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Abstract

The challenge of open-vocabulary recognition lies in the
model has no clue of new categories it is applied to. Exist-
ing works have proposed different methods to embed cate-
gory cues into the model, e.g., through few-shot fine-tuning,
providing category names or textual descriptions to Vision-
Language Models. Fine-tuning is time-consuming and de-
grades the generalization capability. Textual descriptions
could be ambiguous and fail to depict visual details. This
paper tackles open-vocabulary recognition from a differ-
ent perspective by referring to multi-modal clues composed
of textual descriptions and exemplar images. Our method,
named OVMR, adopts two innovative components to pur-
sue a more robust category cues embedding. A multi-modal
classifier is first generated by dynamically complementing
textual descriptions with image exemplars. A preference-
based refinement module is hence applied to fuse uni-modal
and multi-modal classifiers, with the aim to alleviate issues
of low-quality exemplar images or textual descriptions. The
proposed OVMR is a plug-and-play module, and works well
with exemplar images randomly crawled from the Internet.
Extensive experiments have demonstrated the promising
performance of OVMR, e.g., it outperforms existing meth-
ods across various scenarios and setups. Codes are publicly
available at https://github.com/Zehong-Ma/OVMR.

1. Introduction

Open-vocabulary recognition aims to recognize unseen ob-

jects beyond the training set. It is challenging because the

model has no clue of new categories in the testing set. Be-

sides efforts on pre-training models having strong general-

ization capability [33, 36, 41], recent works have developed

more lightweight strategies by embedding novel category

clues into pre-trained backbone models [18, 59]. Among

those works, a popular strategy is fine-tuning a generaliz-

able model on a small task-specific dataset [48, 58, 59].
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Figure 1. Illustration of the pipeline of our OVMR. It refers to

textual description and exemplar images to generate classifiers for

novel categories. The textual description could be ambiguous and

fail to depict visual details. The exemplar images show diversi-

fied qualities. OVMR effectively complements visual and textual

features and fuses classifiers to alleviate issues of low quality ex-

emplar images or textual description.

This few-shot fine-tuning strategy is effective in optimizing

task-specific parameters, but is time-consuming, inflexible,

and degrades the generalization capabilities.

Another line of research is leveraging the strong gener-

alization capability of Vision-Language Models (VLMs) by

providing images or textual descriptions as clues of novel

categories [17, 54]. Some works take text embeddings ex-

tracted from textual descriptions as the classifier for novel

categories [48, 62]. Textual descriptions can be ambiguous

and lack detailed descriptions to visual cues. For exam-

ple, the word “bat” could refer to either a piece of sports

equipment or an animal. Those issues scarify the discrim-

inative power of resulting classifiers. Collecting exemplar

images could be another option for providing category cues

as shown in previous works [17, 50]. However, image sam-

ples could show diversified qualities easily affected by is-

sues of domain gaps, cluttered backgrounds, etc.
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This paper tackles open-vocabulary recognition from a

different perspective by referring to multi-modal clues com-

posed of textual descriptions and exemplar images. In other

words, by feeding both text descriptions and exemplar im-

ages into the VLM, we aim to mine complementary cues

of text and images to learn more robust classifiers for novel

categories. As illustrated in Fig. 1, during this procedure,

the text modality is expected to provide generalizable se-

mantic cues, while the exemplar images are analyzed to ex-

tract visual details, which are critical to the discriminative

power of resulting classifiers. To alleviate the negative ef-

fects of low-quality text or image exemplars, we also eval-

uate the performance of those uni-modal and multi-modal

classifiers to adaptively generate the final classifier. We

name the proposed method as OVMR.

As shown in Fig. 1, OVMR takes textual descriptions

and multiple exemplar images depicting a novel category as

input. It incorporates two modules to generate the final clas-

sifiers. The first module dynamically fuses visual exemplars

and textual descriptions to generate the multi-modal classi-

fier. Specifically, it utilizes a lightweight visual token gen-

erator to extract visual tokens from given exemplars. Sub-

sequently, the language encoder adaptively fuses the visual

and textual tokens by inferring the contextual relationships

between them [28, 51]. This multi-modal classifier gener-

ation module is efficient thanks to its lightweight structure.

It does not need to train class-specific parameters, hence en-

suring its good generalizability and scalability to the classes

in the wild. This module leads to two uni-modal classifiers,

and one multi-modal classifier.

OVMR hence generates the final classifier by fusing the

above three classifiers in Fig. 1. To alleviate the negative

effects of low-quality classifiers, it presents a dynamic fu-

sion strategy by evaluating their performance. As multiple

exemplar images are provided, we leverage them as a val-

idation set to test the performance of each classifier. The

preference-based fusion module uses their performance as

the clue of learning fusion weights. As shown in Fig. 1, this

procedure simulates the testing stage by leveraging exem-

plar images as the testing set. It effectively guarantees the

robustness of the final fused classifier.

We have conducted extensive experiments to test the per-

formance of OVMR. As shown in experiments, it outper-

forms recent open-vocabulary methods by clear margins on

11 image classification datasets, and the LVIS object de-

tection dataset. OVMR also performs better than closely

related works that simply apply naive average fusion [17]

and text-guided fusion [50] for novel classifier generation.

Our contributions can be summarized into three aspects:

• We present a flexible plug-and-play module to embed

clues of novel classes into VLMs to boost their capabili-

ties in open-vocabulary recognition tasks. Complement-

ing multi-modal clues brings substantial advantages over

solely relying on vision or textual cues.

• Our OVMR presents a novel pipeline to generate robust

classifiers from two-modality inputs. It adaptively fuses

text and vision cues to generate multi-modal classifiers,

and further proposes a parameter-free fusion module to

alleviate negative effects of the low-quality modality.

• Extensive experiments demonstrate the superior perfor-

mance of our method in both open-vocabulary classifica-

tion and detection tasks, showcasing the potential of our

method in open-vocabulary recognition.

2. Related Work
This work is closely related to open-vocabulary classifica-

tion and detection. This section briefly reviews recent works

in those two lines and discusses our differences with them.

2.1. Open-Vocabulary Classification

Existing open-vocabulary classification methods can be

summarized into three categories, i.e., pre-training, prompt

learning, and few-shot adaption methods, respectively.

Pre-training Methods. Many pre-training efforts have

been made to enhance the capabilities of VLMs in

open-vocabulary classification, including large curated

datasets[10, 37] and enhanced training strategies [24, 27,

41, 46]. They need to retrain the model from scratch which

consumes considerable time, samples, and annotations.

Prompt Learning Methods. To efficiently strengthen the

capabilities of VLM in classification, various prompt learn-

ing methods have been proposed. CoOp [59] learns static

contextual tokens from a few-shot dataset but tends to over-

fit to the training classes, degrading performance on unseen

classes. To mitigate this, CoCoOp [58] acquires dynamic

instance-specific tokens from the input image, aiming to im-

prove the classification of unseen classes. MaPLe [18] en-

deavors to learn multi-modal prompt tokens across different

layers for both vision and language branches. These meth-

ods require fine-tuning on each downstream dataset, tending

to overfit seen classes and lacking the generalization capa-

bility as the one in VLMs.

Few-shot Adaptation Methods. The few-shot classifica-

tion consists of a training phase where a model is learned

on a relatively large dataset and an adaptation phase where

the learned model is adapted to previously unseen tasks

with limited labeled samples. Under this framework,

methods can be roughly divided into two groups: meta-

learning methods and non-meta-learning methods. A re-

cent work [29] reveals that the training and adaptation

phases in few-shot image classification are completely dis-

entangled. Besides, it also demonstrates the visual back-

bone pretrained with CLIP’s training algorithm has superior

performance than previous few-shot training algorithms.

In our work, we take the pre-trained visual backbone of

CLIP as the base model and evaluate different adaptation
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methods on top of it. The adaptation methods encom-

pass the ones from training-free methods including Match-

ingNet [43], Nearest Centroid Classifier(PN) [38], and the

ones from training-based methods including MAML [9],

Logistic Regression [42], Cosine Classifier [2], URL [26],

and CEPA [15].

2.2. Open-Vocabulary Detection

Much recent work aims to transfer the open-vocabulary ca-

pabilities of VLMs to object detection [12, 55, 57]. Tech-

niques including knowledge distillation [12] and prompt

optimization [5, 48] have been used to train an open-

vocabulary detector with the pre-trained VLMs. Weak-

labeling and Pseudo-boxes methods [8, 11, 25, 57, 62] have

also been proposed to enhance the object-level recognition

ability of VLMs. In addition, some works add new detec-

tion heads on the top of the pre-trained visual backbone

of VLMs or SAM [14], either by keeping the backbone

frozen [23] or finetunable [21, 32]. Recently, pre-training

the vision-language models for open-vocabulary detection

is a new direction. GLIP [25, 56] and DetCLIP [52, 53]

train on a combination of a detection, grounding, and cap-

tion data to learn the word-region alignment. RO-ViT [21]

proposes pretraining region-aware positional embeddings to

enhance VLM’s capability in dense prediction tasks.

In addition, recent MM-OVOD [17] and MQ-Det [50]

introduce exemplar images to enhance the text classifier

for open-vocabulary detection. However, MM-OVOD takes

two modalities equally and directly calculates the arithmetic

mean of the newly learned vision-based classifier and the

existing textual classifier in VLMs to obtain the multimodal

classifier. MQ-Det uses textual features as queries to ex-

tract information from exemplar images and refine the orig-

inal text classifier with cross-attention mechanisms. This is

based on the assumption that the textual modality is more

important. However, influenced by the quality of exemplars

and text, the preference for the two modalities should be

dynamic across different categories.

2.3. Differences with Previous Works

Our OVMR method presents several differences with previ-

ous open vocabulary classification and detection methods.

First, unlike traditional pre-training methods, which require

considerable resources, OVMR involves a lightweight vi-

sual token generator pre-trained on a smaller dataset. This

enables an efficient integration of new category cues into

the model without the need for fully retraining it. Second,

our approach effectively circumvents the overfitting issues

inherent in prompt learning methods, as it does not learn

class-specific parameters. Additionally, the plug-and-play

property allows it to transfer seamlessly to various tasks af-

ter pre-training. Third, OVMR utilizes the strong general-

ization capabilities of language models to adaptively fuse
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Figure 2. Illustration of the pipeline for novel classifier generation

(left) and image classification (right).

multi-modal cues. In contrast to methods like MM-OVOD

and MQ-Det, which treat modalities equally or prioritize

text, OVMR further dynamically integrates uni-modality

classifiers and the multi-modal classifier by evaluating their

performance. This two-stage classifier generation pipeline

is more robust to scenarios with low-quality exemplars or

textual descriptions, making OVMR perform substantially

better in various tasks.

3. Methodology
As illustrated in Fig. 2, our OVMR is composed of two prin-

cipal modules. The first is a multi-modal classifier genera-

tion module. This module leverages a generalizable lan-

guage encoder for dynamically integrating text and visual

exemplars. It also includes a newly pre-trained visual to-

ken generator that embeds the exemplar images into the lan-

guage space. The second module is a test-time preference-

based fusion module, which does not introduce any train-

able parameters. We will introduce the multi-modal classi-

fier generation and the pre-training of the visual token gen-

erator in Sec. 3.1 and the test-time preference-based fusion

in Sec. 3.2. Sec. 3.3 discusses the adaption of OVMR to the

open-vocabulary detection task.

3.1. Multi-modal Classifier Generation

The multi-modal classifier generation module aims to gen-

erate a multi-modal classifier by adaptively fusing visual ex-

emplars and textual descriptions. For a new category of in-

terest Ci, we denote its visual exemplars, target images, and

textual tokens as Ei ∈ R
M×H×W×3, Vi ∈ R

N×H×W×3

and ti ∈ R
Li×d, respectively, where M is the number of

exemplar images, N is the number of target images, Li is

the length of textual tokens belonging to Ci category and d
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is the hidden dimension of token embeddings. Furthermore,

the visual exemplars Ei and target images Vi are encoded

into exemplar features ei and visual features vi by the CLIP

image encoder ΦCLIP-V.

In order to utilize the language encoder to generate a

good multi-modal classifier, a key prerequisite is to ex-

tract robust visual tokens that the language encoder can

understand from visual exemplars. These visual tokens

need to accurately represent the class-discriminative visual

details. The visual token generator consists of P class-

agnostic learnable queries q ∈ R
P×d and four layers of

transformer blocks with global self-attention. Leveraging

the self-attention interaction between the learnable queries

and exemplar features, the learnable queries q adaptively

extract visual tokens of the Ci category from exemplar fea-

tures ei. This process can be formulated as:

vokeni = ΦVOK([q, ei]), (1)

where [·] represents word-level concatenation, vokeni ∈
R

P×d is the corresponding output of query tokens q.

Then, we use the language encoder to analyze the rela-

tionships between visual and textual tokens and adaptively

generate the weight wi
VT of the multi-modal classifier for

the Ci category as:

wi
VT = ΦCLIP-T([vokeni, ti]). (2)

The multi-modal classifier ΦVT
CLS thus can be represented

as:

ΦVT
CLS(v) =

exp(sim(v, wVT)/τt)
∑C

k=1 exp(sim(v, wk
VT)/τt)

, (3)

where sim(·, ·) denotes cosine similarity and τt is the tem-

perature.

Pre-training of the Visual Token Generator. The vi-

sual token generator is the only trainable component in

our OVMR, which extract class-discriminative visual in-

formation from exemplar images and affects the perfor-

mance of the multimodal classifier. Thus it’s important to

make sure that the visual tokens can encompass the class-

discriminative visual details as much as possible. We sep-

arately input the visual tokens into the language encoder

to generate the vision-based classifier ΦV
CLS, and then opti-

mize the vision-based classifier with the multi-modal clas-

sifier together. The prediction probability of target images

v over the vision-based and multi-modal classifiers can be

computed as:

pV = ΦV
CLS(v), pVT = ΦVT

CLS(v). (4)

The overall pre-training objective of the visual token gener-

ator can be represented by:

L = CE(pV, T ) + CE(pVT, T ), (5)

where CE(·) denotes the cross-entropy loss, T are the

ground-truth labels of target images.

To ensure the generalizability of the visual token gener-

ator, we design an effective pre-training strategy. During

each training iteration, We randomly sample K-shot images

for each category from the ImageNet21k-OVR, a subset of

ImageNet21k detailed in Sec. 4.1. From these images, M
images are randomly selected as visual exemplars for each

category, while the remaining N=K-M images are used

as target images. The number of exemplars M is varied

randomly within the range [K/4, 3K/4] to simulate diverse

scenarios encountered in practical applications. It is im-

portant to ensure that there is no overlap between exemplar

and target images, which guides the model to learn class-

discriminative features rather than instance-specific details.

Additionally, we have incorporated techniques such as ran-

dom path dropout in the attention layer and channel-wise

dropout in each transformer block of the visual token gen-

erator to further enhance its generalizability.

3.2. Preference-Based Fusion

The preference-based fusion aims to simulate the test-time

validation results on exemplar images to measure the pref-

erence of text-based, vision-based, and multi-modal classi-

fiers. It hence generates a more powerful fused classifier

based on the estimated preference. And the text-based clas-

sifier ΦT
CLS can be acquired conveniently by feeding textual

tokens into a language encoder.

The preference-based fusion process begins by validat-

ing different classifiers on exemplar images. Similar to

Eq. (4), by inputting the exemplar features e into various

classifiers, we obtain the prediction probabilities of exem-

plar images over different classifiers. These probabilities,

p̂VT, p̂V, and p̂T, correspond to the multi-modal, vision-

based, and text-based classifiers, respectively. Then, based

on these prediction probabilities, we can get each category’s

preferences for different classifiers:

αT = Ω(p̂T, TE),
αV = Ω(p̂V, TE),
αVT = Ω(p̂VT, TE),

(6)

where αT, αV, αVT ∈ R
|C|×1 denotes the preferences for

text-based, vision-based, and multi-modal classifiers, sepa-

rately. TE are the ground-truth labels of exemplar images.

Ω denotes the chosen evaluation metric, which is the F1

score [39] in open-vocabulary classification tasks. We se-

lect the F1 score because it stably reflects the quality of

a classifier by comprehensively considering both precision

and recall. The preferences for different classifiers can be

denoted as:

[α̂VT, α̂V, α̂T] = σ(τp[αVT, αV, αT]), (7)
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where σ denotes softmax function, τp is the temperature for

preference generation, and [·] represent concatenation at the

last dimension.

Then the fused classifier of the multi-modal classifier

and uni-modal classifiers can be formulated as:

ΦF
CLS = α̂VT · ΦVT

CLS + α̂V · ΦV
CLS + α̂T · ΦT

CLS. (8)

We hence can get the final prediction probability p of the

target images over the fused classifier as follows:

p = ΦF
CLS(v). (9)

The preference-based fusion effectively leverages exemplar

images to boost the recognition ability of VLMs, without

introducing any trainable parameters.

3.3. Adaptation to Open-Vocabulary Detection

Our method is not limited to the open-vocabulary classifi-

cation. It can be flexibly adapted to other open vocabulary

recognition tasks like detection. In this work, we make use

of a popular multi-stage detector based on CenterNet2 [61]

as done in Detic [62] and MM-OVOD [17]. For simplicity,

we consider the two-stage variant of this classifier. Using{
bj , p

j
}H

j=1
to denote its output, and H as the number of

proposals, it can be formulated as:

{rj}Hj=1 = ΦROI ◦ ΦPG ◦ ΦENC (I) , (10)
{
bj , p

j
}H

j=1
= {ΦBBOX (rj) ,ΦCLS ◦ ΦPROJ (rj)}Hj=1 ,

(11)

where each input image I is first sequentially processed by

a set of operations: a trainable image encoder (ΦENC), a

proposal generator (ΦPG), a region-of-interest (RoI) feature

pooling module (ΦROI), finally yielding a set of RoI features

{rj}Hj=1. The RoI features are processed by a bounding box

module (ΦBBOX) to infer position of objects, {bj}Hj=1.

Additionally, the RoI features are processed by a classifi-

cation module, consisting of a linear projection (ΦPROJ), and

multi-modal classifiers
(
ΦCLS ∈ {ΦVT

CLS,Φ
V
CLS,Φ

T
CLS}

)
,

yielding prediction probabilities of RoI features,
{
pj
}H

j=1
,

where pj ∈ {pjVT, p
j
V, p

j
T}.

During training, the multi-modal, vision-based, and text-

based classifiers are kept frozen while other components in

the detector are trainable. We incorporate a sigmoid cross

entropy loss for each classifier. In preference-based fusion,

the recently trained detector, along with the multi-modal

classifier, is utilized to identify the most accurate pseudo

box within the ground-truth label for each exemplar image.

Subsequently, with these pseudo annotations, we calculate

the Average Precision (AP) for each class, which aids in

computing the preference for different classifiers.

4. Experiments
4.1. Datasets

Classification: Following prompt learning methods [18,

58], we use the 11 image classification datasets, which

cover a diverse set of recognition tasks. Specifically, the

benchmark includes ImageNet [4] and Caltech101 [7] for

classification on generic objects; OxfordPets [35], Stan-

fordCars(Cars) [22], Flowers102 [34], Food101 [1] and

FGVCAircraft(Aircraft) [31] for fine-grained classification;

SUN397 [49] for scene recognition; UCF101 [40] for action

recognition; DTD [3] for texture classification; and finally

EuroSAT [16] for satellite imagery recognition.

Detection: In the open-vocabulary detection, the LVIS [13]

dataset is used following previous works [12, 62], which

contains 100K images with 1,203 classes. The classes are

divided into three groups, namely frequent, common and

rare, based on the number of training images. We treat 337

rare classes as novel classes and use the frequent and com-

mon classes as base classes for training. When using im-

age classification data as extra weak supervision, we use

the subset of categories in ImageNet21k that overlap with

the LVIS vocabulary and denote this subset as IN-L, as in

Detic [62].

Pre-training Set: We construct the pre-training dataset

based on ImageNet21k. To prevent data leakage, we remove

any overlapping categories present in both the 11 classifica-

tion datasets and the LVIS dataset from ImageNet21k. Ad-

ditionally, we limit the number of images per category to

64 to improve pre-training efficiency. As a result, we cre-

ate a 64-shot subset of ImageNet21k, termed ImageNet21k-

OVR. This subset contains 18,631 categories and encom-

passes a total of 1.1 million images, which is much smaller

than the dataset used for the VLM’s pre-training.

4.2. Implementation Details

Open-Vocabulary Classification. Following prompt learn-

ing methods [18, 58], we select ViT-B/16 of CLIP as our

base model and pre-train a plug-and-play visual token gen-

erator to enhance its recognition capability. The sample

number K of each class is set to 8 and we sample 192

classes per batch, which results in a total batch size of 1536.

We pre-train the visual token generator on ImageNet21k-

OVR for 30 epochs in 12 hours on a single 3090 GPU. We

adopt an Adam optimizer and a cosine learning rate sched-

uler, where the learning rate is set to 0.0002. The number

P of visual tokens is set to 2. The τp in preference-based

fusion is set to 10.

Open-Vocabulary Detection. The architecture and train-

ing recipe is almost identical to that in Detic [62] and MM-

OVOD [17], using the CenterNet2 model with a ResNet-

50 or Swin-B backbone pre-trained on ImageNet21k-P. It’s

worth noting that we re-implement a memory-efficient ver-
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Table 1. Open-Vocabulary Classification Results in Prompt Learning Setup. Our method achieves comparable performance to the SoTA

method using the same 16-shot exemplar images without any extra training. †: integrating CoOP’s prompt tokens into our method.

Methods Extra Training ImageNet Caltech101 OxfordPets Cars Flowers102 Food101 Aircraft SUN397 DTD EuroSAT UCF101 Average

CLIP [36] × 72.43 96.84 91.17 63.37 72.08 90.10 27.19 69.36 53.24 56.48 70.53 69.34

CoOp [59] � 76.47 98.00 93.67 78.12 97.60 88.33 40.44 80.60 79.44 92.19 84.69 82.69

CoCoOp [58] � 75.98 97.96 95.20 70.49 94.87 90.70 33.41 79.74 77.01 87.49 82.33 80.47

MaPLe [18] � 76.66 97.74 95.43 72.94 95.92 90.71 37.44 80.82 80.36 94.07 83.00 82.28

OVMR × 76.77 98.00 94.97 73.93 97.83 89.93 40.37 81.83 77.10 90.00 85.03 82.34

OVMR† � 76.87 98.27 94.23 79.67 98.53 89.13 43.07 82.40 80.37 93.07 85.30 83.72

Table 2. Open-Vocabulary Classification Results in Few-shot Setup. Our method shows superior performance on average.

Methods Extra Training ImageNet Caltech101 OxfordPets Cars Flowers102 Food101 Aircraft SUN397 DTD EuroSAT UCF101 Average

MAML [9] � 56.93 92.97 33.97 59.10 76.50 67.83 26.07 41.67 62.60 83.80 69.17 60.96

MatchingNet [43] × 55.87 95.57 75.53 58.17 91.83 79.97 33.60 68.17 66.33 82.73 75.43 71.20

LR [42] � 63.67 97.00 84.60 66.07 94.90 84.70 37.93 75.37 74.43 88.40 80.57 77.06

PN [38] × 65.77 96.13 83.37 76.30 96.13 84.93 40.43 76.30 72.20 86.87 80.53 77.32

CEPA [15] � 69.00 97.10 88.10 71.70 96.10 85.20 39.10 78.10 73.70 90.70 80.40 79.02

CC [2] � 70.83 97.23 86.53 75.27 96.97 87.07 41.30 79.53 76.83 91.07 83.00 80.51

URL [26] � 72.07 97.77 89.27 78.17 97.23 87.40 44.53 79.97 80.77 92.00 82.13 82.13

OVMR × 76.77 98.00 94.97 73.93 97.83 89.93 40.37 81.83 77.10 90.00 85.03 82.34

sion of Detic by limiting the maximum number of ground-

truth boxes per image to 10 following [44, 60] in order to

reproduce Detic’s experiments on four 24GB 3090 GPUs.

Based on the memory-efficient version, we replace the orig-

inal classifier with our proposed multi-modal classifiers and

further introduce the preference-based fusion. Besides, for

a fair comparison, following previous works [62], we pre-

train a new visual token generator for ViT-B/32 of CLIP on

ImageNet21k-OVR with LVIS base categories. In system-

level implementation, we take Swin-B as our backbone and

train the detector with additional image-labeled data(IN-L)

following Detic [62].

Training and Test Setups: In open-vocabulary classifica-

tion, we select the first half of the categories in the classifi-

cation dataset as base classes and conduct comparisons on

base classes for a fair comparison with existing methods. In

the prompt learning setup, during inference, we utilize the

same 16-shot training images used in previous methods to

serve as exemplar images. Prompt learning methods need to

fine-tune for each downstream dataset using these 16-shot

images, while our OVMR does not require any extra train-

ing. The test set is also kept the same as prompt learning

methods. In the traditional few-shot setup, following the re-

cent work [29], we take the visual encoder of CLIP as the

base model and evaluate different few-shot adaptation algo-

rithms in the same 16-shot setup as prompt learning meth-

ods. In open-vocabulary detection, the exemplar images are

the same as those in MM-OVOD [17], which provides 5-

shot exemplar images for each category. The main evalua-

tion metric is the mask AP averaged over the “rare” classes,

which is denoted as mask APr.

4.3. Comparison with Recent Works

Comparison with Prompt Learning Methods. In Tab. 1,

we compare our method with existing prompt learning

methods on 11 classification datasets. Our methods yield

performance comparable to the state-of-the-art method

CoOp without any extra training in downstream tasks. It’s

worth noting that the pre-training dataset, ImageNet21k-

OVR, used for the visual token generator has been curated

to exclude the categories from the 11 classification datasets

and LVIS. The categories in these evaluation datasets are

only seen at test time. Providing a few exemplar images

during inference, our method manages to match the perfor-

mance of existing prompt learning methods. Further, by

integrating task-specific prompt tokens used in CoOp into

our approach and fine-tuning these tokens under the same

conditions as CoOp, we observe an enhanced performance,

which surpasses CoOp by an average accuracy of 1.03%
across the 11 datasets. These results demonstrate that our

method can not only enhance open-vocabulary classifica-

tion without additional training but also be compatible with

other optimization-based prompt learning approaches.

Comparison with Traditional Few-shot Methods. We

compare our method with few-shot methods in Tab. 2. Our

training-free method exhibits superior performance over the

state-of-the-art training-based method URL, both on aver-

age and across the majority of classification datasets. Par-

ticularly in datasets encompassing a broad range of cate-

gories, our method significantly outperforms URL, as ev-

idenced by a notable margin of 4.7% in ImageNet. Con-

versely, in datasets with a few classes, like EuroSAT, URL

shows superior performance. This is because supervised

fine-tuning tends to be more effective in easy scenarios with
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Table 3. LVIS Open-Vocabulary Detection. ‡: reporting box AP.

“OVMRT”: pure text-based classifier.

Method
Detector —-

Backbone —-

Extra

Data
APr AP

ResNet50 Comparison:
ViLD-Ens [12] RN50 × 16.6 25.5
OV-DETR [54] RN50 × 17.4 26.6
Detic [62] RN50 × 17.8 26.8
F-VLM [23] RN50 × 18.6 24.2
PromptDet [8] RN50 × 19.0 21.4
BARON [47] RN50 × 19.2 26.5
DetPro [6] RN50 × 19.8 25.9
MM-OVODT [17] RN50 × 19.3 30.3
MM-OVOD [17] RN50 × 19.3 30.6
OVMRT RN50 × 19.0 29.6
OVMR RN50 × 21.2 30.0

System-level Comparison:
RegionCLIP [57] RN50x4(87M) � 22.0 32.3
CondHead [45] RN50x4(87M) × 24.4 32.0
OWL-ViT‡ [32] ViT-L/14(303M) � 25.6 34.7
F-VLM [23] RN50x4(87M) × 26.3 28.5
RO-ViT [21] ViT-B/16(86M) � 28.0 30.2
CORA‡ [48] RN50x4(87M) � 28.1 -
CFM-ViT [19] ViT-B/16(86M) � 28.8 32.0
CoDet [30] Swin-B(88M) � 29.4 39.2
RO-ViT [21] ViT-L/16(303M) � 32.1 34.0
DITO [20] ViT-B/16(86M) � 32.5 34.0
Detic [62] Swin-B(88M) � 33.8 40.7
OVMRT Swin-B(88M) � 33.3 40.8
OVMR Swin-B(88M) � 34.4 40.9

fewer classes. In contrast with the training-free method PN,

our approach shows a substantial performance gain in com-

plex datasets with hundreds of classes. For instance, on Im-

ageNet, we observe an impressive improvement of 11.0%.

Comparison with Open-Vocabulary Detection Methods.
Tab. 3 presents our open-vocabulary detection results on

LVIS. In the ResNet50 comparison, our OVMR, which uti-

lizes multi-modal classifiers and preference-based fusion,

outperforms the existing approach MM-OVOD using the

same exemplar images by 1.9% mask APr on novel cat-

egories. In system-level comparison, follow Detic [62],

OVMR achieves a superior performance with additional

weak supervision from IN-L, which outperforms recent

pretraining-based method DITO by 1.9% on mask APr on

novel categories. Using only the text classifier, we achieve

a mask APr of 33.3%, which is marginally lower by 0.5%

compared to the 33.8% mask APr reported by Detic. How-

ever, our multi-modal version, OVMR, reaches 34.4% mask

APr, surpassing the original Detic by 0.6% in mask APr.

Moreover, OVMRT and OVMR share the same detector pa-

rameters. When there are no exemplar images, our method

can still work with only textual descriptions.

4.4. Ablation Study

Effectiveness of Our Proposed Components. In Tab. 4,

we systematically evaluate each component of our proposal

through ablation studies on 11 classification tasks. Our

baseline method, OVMRT, employs only a text-based clas-

sifier. In contrast, OVMRV utilizes solely a vision-based

Table 4. Ablation study of each component in open-vocabulary

classification. “T”: text-based classifier. “V”: vision-based clas-

sifier. “PS”: pre-training strategy of the visual token generator.

“VT”: multi-modal classifier. “Fusion”: preference-based fusion.

Methods T V PS VT Fusion Average

OVMRT � 66.80
OVMRV � � 80.28

OVMR−
VT � 77.86

OVMRVT � � 80.99
OVMRT+V � � � 81.71
OVMRT+VT � � � � 81.30
OVMRV+VT � � � � 81.96

OVMR � � � � � 82.34

Table 5. Ablation study of each component in open-vocabulary

detection. APr is reported.

Backbone OVMRT OVMRV OVMRVT OVMR

RN50 19.0 15.9 21.0 21.2
Swin-B 33.3 31.9 33.8 34.4

classifier, while OVMRVT integrates a multi-modal classi-

fier. A comparative analysis of OVMRVT against OVMRT

and OVMRV reveals the superior performance of the multi-

modal classifier. OVMR−
VT takes K sampled images both

as exemplars and target images and removes the dropout

operations. The performance disparity between OVMRVT

and OVMR−
VT underscores the effectiveness of our pre-

training strategy depicted in Sec. 3.1. As demonstrated in

OVMRT+V, T+VT, V+VT and OVMR, the preference-based fu-

sion of different classifiers further elevates performance,

achieving a best average accuracy of 82.34% across 11

datasets when fusing all three classifiers. This marks a sig-

nificant 15.54% improvement over the baseline text-based

classifier. Parallel ablation studies and consistent results for

our components in open-vocabulary detection are presented

in Tab. 5.

Superiority of Our Proposed Fusion. Our fusion method

is compared against static fusion with arithmetic mean and

text-based dynamic fusion, as detailed in Tab. 6. Our dy-

namic fusion method outperforms the static fusion method

MM-OVOD, achieving a 2.4% improvement despite MM-

OVOD’s better vision-based classifier performance. Text-

guided dynamic fusion method MQ-Det performs the worst,

as the quality of the text query may be unreliable and this

fusion largely disrupts the original features of CLIP. The

results in Tab. 6 demonstrate the superiority of our fusion

method. In Tab. 7, we further compare our fusion method

with MM-OVOD and MQ-Det in open-vocabulary detec-

tion. When using the same 5-shot exemplar images. Our

OVMR outperforms these methods in mask APr by a no-

table margin.

Evaluation Metric in Preference Generation. In Tab. 8,

directly averaging the predictions of three classifiers with

static “Mean” can improve the accuracy to 81.45%, which
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Table 6. Comparative analysis of fusion methods in classification.

“CLIP-F”: Forming a vision-based classifier by averaging CLIP’s

visual features of exemplar images and statically averaging it with

text-based classifier. “MM-OVOD”: Pre-training a discriminative

vision-based classifier and statically averaging it with text-based

classifier. “MQ-Det”: Utilizing the text feature as a query to dy-

namically aggregate related visual details from exemplar images.

Fusion

Methods
Dynamic Text Vision Multi-Modal

CLIP-F × 66.80 77.32 79.92
MM-OVOD [17] × 66.80 80.44 79.94

MQ-Det [50] � 66.80 - 62.60
OVMR � 66.80 80.28 82.34

Table 7. Comparison with other methods using exemplar images

in open-vocabulary detection.

Fusion

Methods
Dynamic Backbone APr mAP

MM-OVOD [17] × ResNet-50 19.3 30.6
MQ-Det [50] � Swin-T 15.4 22.6

OVMR � ResNet-50 21.2 30.0

Table 8. Comparison between different evaluation metrics in open-

vocabulary classification. “Mean”: treating three classifiers as

equally important, assigning them identical preferences.

OVMRVT Mean Precision Recall F1

80.99 81.45 82.03 81.70 82.34

shows that uni-modal classifiers contain some distinct fea-

tures that are beneficial for classification. Besides, the accu-

racy of the F1 metric is superior to other evaluation metrics,

because recall and precision cannot comprehensively eval-

uate the quality of a classifier.

4.5. Analysis of Exemplar Images

The Number of Exemplar Images. As shown in Fig. 3,

with increasing the shot number of exemplar images in

open-vocabulary classification, the average performance of

classifiers using visual clues steadily improves. However,

when it comes to 16 or 32 shots, the performance of each

classifier with visual clues tends to saturate, and there is

almost no improvement when increased to 64 shots. It in-

dicates that for most classification tasks, 16-shot exemplars

are enough to efficiently boost the recognition capability. In

addition, in the 2-shot setting, even though the performance

of the vision-based classifier is close to that of the text-

based classifier, a significant improvement can be achieved

using our multi-modal classifier generation module, which

further demonstrates the effectiveness of our method. How-

ever, there is a small drop after introducing the preference-

based fusion in the 2-shot setting. It is an inherent limitation

of preference-based fusion, as fewer images may not ro-

bustly evaluate each category’s preference for various clas-
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Figure 3. The accuracy of various classifiers at varying shots.

Table 9. Evaluate our method on ImageNet with exemplar images

from different sources. OVMRT is the zero-shot accuracy of CLIP.

Source OVMRT OVMRV OVMRVT OVMR

Internet 66.80 69.83 73.97 74.56
ImageNet 66.80 72.63 76.50 76.77

sifiers. But considering that it is easy to obtain multiple ex-

emplars of one category from the Internet, we can alleviate

the negative influence by collecting more exemplars.

Sources of Exemplar Images. We also evaluate our

OVMR on ImageNet in a 16-shot setting with the exemplar

images crawled from the Internet. The results in Tab. 9 indi-

cate that leveraging the uncurated, readily available exem-

plar images from the Internet can also significantly enhance

open-vocabulary recognition by a notable improvement.

5. Conclusion

In this paper, we propose a plug-and-play method, OVMR,

to embed multi-modal clues of novel classes into VLMs

to enhance their capability in open-vocabulary recogni-

tion. It initially utilizes the multi-modal classifier genera-

tion module to embed the exemplar images into visual to-

kens and then adaptively fuse multi-modal cues by infer-

ring their contextual relationships with the language en-

coder. To alleviate the negative effects of the low-quality

modality, we further propose a parameter-free fusion mod-

ule to dynamically integrate the multi-modal classifier with

two uni-modal classifiers by each category’s specific pref-

erence for these classifiers. Extensive experiments validate

our method’s superior performance in both open-vocabulary

classification and detection tasks, underscoring its potential

to advance open-vocabulary recognition.
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