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Abstract

The success of contrastive language-image pretraining
(CLIP) relies on the supervision from the pairing between
images and captions, which tends to be noisy in web-
crawled data. We present Mixture of Data Experts (MoDE)
and learn a system of CLIP data experts via clustering.
Each data expert is trained on one data cluster, being less
sensitive to false negative noises in other clusters. At infer-
ence time, we ensemble their outputs by applying weights
determined through the correlation between task metadata
and cluster conditions. To estimate the correlation pre-
cisely, the samples in one cluster should be semantically
similar, but the number of data experts should still be rea-
sonable for training and inference. As such, we consider
the ontology in human language and propose to use fine-
grained cluster centers to represent each data expert at a
coarse-grained level. Experimental studies show that four
CLIP data experts on ViT-B/16 outperform the ViT-L/14 by
OpenAI CLIP and OpenCLIP on zero-shot image classifica-
tion but with less (<35%) training cost. Meanwhile, MoDE
can train all data expert asynchronously and can flexibly
include new data experts. The code is available here.

1. Introduction
Contrastive Language-Image Pretraining (CLIP) learns

versatile vision-language representations which are trans-
ferable across diverse downstream tasks. Existing mod-
els, such as OpenAI CLIP [35], OpenCLIP [40] and Meta-
CLIP [46], are trained with a large collection of web-
crawled image-caption pairs. Specifically, for each image,
its paired caption is viewed as a positive example, and the
captions of all the other images are viewed as negatives.
The model then learns to project both images and captions
into a shared space, where the embedding of the positive
caption is drawn closer to the image embedding, compared
to the embeddings of all the other negative captions.

The key to the success of contrastive vision-language
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Figure 1. For an image-caption pair, the caption may describe
limited visual content or even be unrelated, and such noises un-
avoidably hurt the quality of negative examples to learning a sin-
gle model. We propose to uncover the clusters from training data,
where 1) the pairs with similar images but different captions are
assigned to different clusters and 2) the samples in each cluster
are of related meanings, and learn a Data Expert for each cluster.
These experts are then selectively ensembled for inference.

representation learning lies in the creation of quality neg-
ative examples for training [7, 13]. A single image can be
depicted by texts with different meanings (i.e., semantics),
covering multiple details and interpretations, as illustrated
in Fig. 1. Because the paired caption usually describes
limited visual content, it is common to see that two sim-
ilar images have drastically different textual descriptions,
especially in noisy web-crawled data. When those image-
caption pairs are sampled in the same batch, captions of
other images become false negatives — acceptable captions
yet being treated as negative descriptions of the target im-
age. Conversely, if only dissimilar image-caption pairs are
sampled, the contrastive learning problem becomes trivial.
Incorporating hard negatives [7, 33, 45] (e.g., incorrect yet
similar captions that share many words of a correct textual
description) in training batches has often been shown to im-
prove the model performance.

In this work, we introduce the Mixture of Data Experts
(MoDE) framework (shown in Fig. 1-bottom) via cluster-
ing. MoDE separates false negative samples into different
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clusters and groups the pairs with similar semantics, which
mitigates noise from false-negative captions while incorpo-
rating a more challenging set of hard-negative examples,
thereby enhancing vision-language pre-training. MoDE
consists of two main steps: (1) the training data (i.e., image-
caption pairs) is first clustered into several disjoint subsets
by the captions; each cluster is then used to train a model
following the standard contrastive learning method. In this
way, each model is specialized by the training data in one
cluster and thus termed as a Data Expert. (2) When ap-
plied to downstream tasks, such as image classification, the
task metadata (i.e., class names), are first compared to the
centroid of each data cluster to determine which data expert
needs to be activated. Selected data experts are then used
to create the embeddings of the test image and classes. The
class with the highest ensembled similarity is then output as
the classification result.

Empirically, MoDE outperforms several state-of-the-art
vision-language models when applied to multiple standard
benchmarks, including +3.7% on image classification in
CLIP benchmark [31, 35], +3.3% on image-to-text retrieval
and +2.7% on text-to-image retrieval on COCO [26]. The
superiority of MoDE can be attributed to better trained in-
dividual data expert models, due to the fact that examples
in the same cluster, when used for contrastive learning, pro-
vide more quality negatives. Because captions in the same
cluster are different but semantically similar (e.g., “a cat
climbs a tree”, “a tiger reaches up to a tree”), they become
challenging negative examples when compared with images
that are not the originally paired ones. On the other hand, it
is also less likely to encounter a false negative case where
a very different caption validly describes the same image
(e.g., “tree guards to stop the cats” in Fig. 1). MoDE is also
uniquely positioned for large-scale training when billions of
image-caption pairs are available. As each data expert uses
only a fraction of the whole dataset, it can be more eas-
ily trained with fewer compute resources asynchronously.
From experiments across different ViT [5] model scales, we
show that four ViT-B/16 data experts can outperform the
single ViT-L/14 model by OpenAI CLIP [35] and Open-
CLIP [39] on image classification but requires much less
(<35%) training cost. In summary, our contributions are:

• We investigate the quality negative samples in contrastive
language-image pretraining, and in particular, the noise
of false negatives in web-crawled image-caption pairs.

• We propose the MoDE framework to learn a system of
CLIP data experts via clustering, and adaptively ensemble
data experts for downstream tasks at inference time.

• Extensive experimental study has demonstrated the ef-
fects in zero-shot transfer benchmarks with low training
cost. MoDE can include new data experts flexibly and is
thus beneficial for continual pre-training.

2. Related Work

Contrastive Language Image Pretraining (CLIP) aims
to learns robust & transferable visual representations from
large-scale data. Scaling up [17, 34] existing approaches
and improving the effectiveness is critical. Recent progress
in the field involves the exploration of regularization tech-
niques [49] and hyperbolic embedding methods [4] but they
require significant effort for data annotation. Data cura-
tion is then proposed to remove noisy web-crawled image-
caption pairs. Additionally, methods like image mask-
ing [25] and concise captions [24] efficiently decrease mem-
ory demands, enabling the use of larger batch sizes and
model sizes. However, a trade-off between training cost and
effectiveness still exists. Following the studies [20, 37] in
contrastive learning [2, 15], recent work investigated neg-
ative samples in CLIP training but still focuses on image
side [27, 44]. The noise exhibited in captions [47] is then
overlooked. In this study, we tackle the data noise and the
discovery of negative samples via clustering. Rather than
training a single model, we asynchronously train multiple
data experts and then directly ensemble them for inference
adaptively, which also shows benefits for model scaling.

Mixture-of-Expert (MoE) trains a set of sub-models and
a routing module. Originally, each expert is defined as an
entire network [16, 18], and a single model is selected for
each data adaptively. As restricting to hard model selection
may limit the practicality, deep mixture of expert [6], is
then proposed where the MoE layer is set to softly ensemble
layer outputs via weighted sum, which is then investigated
with different architectures [8, 22] in various tasks [36, 41].
However, all expert models are still trained on the same data
simultaneously, resulting in much heavier training costs.
Recently, BTM [12, 23] proposes to learn expert models
on different document types (e.g., papers, posts) separately
but is only validated on language models. Meanwhile, both
MoE and BTM can only determine the model routing for
each input separately. Instead, MoDE generalizes to task-
level adaptation and ensembles the models by task metadata
(e.g., class names in classification task [3]).

Inference-Time Adaptation adapts a pre-trained model
quickly and effectively to new tasks. Initially, transductive
learning [9] is studied and leverages all unlabeled test data
for model update. To mitigate the dependence on the pre-
sumed distribution of test data, test-time training [10,38,43]
is developed to generate individual models for each in-
put. Subsequent explorations into meta-learning [14,28,42]
introduced a separate module (i.e., meta-learner) that can
adapt the pre-trained model for each task with a few anno-
tated examples. MoDE has inference-time task adaptation
but without annotation or parameter update.
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Figure 2. Framework of MoDE via clustering. (Left) We perform a two-step clustering on captions to decide clusters / conditions for data
experts. The colored scatter plots are fine-grained clusters and the circles are clusters at coarse-grained level. (Right) Each coarse-grained
cluster (c) conditions the learning of one data expert f(·|c) and all data experts (colored boxes) are learned asynchronously. For inference,
the similarity between task metadata and fine-grained cluster centers ({s}) is used to decide the routing of data experts. To keep reasonable
training cost, all data experts can be initialized with a model partially trained on all data without clustering (omitted for simplicity).

3. CLIP Data Experts
For contrastive image-language pre-training, the model

is trained to accurately align each image with the captions
describing the visual content. In a manner of divide-and-
conquer [1], for each CLIP data expert training on one clus-
ter, we reduce the amount of false negatives and increase the
hard negatives within each mini-batch. In this way, we mit-
igate noise exhibited in web-crawled image-caption pairs
and make the model training more effective.

As shown in Fig. 2, on top of the established CLIP train-
ing that learns a single dense CLIP model f(·) (Sec. 3.1),
we propose to learn a set of CLIP data experts {f(·|c)} via
unsupervised clustering (Sec. 3.2) and each CLIP data ex-
pert f(·|c) is trained on the cluster c (Sec. 3.3). In this
way, the conditioned data expert f(·|c) is less sensitive to
the noise from other clusters and can be effectively trained
among the data of coherent semantics. For each evaluation
task, by measuring the correlation between the task meta-
data (e.g., class names) and the conditions, the outputs can
be jointly decided by multiple data experts (Sec. 3.4).

3.1. Background: Vanilla CLIP Training

CLIP [35] learns separate vision and language encoders
in a joint embedding space. By contrasting positive pairs
from negative samples within the same batch, CLIP can ac-
curately model the similarity of the image and caption in
each pair. We denote CLIP as f

(
(xv,xl)

)
for an image-

caption input (xv,xl), and simplify CLIP model as f(·). As
a reminder, instead of learning a single dense CLIP model
f(·), we propose to learn a set of CLIP data experts inde-
pendently given a set of conditions C, i.e., {f(·|c)|c ∈ C}.

3.2. Clustering

This subsection discusses how to formulate conditions
C, and how to use clustering to automatically discover con-
ditions for data experts from the pre-train set. In a nutshell,
the desiderata for the conditions are twofold: 1) as each
task at test time requires detailed description (e.g., recog-

nize the “cat” species instead of just “animal”), the con-
ditions should be representative such that the correlation
with tasks can be precisely modeled for reliable data ex-
perts selection; 2) the number of conditions should be rea-
sonable since each condition is used to learn one data ex-
pert. As each condition is represented by a cluster, the ideals
of representative likely ask for more fine-grained clustering
whereas the latter may require for fewer data experts.

Instead, motivated by the ontology in human language,
we propose to capture such a hierarchical structure via clus-
tering, i.e., determine the condition of a data expert at the
coarse-grained level and represent it via the set of fine-
grained clusters. For simplicity and efficiency of scaling,
we design a two-step K-means clustering. We employ fine-
grained clustering to locate each cluster whose samples are
of similar semantics, such that the cluster centers are rep-
resentative (Step 1), and then group fine-grained clusters to
determine coarse-grained clustering among data for data ex-
perts’ specialization (Step 2). In this way, instead of using a
single coarse-grained center, the condition is symbolized by
the fine-grained cluster centers. The features for clustering
are extracted from captions (details studied in Sec. 5).

Step 1: Fine-grained Clustering. As the amount of pre-
train data D is huge (hundreds of millions to billions level
for CLIP [35]), it could be inefficient to train K-means over
all pre-training data. Instead, we first uniformly sample a
subset from the pre-training set: D′ ∼ D and |D′| ≪ |D|.
Then, we perform K-means training [30] over D′:

S ← K-means(D′), (1)

where S is a set of learned cluster centers. Note that the
number of fine-grained clusters m = |S| can be substan-
tially large such that the cluster center of each cluster well
represents coherent semantic information for each cluster.
Step 2: Coarse-grained Clustering. To efficiently allo-
cate the training/inference of a data expert, we perform a
second round, i.e., coarse-grained, K-means clustering on
top of fine-grained cluster centers S:
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C ← K-means(S), (2)

where each coarse-grained cluster center c ∈ C is the con-
dition for a data expert. We denote n = |C| as the number
of data experts where n≪ m, and Sc as set of fine-grained
clusters assigned to data expert f(·|c) where S = ∪c∈CSc.

3.3. Data Experts Training

Next, we formulate training data for each data expert.
We first collect the data assigned for each fine-grained clus-
ter s: Ds = {d|s = argmins∈S(∥ed − es∥22) and d ∈ D},
where ed and es are the embeddings for training example
d and fine-grained cluster center s respectively. To train a
data expert f(·|c), its corresponding CLIP training data is:

Dc =
⋃

s∈Sc

Ds. (3)

For convenience, we use MoDE-n to indicate the system
with n CLIP data experts. For training efficiency, all data
experts are specialized from the same seed CLIP model that
is partially trained over the entire set D. Then, each data
expert f(·|c) is trained only on Dc.

3.4. Inference Time Task-Adaptation

As our framework conditions the model expertise on
clusters to train data experts, it also gives multiple models
to choose from during inference (instead of the only choice
on a single CLIP model). This gives the room to adapt dif-
ferent data experts to various downstream tasks.

We propose a simple approach to adapt data experts
(no parameter updates) to downstream tasks using the task
metadata. Intuitively, this approach routes each downstream
task adaptively and efficiently to data experts during infer-
ence. For simplicity, we formulate the data experts routing
as a weighted sum of data experts’ outputs. Formally, given
an evaluation task T, the output of CLIP data experts is∑

c∈C
f(·|c)p(c|T), (4)

where p(c|T) is the normalized weight for the data expert
f(·|c) and the data expert will not be used for inference if
the weight is close to zero. The weight is proportional to
the correlation, i.e., similarity, between metadata of task T
and condition c. Below we provide simple implementations
for zero-shot classification and retrieval, respectively.
Zero-Shot Classification. To have accurate routing, we
leverage fine-grained cluster centers S in Step 1 to route
a task to data experts. We treat the set of class names L as
metadata, and define the similarity matrix between classes
and data experts as A ∈ R|L|×m. To compute A, we first
compute el as the embedding for class l ∈ L via the same
encoder for the embedding of fine-grained cluster center es.

Then each entry is defined as

Al,s = exp(−∥el − es∥22/λ), (5)

where λ ∈ R+ is a temperature to sharpen the similarities.
Further, the weight routing to a data expert f(·|c) is propor-
tional to

p(c|T) ∝ exp(
∑

l∈L

∑
s∈Sc

Al,s). (6)

In practice, we found that using the nearest neighboring
fine-grained cluster center (argmaxs∈S Al,s) for each class
l ∈ L is good enough to reduce noises in routing.
Zero-Shot Retrieval. The retrieval tasks consist of text re-
trieval and image retrieval. For text retrieval where each im-
age is used to retrieve a text from a large corpus Q, we lever-
age Q as metadata to build similarity matrix A ∈ R|Q|×m.
Similar to the classification task, the weights for ensembling
can be naturally adopted for MoDE:

p(c|T) ∝ exp(
∑

q∈Q

∑
s∈Sc

Aq,s), (7)

where each entry Aq,s is computed as exp(−∥eq−es∥22/λ),
where eq is the embedding for text q. For image retrieval
where each text q retrieves an image separately, we treat the
retrieval by text q as an independent task Tq such that the
ensembling weights are then p(c|Tq) ∝ exp(

∑
s∈Sc

Aq,s).

4. Experiment
4.1. Data

We use the datasets collected in MetaCLIP [46] for eval-
uation and conduct experiments on image-caption pairs at
two scales: 400M (similar to the scale in OpenAI CLIP),
and 2.5B to scale MoDE. All images are pre-processed with
face-blurring and de-duplication against benchmarks.

4.2. Training Setup

Clustering Setup. We use the pre-trained language model
SimCSE [11] to extract the embeddings for all captions
where the advantages of language encoders over CLIP
encoders are studied in Sec. 5.3. We use balanced K-
means [29] for both of the two unsupervised clustering
steps. We set the number of fine-grained clusters m =
1024, and report performance for both MoDE-2 and MoDE-
4 below to directly show the improvement by increase the
number of data expert models on all evaluation tasks.
Data Experts Training Setup. We follow OpenAI CLIP’s
hyper-parameters [35] for fair comparison and train on the
same budget of 12.8B image-caption pairs (32 epochs of
400M), with a global batch size of 32,768. We train MoDE
under 3 scales: for ViT-B/32 and ViT-B/16, we use 64
Nvidia V100 GPUs with a per GPU batch size of 512, and
for ViT-L/14, we use 128 GPUs with a 256 per GPU batch
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ViT-B/32
OpenAI CLIP 56.6 63.4 83.7 89.8 65.1 53.7 62.0 59.7 19.6 44.0 87.2 87.4 66.9 48.2 46.6 97.1 44.9 61.0 32.6 28.7 17.2 62.5 63.9 48.0 23.6 56.4 58.6
OpenCLIP 57.6 62.9 80.7 90.7 70.6 61.2 66.4 79.2 16.7 54.5 86.5 90.7 66.1 37.4 48.2 95.6 52.2 58.0 42.0 38.0 14.8 50.1 63.0 42.8 22.5 53.3 52.3
MetaCLIP 58.2 65.5 80.6 91.3 70.2 63.4 63.0 70.7 26.8 52.8 88.7 91.9 68.5 41.5 35.9 95.4 52.6 64.2 35.8 30.7 17.2 55.5 66.1 45.4 30.6 56.4 53.4
MoDE-2 58.6 66.1 81.2 90.9 70.5 65.2 63.0 72.0 28.3 53.5 89.4 92.3 68.2 45.2 33.5 95.4 51.9 63.7 34.9 34.2 17.3 54.3 65.9 45.5 29.3 56.6 54.6
MoDE-4 59.0 66.4 82.3 91.3 70.9 67.0 63.7 73.8 30.1 52.6 89.9 92.1 69.2 37.9 33.2 95.7 53.5 64.1 35.2 33.9 17.1 58.4 66.6 45.9 30.0 58.0 54.5
ViT-B/16
OpenAI CLIP 59.6 68.3 88.8 90.8 68.2 55.6 64.0 64.6 24.0 45.1 88.9 89.1 69.4 51.8 53.0 98.2 54.8 65.5 43.3 21.7 22.8 56.3 68.5 52.3 25.5 58.7 60.5
OpenCLIP 60.4 67.1 85.8 91.7 71.4 65.3 69.2 83.6 17.4 51.0 89.2 90.8 66.5 66.3 46.1 97.0 52.2 65.7 43.5 23.7 18.1 51.7 67.0 46.2 33.9 54.5 54.4
MetaCLIP 61.1 70.8 86.8 90.1 66.5 70.8 66.6 74.1 27.9 55.9 90.4 93.8 72.3 47.8 44.6 97.2 55.4 68.8 43.8 33.4 22.6 52.9 68.0 49.5 22.8 54.8 60.6
MoDE-2 61.8 71.2 87.2 91.3 67.4 71.7 66.8 75.5 29.9 57.0 90.5 94.1 73.0 51.0 44.9 97.2 55.4 68.7 44.5 32.9 22.7 52.9 67.2 49.4 28.1 56.0 60.1
MoDE-4 62.1 71.6 87.8 91.4 68.9 74.7 67.2 77.3 32.6 56.2 91.3 93.9 74.9 43.7 46.6 97.2 54.4 70.0 44.0 29.8 22.9 55.7 68.6 50.0 29.7 55.2 58.0
ViT-L/14
OpenAI CLIP 65.7 75.5 93.0 95.6 78.3 63.3 66.8 77.8 31.3 55.3 93.6 93.3 79.3 76.4 56.9 99.4 61.9 70.9 50.6 19.2 31.9 50.1 75.7 60.2 22.3 59.7 68.9
OpenCLIP 64.5 72.7 90.0 94.7 78.0 73.9 72.4 89.5 24.7 60.2 91.6 93.6 73.0 76.1 54.3 98.1 63.9 69.6 49.9 16.0 23.0 51.7 71.5 51.6 25.4 55.3 56.0
MetaCLIP 67.1 76.2 90.7 95.5 77.4 75.9 70.5 84.7 40.4 62.0 93.7 94.4 76.4 61.7 46.5 99.3 59.7 71.9 47.5 29.9 30.9 70.1 75.5 57.1 35.1 56.6 65.6
MoDE-2 67.1 76.5 91.1 95.9 77.8 76.7 70.6 85.1 40.9 62.4 93.9 94.8 76.8 63.0 46.2 99.4 57.8 71.7 47.4 26.7 31.1 69.9 75.6 57.3 33.1 56.6 65.5
MoDE-4 67.2 76.3 91.2 95.7 77.9 78.3 70.7 85.6 41.8 62.4 94.0 94.5 77.1 62.6 46.6 99.2 57.7 72.0 47.3 26.8 31.3 71.5 76.0 57.3 30.6 56.6 65.5

Table 1. Performance on CLIP benchmark [31, 35] by models trained on 400M image-caption pairs. MoDE-2 and MoDE-4 consistently
outperform the MetaCLIP Baseline and MoDE-4 achieves the best score on average.
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ViT-B/32
OpenCLIP 61.5 66.6 82.0 93.6 75.8 66.0 68.3 86.0 23.9 56.1 90.5 91.9 70.5 70.0 50.4 96.6 49.3 65.7 49.3 32.7 16.7 51.7 64.9 45.6 24.2 52.4 57.2
MetaCLIP 59.8 67.6 82.6 95.2 77.7 67.8 66.8 77.2 26.9 58.9 90.9 92.5 69.7 42.7 48.3 96.3 49.9 66.5 39.2 29.3 17.7 50.0 68.0 47.6 19.4 53.5 53.1
MoDE-2 61.2 68.7 84.1 95.3 78.6 69.5 67.0 80.8 30.9 60.6 91.0 92.9 71.9 40.8 50.4 96.3 51.3 67.9 44.2 31.4 18.3 51.3 69.0 47.4 23.2 52.6 54.4
MoDE-4 61.7 68.8 85.8 95.2 79.0 74.4 67.5 83.3 29.5 60.3 91.9 92.9 72.1 49.7 46.9 96.4 50.3 66.8 51.6 28.5 19.6 50.1 68.4 48.3 21.6 52.6 52.2
ViT-B/16
OpenCLIP 62.4 70.2 86.2 94.9 76.9 70.5 70.6 88.2 26.6 56.3 90.4 93.1 71.0 65.8 53.3 97.9 55.2 68.3 48.3 11.9 20.3 51.2 68.1 48.9 24.8 53.0 59.5
MetaCLIP 63.5 72.1 88.3 95.7 79.0 71.4 68.5 82.9 30.3 62.1 91.7 93.3 73.9 66.1 47.0 98.4 51.1 71.1 46.6 16.6 22.7 50.5 73.0 52.5 30.8 57.4 59.0
MoDE-2 65.0 73.6 89.5 96.0 81.4 76.5 69.0 85.7 35.9 63.5 93.4 93.4 75.5 59.2 46.4 98.3 50.0 72.0 50.1 34.9 23.9 50.8 71.2 52.1 31.2 59.1 58.4
MoDE-4 67.2 74.2 91.6 96.5 82.0 80.9 71.2 88.9 42.2 63.0 93.6 93.6 78.9 66.8 49.0 98.5 53.8 71.5 57.5 32.4 26.7 61.7 73.8 53.9 27.4 57.0 59.4
ViT-L/14
OpenCLIP 65.7 74.0 88.6 95.8 78.3 73.5 73.5 91.4 34.6 61.2 92.7 93.3 74.4 64.4 53.9 98.5 58.6 71.9 51.6 26.1 24.4 58.0 73.3 52.0 27.4 55.1 60.4
MetaCLIP 69.8 79.2 93.4 97.6 84.2 80.1 73.8 88.7 44.6 68.1 94.7 95.4 81.8 64.4 55.1 99.3 59.2 74.6 56.3 29.7 34.0 67.3 81.6 62.0 25.9 58.0 66.7
MoDE-2 70.4 79.5 93.5 97.6 85.0 82.9 74.0 90.9 49.0 69.5 95.0 95.3 81.8 69.7 53.7 99.2 63.3 75.2 59.0 29.8 33.9 62.3 81.7 62.4 24.0 56.6 65.4
MoDE-4 71.2 79.4 94.0 97.8 85.6 83.5 74.2 91.2 48.7 69.1 95.6 95.6 81.4 71.4 54.3 99.3 61.0 76.5 63.3 34.7 34.0 70.9 81.6 62.2 24.6 55.7 66.7

Table 2. Performance on CLIP benchmark [31,35] by models trained on billion-scale dataset (OpenCLIP: 2.3B, MetaCLIP/MoDE: 2.5B).
MoDE-2 and MoDE-4 consistently outperform the MetaCLIP Baseline and MoDE-4 achieves the best score on average.

size. To maintain a reasonable training cost, we start from a
partially trained (27th out of 32 epoches) MetaCLIP as the
seed model and all data experts share the same seed model.

4.3. Evaluation

Zero-Shot Image Classification. We follow the evaluation
protocol in CLIP benchmark [31, 35, 46] and use the same
class names & prompts by OpenAI CLIP. For fair compar-
ison, MetaCLIP [46] naturally serves as the single dense
baseline. The checkpoints of OpenAI CLIP (WIT400M
data) [35] and OpenCLIP (LAION-400M data, LAION-2B
data) [40] are also re-evaluated for fair comparison.

The framework MoDE has shown consistent perfor-
mance gain across model scales and data scales. Firstly, we
compare the models learned from the 400M-scale dataset
in Table 1, and summarize the results by different model
scales. MoDE achieves consistent performance gain where

increasing the number of data experts results in better per-
formance. Next, we study the scaling property of MoDE
on 2.5B image-caption pairs in Table 2. Comparing against
MetaCLIP [46], the advantage of MoDE to learn four data
expert models is better revealed on scaling pretraining data:
+1.9% on B/32, +3.7% on B/16, and +1.4% on L/14. Lastly,
we increase the number of data experts. As shown in Fig. 3,
the performance can be kept improving when we increase
the number of data experts where MoDE16 ViT-B/32 can
outperform the MetaCLIP Baseline ViT-B/16 baseline.

Notably, MoDE provides an efficient and scalable ap-
proach to consume large-scale data without a large batch
size that requires more GPUs (384 Nvidia A100 GPUs) as
in OpenCLIP. As shown in Table 2, based on ViT-B/16 with
a batch size of 32K, the MoDE-2 with two data expert mod-
els is on par with the ViT-L/14 model by OpenCLIP [39],
while 4 data expert models can outperform the ViT-L/14 by
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Approach ViT Avg. IN-Sk IN-V2 IN-A IN-O IN-R Avg. IN-Sk IN-V2 IN-A IN-O IN-R
OpenAI CLIP

B/32

49.4 42.3 56.0 31.5 47.8 69.4 - - - - - -
OpenCLIP 50.6 49.4 55.1 21.7 53.5 73.4 52.9 53.7 58.1 26.3 50.0 76.4
MetaCLIP 52.2 53.3 57.6 28.6 46.8 74.8 54.4 56.0 59.6 29.9 48.3 78.1
MoDE-2 53.0 53.9 57.9 29.4 48.0 75.7 55.2 57.1 60.5 31.2 48.4 79.0
MoDE-4 53.4 54.4 58.5 30.8 47.6 76.0 56.5 57.6 61.6 34.2 49.2 80.0

OpenAI CLIP

B/16

56.0 48.3 61.9 50.0 42.3 77.7 - - - - - -
OpenCLIP 54.8 52.4 59.7 33.2 50.7 77.9 56.7 56.1 62.3 38.2 46.3 80.6
MetaCLIP 57.7 57.9 62.6 47.0 39.2 81.8 60.1 60.2 65.0 49.5 41.6 84.2
MoDE-2 58.4 58.5 63.2 47.9 39.9 82.3 62.3 62.4 66.5 52.0 45.2 85.5
MoDE-4 59.0 58.8 63.7 49.2 40.4 82.9 63.3 62.8 67.1 55.7 44.5 86.6
Pre-Train Data 400M Image-Caption Pairs OpenCLIP:2.3B; MetaCLIP/MoDE:2.5B

Table 3. Zero-Shot Robustness Evaluation. The results are sepa-
rated by the scale of pre-train set. Entries in blue are the best ones.
Results by ViT-L/14 can be found in the Suppl.

Approach ViT
Text Retrieval Image Retrieval

COCO Flickr30k COCO Flickr30k
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

OpenCLIP

B/32

56.3 79.8 87.1 84.1 96.2 98.3 39.3 65.4 75.6 66.7 88.4 93.1
MetaCLIP 55.2 78.9 86.5 80.7 95.2 97.3 38.1 64.1 74.3 65.1 87.7 92.7
MoDE-2 56.7 80.2 87.5 82.8 95.1 98.2 39.5 65.3 75.3 66.4 89.0 93.6
MoDE-4 57.4 80.1 87.3 82.9 95.6 97.7 39.9 66.1 75.7 66.7 88.4 93.3

OpenCLIP

B/16

59.5 81.8 88.6 86.2 98.0 99.5 42.3 67.7 77.1 69.8 90.4 94.6
MetaCLIP 59.4 80.6 87.8 85.5 97.4 98.9 41.4 67.2 76.9 70.7 90.8 94.5
MoDE-2 60.7 82.6 89.0 87.3 97.6 99.2 43.1 68.6 77.8 72.1 91.8 95.3
MoDE-4 62.7 82.9 89.8 89.4 98.0 99.6 44.1 69.5 78.7 72.6 91.8 95.4
Pretrain Data OpenCLIP:2.3B; MetaCLIP/MoDE:2.5B

Table 4. Zero-shot Retrieval. Entries in blue are the best ones.
Results by model trained on 400M pairs and by ViT-L/14 can be
found in the Suppl.

Average Accuracy on 
CLIP Benchmark

GPU Hours

OpenAI CLIPBaseline
(MoDE-1)

OpenCLIPMoDE-n (Ours)

Diameter
B/32 L/14B/16

# Data Experts
(VIT-B/32)

Average Accuracy on
CLIP Benchmark

MoDE-1 (MetaCLIP, ViT-B/32) 

MoDE-1 (MetaCLIP)

Average Accuracy on 
CLIP Benchmark

m
2     22                     25                     28      29    210   211

MoDE-1 (MetaCLIP, ViT-B/16) 

Figure 3. Average accuracy CLIP benchmark with increased num-
ber of data expert models in MoDE (Pretrain set: 2.5B pairs).

1.5% on CLIP benchmark dataset. Nevertheless, MoDE re-
quires much less pretraining cost. As summarized in Fig. 4,
MoDE-4 ViT-B/16 only requires less-than-35% of GPU-
Hours used for OpenAI CLIP ViT-L/14. Compared with
OpenCLIP trained on LAION-2B data, MoDE-8 ViT-B/32
data experts can even outperform a single ViT-B/16 model
by OpenCLIP by but only use 31% of its GPU-Hours. In
this way, our approach demonstrates great potential for effi-
cient CLIP pretraining with limited GPUs in future.
Zero-Shot Robustness. In addition, to show a consistent
gain on different tasks in the CLIP benchmark, we further
validate the benefits towards robustness of MoDE in vari-
ants of ImageNet zero-shot classification. As summarized
in Table 3, though there are systematic gaps across variants
of ImageNet, learning a set of data experts can improve
the zero-shot accuracy on all five variants over the Meta-
CLIP baseline for all model scales, and increasing the num-
ber of data experts can still introduce consistent gain. For
the accuracies on IN-A and IN-O, the gap between base-
line and other approaches is mitigated clearly by MoDE.
Finally, MoDE-4 achieves the highest average accuracy of
all dataset variants among all compared methods.
Zero-Shot Retrieval. We follow OpenCLIP [39] and re-
ports the image/text retrieval results on COCO [26] and
Flickr30k [48]. The compared models are trained on
billion-scale datasets. As shown in Table 4, learning data
experts can improve the scores consistently across all model
sizes, on COCO, in particular, +3.3% and +2.7% in R@1
for image-to-text and text-to-image retrieval respectively by
ViT-B/16 models, and we achieve the best performance.

Average Accuracy on 
CLIP Benchmark

GPU Days

OpenAI CLIPMetaCLIP OpenCLIP

Diameter
B/32 L/14B/16

MoDE-n (Ours)

Average Accuracy on 
CLIP Benchmark

GPU Days

OpenAI CLIPMetaCLIP OpenCLIP

Diameter
B/32 L/14B/16

MoDE-n (Ours)

Figure 4. Summary of average accuracy on CLIP benchmark and
pretraining cost (GPU-Hours). The diameter is proportional to the
model size, different approaches are color-coded.

For the performance gap between MetaCLIP Baseline and
OpenCLIP, e.g., text retrieval on Flickr30k by ViT-B/32
models, the gap can also be mitigated clearly.

5. Discussion
We first analyze the importance of clustering (Sec. 5.1)

and then study the MoDE design (Secs. 5.2 and 5.3). Fi-
nally, we investigate the potential of our approach in other
important research directions (Sec. 5.4 and Sec. 5.5).

5.1. Effectiveness of Clustering

As MoDE ensembles the data experts learned from dif-
ferent clusters, we are first interested in the effects of clus-
tering and consider two variants for ablation.

Though model ensembling [19] can provide gains over
a single model, we are interested in how a naive ensem-
bling of models trained on similar distribution performs
compared to MoDE with data specialization. In Table 5,
we train two ViT-B/32 CLIP models on the same training
data without clustering, and then average the model outputs
for prediction (Full-2). This achieves a similar performance
as the baseline. Thus, the clustering is essential for MoDE.

Furthermore, we randomly split the training data into
two subsets, and specialize a data expert for each subset
(Random-2). For a fair comparison, we mimic the size of
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400M Image-Caption Pairs
MetaCLIP 58.2 65.5 80.6 91.3 70.2 63.4 63.0 70.7 26.8 52.8 88.7 91.9 68.5 41.5 35.9 95.4 52.6 64.2 35.8 30.7 17.2 55.5 66.1 45.4 30.6 56.4 53.4
Random-2 57.7 64.9 80.7 91.4 69.6 59.8 63.0 72.3 28.3 52.3 88.7 91.9 69.4 38.1 30.8 95.4 52.9 62.9 33.2 36.1 17.3 54.4 65.7 44.7 27.1 56.2 53.0

Full-2 58.3 65.9 81.0 91.2 69.9 63.8 63.3 71.0 27.3 52.3 88.9 91.8 69.2 42.9 33.3 95.4 52.5 64.6 35.8 31.2 17.0 56.1 67.0 45.5 28.7 57.5 53.5
MoDE-2 58.6 66.1 81.2 90.9 70.5 65.2 63.0 72.0 28.3 53.5 89.4 92.3 68.2 45.2 33.5 95.4 51.9 63.7 34.9 34.2 17.3 54.3 65.9 45.5 29.3 56.6 54.6

2.5B Image-Caption Pairs
MetaCLIP 59.8 67.6 82.6 95.2 77.7 67.8 66.8 77.2 26.9 58.9 90.9 92.5 69.7 42.7 48.3 96.3 49.9 66.5 39.2 29.3 17.7 50.0 68.0 47.6 19.4 53.5 53.1
Random-2 60.0 67.4 82.4 95.0 77.8 68.1 66.6 77.0 26.5 58.3 91.0 92.3 69.0 45.4 47.8 96.2 50.4 66.2 43.8 30.0 17.7 50.0 67.8 47.4 20.2 53.8 52.1

Full-2 60.0 67.8 82.6 95.2 77.7 68.4 66.7 77.7 27.7 58.6 90.9 92.5 69.9 43.6 48.7 96.4 50.1 66.0 41.7 28.2 17.9 50.0 68.4 47.7 19.3 53.9 52.8
MoDE-2 61.2 68.7 84.1 95.3 78.6 69.5 67.0 80.8 30.9 60.6 91.0 92.9 71.9 40.8 50.4 96.3 51.3 67.9 44.2 31.4 18.3 51.3 69.0 47.4 23.2 52.6 54.4

Table 5. Ablation Study for performance gain via Clustering by VIT-B/32.

Approach CLIP Avg. ImageNet CLIP Avg. ImageNet
MetaCLIP 58.2 65.6 59.8 67.7
OneStep-2 58.0 65.0 59.8 67.6

CoarseCluster-2 58.5 66.1 60.6 68.6
MoDE-2 58.6 66.1 61.2 68.7

CoarseCluster-4 58.7 66.2 61.3 68.5
MoDE-4 59.0 66.4 61.7 68.8

Pre-Train Dataset 400M Image-Caption Pairs 2.5B Image-Caption Pairs

Table 6. Ablation study for Clustering Strategy by ViT-B/32.

subsets by MoDE-2 in the random splitting, and all data
experts use the same seed model. As the data split is not
obtained through clustering, we still only use the average of
model outputs for evaluation. However, though Random-
2 can provide small improvement when trained on 2.5B
image-caption pairs (60.0 vs. 59.8), there is a noticeable
drop when training on the 400M pairs (57.7 vs. 58.2).

5.2. Clustering Strategy

Instead of obtaining the data clusters in a single step,
MoDE employs a two-step clustering strategy to discover
the centers of fine-grained cluster S, which are used to prop-
erly model the correlation between task metadata and the
conditions (Sec. 3.2). We provide ablation studies below to
demonstrate this necessity for model ensembling.

Firstly, we evaluate the one-step clustering alternative,
i.e., m = n, and for simplicity, we only learn two data ex-
perts (OneStep-2) based on ViT-B/32. As shown in Table 6,
we summarize the average score on the CLIP benchmark
and stand out the accuracy of ImageNet as it has the most
number of classes. As the cluster centers are not represen-
tative enough to model the correlation with task metadata,
model ensembling in OneStep-2 can even result in a slight
drop. We do observe that each data expert alone can outper-
form MetaCLIP Baseline baseline on different tasks in the
CLIP benchmark but it is difficult to pick correctly.

Then, we follow the two-step clustering but alter the
number of fine-grained clusters m in the first step. As plot-
ted in Fig. 5, we summarize the results of MoDE-2 trained
on 400M image-caption pairs. With increasing m, we ob-
served that the average accuracy on the CLIP evaluation

benchmark improves consistently. Though the performance
can be improved slightly when m is increased from 1024 to
2048, the computational cost during data clustering is also
higher. We set m = 1024 in the main experiments.

Lastly, as another piece of evidence, we keep m as 1024
but use the coarse-grained cluster centers in Step 2, to deter-
mine the ensembling weights (CoarseCluster). As shown in
Table 6 , as the meta clusters are not representative enough
to obtain good ensembling weight, the resulting accuracy
improvement is trivial. When we increase the number of
data experts from 2 to 4, the gap between CoarseCluster-4
and MoDE-4 is even enlarged, which further demonstrates
the importance of using fine-grained clusters to determine
the ensembling weight for data experts in our MoDE.

5.3. Embeddings for Clustering

We further validate the importance of using language
embeddings. In addition to SimCSE [11] language em-
bedding, we investigate the following embeddings for clus-
tering: (1) image embedding from the open-sourced DI-
NOv2 [32]; (2) image and/or text embeddings from the seed
model (i.e., the partially trained CLIP checkpoints on the
27th epoch). When the image embeddings are used for
clustering, for each test image, we use its similarity with
all fine-grained cluster centers to determine the logits en-
semble weights. When both image and text embeddings are
used, we use their concatenation as the feature for cluster-
ing. Without loss of generality, we compare with MoDE-2
trained on 400M pairs and set m = 1024 for fair compar-
ison. We summarize the scores in Table 7 and report the
zero-shot accuracy CLIP benchmark and ImageNet.

Firstly, by using image embeddings for clustering, the
resulting models underperform MetaCLIP, in particular on
ImageNet, and we believe the main reason is that the image
embedding contains low-level details. As such, the cluster
centers are not representative of model ensembling.

Furthermore, utilizing the language embeddings from
the seed model yields only marginal performance improve-
ment. This suggests that the CLIP embedding may still fall
short of discerning high-level semantic correlations. This
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Figure 5. Ablation on # of clusters in Step 1.

Modality Model CLIP Eval. ImageNet
Image DINOv2 58.1 65.2
Image CLIP Seed 58.3 64.7

Image & Lang. CLIP Seed 58.4 65.5
Lang. CLIP Seed 58.3 65.4
Lang. SimCSE [11] 58.6 66.1

Table 7. Ablation Study on Embedding Types.

Model B/32 B/16 L/14

MetaCLIP 67.5 73.8 82.3

MoDE-2 71.3 76.9 83.9

MoDE-4 74.1 79.6 84.7

Table 8. Performance comparison on
ImageNet via linear probing.

One Data Expert All Data Experts

Average Accuracy on 
CLIP Benchmark

Figure 6. CLIP benchmark accuracy by MoDE-n when the data
experts based on ViT-B/32 are developed in order and added to the
system progressively. The pre-train set contains 2.5B pairs.

occurs as the language embeddings are influenced by image
embeddings, potentially overlooking high-level semantics
not depicted in corresponding images. For example, ab-
stract concepts such as “travel”, “product”, and “politics”
may lack corresponding visual elements. In contrast, the
SimCSE text embeddings pretrained on large text corpora
can understand abstract concepts for clustering,

5.4. Training Priority of Data Experts

As the data experts can be trained asynchronously,
MoDE introduces flexibility in the data expert training pri-
ority. Below we demonstrate the robustness and effective-
ness of MoDE when the data experts are trained in order.

Firstly, we rank the conditions to determine the training
priority of data experts. This is useful when the computa-
tional resource is not sufficient to learn a giant dense model
or all data experts together. We use the diversity of fine-
grained clusters as a reference, and first train the model on
the condition with the largest range, i.e., the average dis-
tance between fine-grained clusters and the coarse-grained
center. In Fig. 6, we vary the total number of ViT-B/32 data
experts, i.e., n, from 2 to 32 and summarize the average ac-
curacy on the CLIP benchmark. When the data experts are
gradually included, the performance keeps increasing.

In this way, instead of learning from all data simultane-
ously, MoDE enables progressive integration of new data
experts, enabling dynamic updates. MoDE holds promise
for applications such as online and continual learning. With
each new set of data, it has the flexibility to update a pre-
trained data expert, or to learn a new data expert. This
is valuable when the incoming data are unprecedented to
the existing system. We leave the trade-off between catas-
trophic forgetting [21] and adaption as the future work.

5.5. Application of Vision Encoders

The set of vision encoders can also be directly ensembled
with equal weight in downstream application, which is free
from any cluster center and can be generalizable to the case
where the language metadata is not available.

Specifically, for each image, we concatenate the outputs
from all (n) vision encoders as the representation and feed
it into a linear layer for classification. To maintain reason-
able training cost, only linear probing is considered where
we exclusively train the linear classifier from scratch and fix
all vision encoders. As shown in Table 8, we use ImageNet
classification for evaluation and MoDE achieves consistent
and clear performance gain over MetaCLIP. Besides, the pa-
rameters can also be averaged and used as initialization of a
single network for finetuning (details studied in the Supp).

In summary, MoDE trains separate models to capture
different fine-grained visual information, and can be ap-
plied to different types of downstream tasks, which could
be a new pipeline to efficiently capture full visual seman-
tics. Tentatively, the coarse-level clustering assumes the
fine-grained clusters should be split into disjoint groups. We
believe the fine-grained clusters can be grouped flexibly to
improve ensemble strategy and leave it for future work.

6. Conclusion
The success of CLIP depends on the quality negative

samples. As the false negative noise in web-crawled pairs
hurts training effectiveness, scaling CLIP on large-scale
data presents unique challenges in terms of training effi-
ciency and computational bottlenecks. To this end, we
have presented Mixture of Data Experts (MoDE) to asyn-
chronously train a group of data experts. Each expert model
is trained on a set of fine-grained clusters where the data in
each cluster is of coherent semantics and all data experts
are trained individually. During inference, the outputs are
selectively ensembled based on the requirements for each
task and modeled by the correlation between task metadata
and fine-grained cluster centers. Empirically, MoDE signif-
icantly outperforms OpenCLIP and OpenAI CLIP on stan-
dard benchmarks with less than 30% training cost. We plan
to adapt MoDE for generative models in the future.
Acknowledgements The authors would like to thank Xinlei
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