Limited datasets, particularly those obtained
from laboratory scenarios, may result in overfitting if the
network parameters are excessively large. Therefore, we
employ VPNet-M for training on OUMVLP and VPNet-T
for training on CASIA-B. We present the rank-1 (%) accu-
racy for all perspectives, excluding the identical-view cases.
Implementation Details. We establish the network param-
eters based on the dataset scale and complexity, as outlined
in Tab. 1. The batch size is represented as (S, T ), indicat-
ing that each mini-batch involves S subjects. For each sub-
ject, T sequences are sampled, and within each sequence,
a random selection of 20 to 40 frames is chosen following

Table 3. The performance comparisons on Gait3D are reported
with rank-1 and rank-5 accuracy (%).

Methods Publication rank-1 (%) rank-5 (%)

GaitSet [7] AAAI 2019 36.7 58.3
GaitPart [14] CVPR 2020 28.2 47.6
GLN [22] ECCV 2020 31.4 52.9
GaitGL [33] ICCV 2021 29.7 48.5
CSTL [25] ICCV 2021 11.7 19.2
SMPLGait [61] CVPR 2022 46.3 64.5
GaitBase [15] CVPR 2023 65.6 -
GaitGCI [13] CVPR 2023 50.3 68.5
DANet [35] CVPR 2023 48.0 69.7
HSTL [50] ICCV 2023 61.3 76.3
DyGait [51] ICCV 2023 66.3 80.8

VPNet-L - 75.4 87.1

Table 4. The performance comparisons on GREW are reported
with rank-1 and rank-5 accuracy (%).

Methods Publication rank-1 (%) rank-5 (%)

GaitSet[7] AAAI 2019 46.3 63.6
GaitPart [14] CVPR 2020 44.0 60.7
GaitGL [33] ICCV 2021 47.3 63.6
GaitGraph [45] ICIP 2021 1.3 3.5
GaitBase [15] CVPR 2023 60.1 -
GaitGCI [13] CVPR 2023 68.5 80.8
HSTL [50] ICCV 2023 62.7 76.6
DyGait [51] ICCV 2023 71.4 83.2

VPNet-L - 80.0 89.4

DANet [35]. The optimization strategy employs Stochas-
tic Gradient Descent (SGD) with an initial learning rate of
0.1, and each epoch consists of 1000 iterations. The learn-
ing rate undergoes periodic reduction based on the step size
in Tab. 1, with a decay rate of 0.1. The entire model is
built by sequentially stacking the temporal shift bottleneck
in Sec. 3.2. We construct three models with distinct pa-
rameters, namely VPNet-T, VPNet-M, and VPNet-L, by
modifying the depth of the backbone network. Specifi-
cally, VPNet-T is composed of three stages, each com-
prising a specific number of layers (1, 1, 1) and channels
(64, 128, 256). In contrast, both VPNet-M and VPNet-L
consist of four stages with channel configurations (64, 128,
256, 512) in Tab. 2. VPNet-M employs a layer stack of (2,
2, 2, 2), while VPNet-L utilizes a stack of layers (3, 4, 6, 3).
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Table 5. Rank-1 accuracy (%) on OUMVLP under all view angles, excluding the identical-views cases.

Method Probe View Mean
0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 180◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦

GaitSet [7] 79.5 87.9 89.9 90.2 88.1 88.7 87.8 81.7 86.7 89.0 89.3 87.2 87.8 86.2 87.1
GaitPart [14] 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7
GLN [22] 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2
GaitGL [33] 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7
GaitBase [15] - - - - - - - - - - - - - - 90.0
GaitGCI [13] 91.2 92.3 92.6 92.7 93.0 92.3 92.1 92.0 91.8 91.9 92.6 92.3 91.4 91.6 92.1
DANet [35] 87.7 91.3 91.6 91.8 91.7 91.4 91.1 90.4 90.3 90.7 90.9 90.5 90.3 89.9 90.7
HSTL [50] 91.4 92.9 92.7 93.0 92.9 92.5 92.5 92.7 92.3 92.1 92.3 92.2 91.8 91.8 92.4

VPNet-M 91.9 93.0 92.4 92.7 93.2 92.5 92.3 92.9 92.4 91.9 92.1 92.5 91.9 91.9 92.4

Table 6. The performance comparisons on CASIA-B are reported
with rank-1 accuracy (%), excluding the identical-view cases.

Methods Publication NM BG CL Mean

GaitSet[7] AAAI 2019 95.0 87.2 70.4 84.2
GaitPart[14] CVPR 2020 96.2 91.5 78.7 88.8
GLN [22] ECCV 2020 96.9 94.0 77.5 89.5
MT3D [32] MM 2020 96.7 93.0 81.5 90.4
GaitGL [33] ICCV 2021 97.4 94.5 83.6 91.8
GaitBase [15] CVPR 2023 97.6 94.0 77.4 89.8
GaitGCI-T [13] CVPR 2023 97.9 95.0 86.4 93.1
DANet [35] CVPR 2023 98.0 95.9 89.9 94.6
HSTL [50] ICCV 2023 98.1 95.9 88.9 94.3
DyGait [51] ICCV 2023 98.4 96.2 87.8 94.1

VPNet-T - 98.3 96.3 90.0 94.9

4.2. Results under in-the-wild Scenario

Gait3D. VPNet-L demonstrates superior performance in
terms of rank-1 and rank-5 accuracy in Tab. 3, surpassing
state-of-the-art methods. Notably, it exhibits a 9.1% im-
provement over DyGait [51], a silhouette-based approach,
and a remarkable 29.1% improvement compared to SMPL-
Gait [61], a multimodal method. These experimental results
underscore the efficacy of our method in extracting robust
features in the presence of diverse external disturbances.
GREW. VPNet-L achieves the advanced accuracy of rank-
1 and rank-5 as shown in Tab. 4, outperforming GaitGCI
[13] by 11.5% and GaitGraph [45] by 79.7%. These experi-
mental results demonstrate that our method effectively han-
dles various unexpected external factors in realistic scenes,
yielding effective global motion patterns in gait sequences.
Summary. We specifically design VPNet-L to tackle the
intricacies of outdoor scenes, leading to state-of-the-art per-
formance on real-world datasets. (1) Our method intro-
duces a unified backbone architecture designed for the ex-
traction of global motion patterns in real-world scenarios.
(2) Prompt templates convey task-related knowledge, and
a dynamic transformer is subsequently employed to effec-
tively alleviate the problem of length generalization. (3) Ex-

perimental results validate the effectiveness of the proposed
framework in the wild datasets.

4.3. Results under in-the-lab Scenario

OUMVLP. The experimental results of VPNet-M in Tab. 5
exhibit superior performance compared to the majority of
methods, underscoring its robustness and effectiveness. No-
tably, VPNet-M attains average accuracies on par with
HSTL [50]. It is noteworthy that the accuracy of VPNet-M
is further improved after excluding invalid probe sequences.
CASIA-B. The experimental outcomes in Tab. 6 underscore
the competitive performance of VPNet-T, surpassing other
gait recognition methods. It is worth noting that, excluding
the cases of identical views, VPNet-T achieved an average
accuracy of over 90% in cross-viewing and cross-dressing.
Summary. We customize VPNet-T and VPNet-M based
on data size and complexity, achieving state-of-the-art per-
formance on in-the-lab datasets. (1) Previously, different
depth networks have been designed on unified architectures
are common, such as ResNet-18 [20] and ResNet-50 [20].
Our proposed VPNet architecture fills a gap in the design
of network architectures for gait recognition across diverse
datasets. (2) In indoor scenarios, performance has reached
its peak due to the utilization of continuously improving
methods. Therefore, it is expected that gait recognition will
increasingly concentrate on outdoor scenarios in the future.

4.4. Ablation Study

Effectiveness of core designs. We perform ablation exper-
iments of the proposed module in Gait3D [61] and CASIA-
B [58] datasets. (1) The experimental results reveal that the
core design module, comprising the FTS module, prompt
pool, and dynamic attention module, notably influenced
cross-dressing and carrying conditions within the CASIA-B
dataset. In contrast, the introduced module exhibits a more
pronounced impact on Gait3D. (2) The results show that
replacing the dynamic attention with the max+mean main-
tains competitive accuracy in CASIA-B. However, the re-
sults show a significant decrease in Gait3D, highlighting the
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Table 7. The ablation study on Gait3D and CASIA-B are reported
with rank-1 accuracy(%), excluding the identical-views cases.

Method Gait3D CASIA-B
R-1 (%) NM (%) BG (%) CL (%)

VPNet 75.4 98.3 96.3 90.0

Analysis of each component in VPNet

- w/o FTS 73.2 98.0 96.1 89.2
- w/o prompt 72.8 98.0 96.0 89.1
- w/o mask 73.0 98.3 96.3 90.0

w max+mean 72.1 98.0 95.7 88.5

Analysis of temporal shift bottleneck

2D Conv 69.7 98.0 95.7 86.8
3D Conv 73.2 98.0 96.1 89.2

2D Conv + FTS 74.1 98.1 96.2 88.2
3D Conv + FTS 75.4 98.3 96.3 90.0

Analysis of the local length in dynamic attention

l=8 74.9 98.0 96.3 89.8
l=16 75.4 98.1 96.4 89.8
l=32 73.2 98.3 96.3 90.0

effectiveness of our module in real-world scenarios.
Analysis of temporal shift bottleneck. We perform an em-
pirical analysis comparing convolution outcomes within the
temporal shift bottleneck in Tab. 7. (1) The network uti-
lizing 2D convolution experienced a noteworthy decline in
performance, representing a substantial improvement over
using the FTS module in conjunction with 2D convolution.
These results indicate that the FTS module plays a role in
acquiring global motion patterns. (2) The network utilizing
3D convolution effectively captures local motion patterns,
whereas the incorporation of the FTS module into 3D con-
volution facilitates the extraction of global motion patterns.
Analysis of the local length. Different length affects the
receptive fields in dynamic attention. (1) The experimental
results demonstrate that an optimal range of receptive fields
(l=16) is essential for real data, as an excessively long re-
ceptive field (l=32) may introduce noise. (2) In laboratory
scenarios with relatively short sequence lengths, the impact
of local receptive fields is minimal. (3) The issue of training
and testing inconsistency can be alleviated by incorporating
local receptive fields in the real world.
Visualization of the prompt selection. We quantify the
frequency of prompt template selection across various view-
points and dress conditions on CASIA-B, as detailed in
Fig. 4. The visualization results reveal variability in prompt
template selection influenced by external factors, illustrat-
ing the encoding of task-relevant knowledge. (1) The sta-
tistical results show that different dressings and viewpoints
have obvious differences in the frequency of prompt tem-
plate selection. (2) The visualization results reveal variabil-
ity in prompt template selection influenced by external fac-
tors, illustrating the encoding of task-relevant knowledge.
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Figure 4. Histogram of prompt template selection on CASIA-B,
where “Prompt ID”, “View ID”, and “Type ID” denote the index of
prompt, view angle, and dressing, respectively. (a) Comparison of
the selection frequency of prompt templates under cross-dressing
and carrying conditions. (b)(c)(d) Comparison of prompt template
selection frequency across various views and body parts.

5. Conclusion and Limitations

In this paper, we present a Visual Prompt Network (VP-
Net) for gait recognition. VPNet employs temporal shift
bottleneck as the foundational module of a backbone net-
work to extract global motion patterns and utilizes prompt
engineering to adaptively select templates with correspond-
ing prompt information tailored for different gait sequences.
To enhance the robustness of global motion patterns, the re-
lationships between these templates and global features of
gait sequence are further established using dynamic trans-
former structures. VPNet demonstrates superior perfor-
mance in both in-the-wild and in-the-lab scenarios, high-
lighting its significant potential in real-world applications.
Limitations. Prompt learning has gained prominence in
natural language processing for retraining large-scale pre-
trained language models, whereas the proposed network
does not incorporate pre-training. In future work, we will
investigate the applications of prompt engineering for large-
scale gait recognition pre-training in real-world scenarios.
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