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Abstract

Neural radiance fields have achieved remarkable perfor-
mance in modeling the appearance of 3D scenes. However,
existing approaches still struggle with the view-dependent
appearance of glossy surfaces, especially under complex
lighting of indoor environments. Unlike existing methods,
which typically assume distant lighting like an environment
map, we propose a learnable Gaussian directional encoding
to better model the view-dependent effects under near-field
lighting conditions. Importantly, our new directional en-
coding captures the spatially-varying nature of near-field
lighting and emulates the behavior of prefiltered environ-
ment maps. As a result, it enables the efficient evaluation of
preconvolved specular color at any 3D location with varying
roughness coefficients. We further introduce a data-driven
geometry prior that helps alleviate the shape radiance am-
biguity in reflection modeling. We show that our Gaussian
directional encoding and geometry prior significantly im-
prove the modeling of challenging specular reflections in
neural radiance fields, which helps decompose appearance
into more physically meaningful components.

1. Introduction

Neural radiance fields (NeRFs) have emerged as a popular
scene representation for novel-view synthesis [34, 45, 51].
By training a neural network based on sparse observations
of a 3D scene, NeRF-like representations are able to syn-
thesize novel views with photorealistic visual quality. In
particular, with a scalable model design, such as InstantNGP
[36], NeRFs are able to model room-scale 3D scenes with
extraordinary detail [53]. However, existing approaches typ-
ically only manage to model mild view-dependent effects
like those seen on nearly diffuse surfaces. When encounter-
ing highly view-dependent glossy surfaces, NeRFs struggle
to model the high-frequency changes when the viewpoint
changes. Instead, they tend to “fake” specular reflections by
placing them behind surfaces, which may result in poor view
interpolation and “foggy” geometry [47]. Moreover, fake
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Figure 1. We propose a Gaussian directional encoding that leads
to better modeling of specular reflections under near-field lighting
conditions. In contrast, the integrated directional encoding utilized
in Ref-NeRF [47] and Fourier directional encoding in NeRF [34]
exhibit suboptimal performance under similar conditions.

reflections are not viable if one can look behind the surface,
as NeRF can no longer hide the reflections there.

Accurately modeling and reconstructing specular reflec-
tions presents notable challenges, especially for room-scale
scenes. Physically correct reflection modeling involves path-
tracing many rays for every single pixel, which is impractical
for NeRF-like volumetric scene representations, primarily
due to the large computational requirements to shade a single
pixel. Consequently, an efficient approximation of the reflec-
tion shading is needed for a feasible modeling of reflections.
Existing works [ 14, 47] address this challenge by incorpo-
rating heuristic modules inspired by real-time image-based
lighting (IBL) [35] techniques, such as explicit ray bounce
computations to enhance NeRF’s capability to simulate re-
flections, and integrated directional encoding to simulate
appearance change under varying surface roughness.

While these improvements have shown to be effective in
modeling specular reflections for NeRFs, they are limited
to object-level reconstruction under distant lighting, which
assumes the object is lit by a 2D environment map. They
work poorly for modeling near-field lighting, where the cor-
responding environment map varies spatially. The issue is
that existing methods rely on directional encodings to em-
bed ray directions for generating view-dependent reflections.
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These encodings, such as Fourier encoding or spherical har-
monics, are spatially invariant. Figure 1 demonstrates one
example of NeRF [34] and Ref-NeRF [47] reconstructions
of an indoor scene with spatially-varying lighting. NeRF pro-
duces extremely noisy geometry, resulting in artifacts in the
rendering result. Ref-NeRF offers a slight improvement, but
still struggles with noisy geometry and view interpolation.

This illustrates that the spatial invariance in the directional

encodings of existing methods presents challenges under

spatially-varying lighting conditions.

In this work, we propose a novel Gaussian directional
encoding that is tailored for spatially varying lighting condi-
tions. Instead of only encoding a 2D ray direction, we use a
set of learnable 3D Gaussians as the basis to embed a 5D ray
space including both ray origin and ray direction. We show
that, with appropriately optimized Gaussian parameters, this
encoding introduces an important inductive bias towards
near-field lighting, which enhances the model’s ability to
capture the characteristics of specular surfaces, leading to
photorealistic reconstructions of shiny reflections. We further
demonstrate that by changing the scale of the 3D Gaussians,
we can edit the apparent roughness of a surface.

While our proposed Gaussian directional encoding im-
proves the reflection modeling of NeRF, high-quality reflec-
tion reconstruction also requires an accurate surface geome-
try and normal in order to compute accurate reflection rays.
However, the geometry within NeRFs is often noisy in the
early phases of training, which presents challenges in si-
multaneously optimizing for good geometry and reflections.
To better address this challenge, we introduce a data-driven
prior to direct the NeRF model towards the desired solu-
tion. We deploy a monocular normal estimation network to
supervise the normal of the geometry at the beginning of
the training stage, and show that this bootstrapping strategy
improves the reconstruction of normals, and further leads
to successful modeling of specular reflections. We conduct
experiments on several public datasets and show that the
proposed method outperforms existing methods, achieving
higher-quality photorealistic rendering of reflective scenes
while also providing more meaningful and accurate color
component decomposition. Our contributions can be sum-
marized as follows:

* We propose a novel Gaussian directional encoding that is
more effective in modeling view-dependent effects under
near-field lighting conditions.

* We propose to use monocular normal estimation to resolve
shape-radiance ambiguity in the early training stages.

e Our full NeRF pipeline achieves state-of-the-art novel-
view synthesis performance for specular reflections.

2. Related Work

Reflection-aware NeRFs. Successfully modeling view-
dependent effects, such as specular reflections, can greatly

enhance the photorealism of the reconstructed NeRF. NeRF
models view-dependency by conditioning the radiance on
the positional encoding [43] of the input ray direction, which
is only capable of mild view-dependent effects. Ref-NeRF
[47] improves NeRF’s capability for modeling reflections by
conditioning the view-dependent appearance on the reflec-
tion ray direction instead of incident ray direction, and by
modulating the directional encoding based on surface rough-
ness. This reparameterization of outgoing radiance makes
the underlying scene function simpler, leading to a better
geometry and view interpolation quality for glossy objects.
Ref-NeusS [14] further extends these concepts to a surface-
based representation. However, these are primarily designed
for object-level reconstruction under environment map light-
ing conditions. Modeling large-scale scenes with near-field
lighting remains a problem. Clean-NeRF [30] decomposes
the radiance into diffuse and specular colors, and supervises
the two components by least-square estimations of multiple
input rays. This alleviates the ambiguity of highly specular
regions; yet, it does not change the view-dependent struc-
ture of the NeRF model, thus limiting its ability to model
reflections. NeRF-DS [54] models specularities in dynamic
scenes and considers the variations in reflections caused by
dynamic geometry through the use of a dynamic normal field,
but requires additional object masks for accurate specular
reconstruction.

NeRF-based Inverse Rendering. Inverse rendering goes
beyond simple reflection modeling and aims to jointly re-
cover one or more of scene geometry, material appearance
and the lighting condition. In practice, the material appear-
ance is typically modeled using physically-based rendering
assets such as albedo, roughness and glossiness. Mesh-based
inverse rendering methods [2, 38, 49, 68] try to recover ma-
terials using differentiable path tracing [25]. However, they
typically assume a given geometry, since optimizing mesh
geometry is challenging. On the contrary, NeRF-based in-
verse rendering approaches [5, 42, 65, 66] make it easier
to optimize geometry jointly by modeling material proper-
ties and density continuously in a volumetric 3D space. The
lighting is usually represented as point or directional lights
[5, 23, 60], an environment texture map [31-33, 42, 65],
or an implicit texture map modeled by spherical Gaussians
[6, 11, 18, 63, 66, 66, 67] or MLPs [7, 29]. Most methods
are limited to object-level reconstruction and assume the
lighting is spatially invariant (i.e. distant). Several light es-
timation techniques [13, 26, 27, 41] explore using 3D light
primitives or spatially-varying spherical Gaussians to model
spatially varying lighting. However, these methods focus on
data-driven approaches to estimate lighting for image editing.
NelLF [56] and NeILF++ [62] model lighting as a 5D light
field using another MLP, but still focus mainly on small-scale
reconstruction. Several works apply inverse rendering for
relighting outdoor scenes [24, 40, 48, 58]. However, they fo-

21189



: »l

[a[viewdr o o 5 o | L vics 608 B 1)

Encoding ly| ¢4 | Diffuse d 3D Gaussian

— : —o+t

(x50 postion | D H voumerie o [ Dep |2 ol Diccion
\’\’\’\o\, Hash T [ Density 7| Rendering |a| p | Roughness Encoding

Encoding p’ | Roughness
Input ray ~ ! jy n | Normal ™| Reflection d Reflection Normal from
0+td n’ | Norma — Eq.3 v | direction n monocular

[@ [ovar ol a2 | oo
estimation

Screen space

Figure 2. An overview of our model. The key enabler for specular reflections is our novel 3D Gaussian directional encoding module that
converts the reflected ray into a spatially-varying embedding, which is further decoded into specular color.

cus more on diffuse materials with correct shadow modeling
instead of reflections. In this work, we have a different goal
compared to inverse rendering, focusing only on correctly
modeling reflections for better novel-view synthesis, rather
than trying to discern material properties for standalone use.

NeRF with mirror reflections. One special case of re-
flection is mirror reflection. One approach represents the
reflected scene as a separate NeRF [15], and composites
the two NeRF results in image space. This is also deployed
in image-based rendering [52] and large-scale NeRF recon-
struction [50]. Given a multi-mirror scene, the idea can be
further extended to multi-space NeRFs [57]. An alternate
approach is to explicitly model the mirror geometry, and
to render the mirrored scene by path tracing [16, 61]. How-
ever, since estimating the mirror geometry is highly ill-posed,
manual annotation is usually needed. Curved reflectors need
even more careful handling [22, 46].

3. Preliminaries

We first review Ref-NeRF [47] for decomposing view-
dependent appearance. Similar to NeRF, Ref-NeRF models
the scene as a function that maps the position x and view di-
rection d to the final color ¢ and density 7. The difference is
that Ref-NeRF predicts the color as a combination of diffuse
color cq4 and specular color c:

c="7(cqg+¢c;Os), (1)

where s is the specular tint, ‘®’ the element-wise product,
and () a tone-mapping function. To predict the specular
color cg, Ref-NeRF first predicts the surface normal n, rough-
ness p, and features ¢ at location x using an MLP. Then,
the specular color c; is parameterized as a function of the
reflection direction d,:

¢ = Fo(Ape(dr, p), @), )

where Appg(+) is the integrated directional encoding intro-
duced by Ref-NeRF, Fy(-) represents an MLP with parame-
ters 6, and the reflection direction d; is the input direction d
reflected at the predicted surface normal n:

d,=d-—2(d n)n. 3)

By conditioning the specular color on reflection direction
and roughness, the function Fy needs to fit is much simpler.

4. Method

Our goal is to enhance NeRF’s capabilities for modeling
specular reflections under near-field lighting conditions. Fig-
ure 2 presents an overview of our pipeline. A key contribu-
tion is the 3D Gaussian directional encoding that maps a ray
and surface roughness to a ray embedding.

To render a pixel, we sample points along an input ray
o+td, and predict volume density 7/, diffuse color ¢, tint s/,
roughness p’, and normal direction n’ at each sample point
(we denote per-sample properties using a prime). Given that
reflections occur only at the surface, we evaluate the specular
component once per ray on the surface obtained from the
NeRF depth. This also results in less computation than per-
sample-point specular shading. Consequently, we calculate
volumetric depth ¢y by rendering the ray marching distance
at each sample point. We also volumetrically render all at-
tributes to synthesize screen-space attributes (cq,s, p,n).
Note that the rendered normal must be normalized to yield
the final screen-space normal n. We then evaluate the spec-
ular component by first computing the reflected ray using
origin o, = o + tgd, and the reflection direction d, derived
using Equation 3. The reflected ray o, + td; and surface
roughness p are then encoded using our novel 3D Gaus-
sian directional encoding. After a tiny MLP, we compute
the specular color cg, and the final rendering result using
Equation 1.

From a physically based rendering perspective, Equa-
tion 1 is analogous to the Cook—Torrance approximation
[10] of the rendering equation [19]. The term c;®s can be
interpreted as the split-sum approximation of the specular
part of the Cook—Torrance model, with the specular color cg
corresponding to the preconvolved incident light, and the tint
s to the pre-integrated bidirectional reflectance distribution
function (BRDF).

4.1. Gaussian Directional Encoding

Existing works parameterize view-dependent appearance by
first encoding view or reflection direction into Fourier or
spherical harmonics (SH) features, which results in a spa-
tially invariant encoding of the view direction. Therefore, it
becomes challenging for the NeRF to model spatially vary-
ing view-dependent effects, such as near-field lighting. We
illustrate this via a toy example in Figure 3, where we place
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Figure 3. Toy example of 3D Gaussian encoding. Left: A hemi-
sphere probe translates underneath 4 lights along positions num-
bered 1 to 4. Note that we dilate the lights for better visualization.
Right: Representation of the probe’s specular components using
spherical harmonics and our 3D Gaussian directional encoding.
The SH encoding shows a more complex pattern under position
change, while ours has spatially largely invariant coefficients. This
suggests a simpler function for the specular prediction MLP to fit
using Gaussian directional encoding.

a hemispherical specular probe in a simple scene with four
lights of different shapes and colors. Then, we represent the
specular component of the toy example by linearly combin-
ing the directional encoding features. We find the optimal
coefficients for each encoding type that best fit the ground-
truth specular component using stochastic gradient descent,
and visualize them in Figure 3. We can see that even for
this simple toy setup, the SH-based encoding requires com-
plex, spatially varying coefficients, which complicates the
underlying function for the NeRF to fit and interpolate.

We propose to spatially vary the encoding function by
defining the basis functions via several learnable 3D Gaus-
sians. Specifically, we parameterize 3D Gaussians using their
position p; € R3, scale o; € R3, and quaternion rotation
q; €H:

Gi(x) :eXP(—HQ(X—M;qi)@a;lﬂi), 4)

where Q(v; q,) represents applying quaternion rotation q;
to the vector v. To compute the i-th dimension of the en-
coding for a ray o + td, we need to define a basis function
Pi(o,d) € R that maps the ray to a scalar value given the
Gaussian parameters. While there are many ways to define
the mapping, we find one that is efficient and has a closed-
form solution by defining the projection as the maximum
value of the Gaussian along the ray:

Pi(o,d) = max Gi(o+td). (5)
In the supplement, we derive the closed-form solution:

exp(%idéi)z - oiToi> o/d; <0
Gi(o) l
where o; and d; are the ray origin and direction transformed
into Gaussian-local space:
0; = Qo — p;;q;) O o, )
d; = Q(d;q)) © o7 . ®)

Pi(o,d) = { (6)

otherwise,
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Figure 4. Stereographic projections of the specular fitting results
for the toy example in Figure 3. Both encodings produce 25 coeffi-
cients for each color channel, which are then summed to produce
the final color. Note that the GT shows soft boundaries because it
is preconvolved. The 3D Gaussian-based encoding demonstrates
superior performance in representing the specular change with posi-
tional changes, and is also capable of smoothly varying roughness.

By applying Equation 6 for every 3D Gaussian, we obtain
a vector of projected values {P;}, which forms our final
encoding features. Similar to existing NeRF-based represen-
tations [9, 34, 36], we rely on a small MLP to convert the
encoding to a specular color c.

As illustrated by the toy example in Figure 3, our Gaus-
sian directional encoding exhibits more constant coefficients
in response to the position changes, suggesting a smoother
mapping from the embedding features to the specular color.
This smoothness is due to the Gaussian basis function pro-
ducing spatially varying features that mimic the behavior of
how the specular component would change under near-field
lighting conditions. As a result, the underlying functions that
model the specular reflections are easier to learn.

We also visualize the fitted specular color of both ap-
proaches in Figure 4. Our 3D Gaussian directional encoding
more accurately captures the spatial variations of the specu-
lar components.

>

Similar to Ref-NeRF, we use an additional “roughness’
value p to control the maximum frequency of the specu-
lar color. We achieve this in our Gaussian embedding by
multiplying each Gaussian’s scale o; with the roughness p.
Intuitively, a larger Gaussian results in a smoother function
with varying direction d. Substituting the o; with po; in
Equation 6 leads to the complete equation of our 3D Gaus-
sian encoding. Figure 4 demonstrates the ability of our 3D
Gaussian-based encoding to modify roughness on the fly.
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4.2. Optimizing the Gaussian Directional Encoding

It is worth noting that our proposed Gaussian encoding cor-
rectly models spatially varying specular reflections only
when the Gaussians are positioned properly in 3D space.
We thus jointly optimize the Gaussian parameters together
with the NeRF during training, to ensure the Gaussians are
in the optimal state for modeling reflections. However, there
is no direct supervision for the Gaussian parameters.

Our experiments show that without proper initial Gaus-
sian parameters, the optimization may lead to suboptimal
local minima, resulting in inconsistent quality of specular
reconstruction. To address this, we propose an initialization
stage for the Gaussian parameters and to bootstrap the specu-
lar color prediction. As mentioned earlier, the specular color
is essentially the preconvolved incident light, which can be
directly deduced from input images.

Motivated by this observation, we train the 3D Gaussians
and the specular decoder (MLP;3 in Figure 2) in the initializa-
tion stage using the input images. We train an incident light
field that accommodates a diversity of rays and roughness
values. Therefore, we apply a range of Gaussian blurs to all
input images using a series of standard deviations, generating
Gaussian pyramids. These pyramids of input images provide
a pseudo target for incident light under different degrees of
surface roughness. In each iteration of the training, we sam-
ple pixels from the pyramids and trace rays to these pixels.
The traced rays are also associated with a roughness value
that is equivalent to the blur’s standard deviation. We encode
each ray with roughness using our Gaussian directional en-
coding, and predict the specular color c; using the decoder.
By minimizing the errors between c, and the pseudo ground
truth, we refine the Gaussian parameters and the specular
decoder, which then serve as initialization for the subsequent
joint optimization stage.

4.3. Resolving the Shape-Radiance Ambiguity

Regardless of any view-dependent parameterization, there re-
mains a fundamental ambiguity between shape and radiance
in NeRFs. For example, consider a perfect mirror reflection.
Without any prior knowledge, it is nearly impossible for the
NeRF model to tell whether the mirror is a flat surface with
perfect reflection, or a window to a (virtual) scene behind
the surface. Therefore, prior information is needed to guide
the model to learn the correct geometry. Inspired by recent
progress in monocular geometry estimation [4, 12, 39, 59],
we propose to supervise the predicted normal n using monoc-
ular normal estimation nyopo [12]:

Limono = Z Hnj -R/ n%lono“i s )
J

where the superscript j is a ray index, and R7 is the corre-
sponding camera rotation matrix that converts normals from
view space to world space.

w/0 Lmono w/o early stop

Figure 5. The specular component reconstruction (first row, except
the first image), novel-view synthesis results (second row) and nor-
mal visualizations (third row) under varying monocular normal
supervision. The target normal visualizes the monocular normal
prediction. Without Liono, the predicted normal exhibits enormous
error, leading to poor specular reconstruction. Without early stop-
ping Lmono, minor errors in the predicted normals lead to a slight
degradation in the reflection quality compared to our full model.

However, monocular normals are prone to error. We there-
fore use them primarily as initialization and apply Liono
only at the beginning of the training, so that the errors in
the normals do not overwhelm the geometry of the NeRF.
Figure 5 and Table 2 show results with different configura-
tions of L0no. We can see that without monocular normal
as supervision (‘w/0 Lpeno’), the predicted normals have
catastrophic errors, such as those pointing inwards (orange)
or lying parallel (violet) to the surface. Consequently, the
learned specular component is less accurate due to the in-
correct normals. Despite this, a somewhat plausible specular
reflection can still be learned as the Gaussian encoding can
“cheat” the reflections even with erroneous normals. On the
other hand, without early stopping of the loss (‘w/o early
stop’), minor inaccuracies from the monocular normals per-
meate into predicted normals, leading to a degradation of the
reflection quality.

4.4. Losses

To jointly optimize all parameters within our proposed
pipeline, we use a combination of loss terms:

L= ﬁc + Lprop + )\distLdisl + /\m0n0£m0n0 + /\normACnorm . (10)

In this equation, L, is the L1 reconstruction loss between the
predicted and ground-truth colors. The terms Lprop and Lgig
are adopted from mip-NeRF 360 [3], where L, supervises
the density proposal networks, and Lg; is the distortion loss
encouraging density sparsity. To tie predicted normals to
the density field, we use Ref-NeRF’s normal prediction loss
Lorm [47], which guides the predicted normal n with the
density gradient direction. Further elaboration on these loss
components can be found in the supplementary material.

In our experiments, we set Agisx = 0.002, aligning with
the settings of the “nerfacto” model in Nerfstudio [44]. For
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Table 1. Quantitative comparisons of novel-view synthesis on three datasets. We highlight the best numbers in bold.

Methods Eyeful Tower dataset [53] NISR [50] + Inria [38] dataset Shiny dataset [47]
PSNR1+ SSIM1T LPIPS] | PSNR1 SSIM1{1 LPIPS| | PSNR{T SSIM1T LPIPS |
Ours 32.583 0.9328 0.1445 30.771 0.8909 0.1655 26.564 0.7277 0.2776
NeRF [34] 31.854 0.9254 0.1626 30.748 0.8873 0.1728 26.469 0.7235 0.2852
Ref-NeRF [47] 31.652 0.9258 0.1570 30.654 0.8903 0.1669 26.502 0.7242 0.2827
MS-NeRF [57] 31.715 0.9311 0.1561 30.224 0.8840 0.1816 26.466 0.7070 0.3225
GT Test Image GT & SfM Normal Ours Ref-NeRF [47] MS-NeRF [57] NeRF [34]

4 T - --
4
o [ b
Sl | 7

Eyeful Workshop

NISR LivingRoom?2

Eyeful Office2

SR T i >

Figure 6. Comparisons of novel-view synthesis quality and normal map visualizations. Our method consistently reconstructs reflections
while other methods either produce ‘faked’ reflections, resulting in incorrect normals, or fail to model reflections entirely.

Amono» W€ choose a value of 1 in the first 4K iterations, and
reduce to 0 thereafter to cease its effect, as described earlier.
We find that our method is robust to the value of Ao, as it
only serves as initialization. We also assign Ayorm = 1073,
which is slightly higher than the weight in Ref-NeRF [47], as
we find that this produces slightly smoother normals without
substantially compromising the rendering quality.

5. Experiments

Implementation. To model room-scale scenes, we employ
a network architecture similar to the “nerfacto” model pre-
sented in Nerfstudio [44]. We use two small density networks
as proposal networks, supervised via Lprop. We sample 256
and 96 points for each proposal network, and 48 points for
the final NeRF model. These three networks all use hash-
based positional encodings. When querying the hash features
in the final NeRF model, we incorporate the LOD-aware
scheme proposed in VR-NeRF [53]. We train our model

for 100,000 iterations and randomly sample 12,800 rays in
each iteration. This process takes around 8 GB of GPU mem-
ory and approximately 3.5 hours to train a model using an
NVIDIA A100 GPU. Further details regarding the model’s
structure can be found in the supplementary materials.

Datasets. We evaluate our method on several datasets with
a focus on indoor scenes characterized by near-field lighting
conditions. First, we evaluate on the Eyeful Tower dataset
[53], which provides high-quality HDR captures of 11 indoor
scenes. Each scene is coupled with calibrated camera param-
eters and a mesh reconstructed via Agisoft Metashape [1].
We select 9 scenes that feature notable reflective properties.
We downsample the images of each scene to a resolution
of 854 x 1280 pixels. We curated around 50-70 views per
scene that contain glossy surfaces for evaluation, leaving
the remaining views for training. We also evaluate our ap-
proach on public indoor datasets NISR [50] and Inria [38]
(NISR+Inria). Moreover, to assess the performance under
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Figure 7. Intermediate components of our approach compared to Ref-NeRF [47]. Our approach produces a more meaningful decomposition

under room-scale lighting settings.

far-field lighting, we evaluate the real shiny dataset in Ref-
NeRF [47]. We report the average PSNR, SSIM, and LPIPS
[64] metrics for evaluating rendering quality.

5.1. Comparisons

We compare our method with several baselines: NeRF [34],
Ref-NeRF [47], and MS-NeRF [57], which specializes in
mirror-like reflections by decomposing NeRF into multiple
spaces. For a fair comparison, we re-implement these base-
lines, such that we share the same NeRF backbone and ren-
dering configurations, with the only difference being the way
different methods decompose and parameterize the output
color. We report the numerical results across three datasets in
Table 1. Our method demonstrates superior performance on
the Eyeful Tower dataset, indicating the effectiveness of our
method. On the NISR+Inria datasets, our method marginally
outperforms the baselines, likely due to the dataset con-
taining few reflection surfaces. Notably, while our method
is tailored for near-field lighting conditions, it also shows
promising results on the Shiny dataset, which comprises
far-field lighting scenarios. This is because our Gaussian
directional encoding can simulate a spatially invariant en-
coding by positioning Gaussians at a significant distance.

Qualitative results on the Eyeful Tower and NISR+Inria
datasets are provided in Figure 6. We can see that while other
baselines occasionally synthesize plausible reflections, they
resort to approximations that fake the reflections by placing
emitters underneath the surface. As a result, they either pro-
duce incorrect geometry, or fail to model the reflections. Our
method, in contrast, successfully models specular highlights
on the surface. We provide additional video results in the
supplementary material.

We also visualize and compare the decomposition pro-
duced by our method and Ref-NeRF in Figure 7. We can see

Specular

Tint Normal

Roughness
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Number of Gaussians

Figure 8. We evaluate the novel-view synthesis quality with respect
to the number of Gaussians across five scenes. The green dashed
line is the setting we use in our experiments.

that Ref-NeRF fails to obtain a meaningful decomposition
under near-field lighting, and produces holes in the geom-
etry, whereas our method consistently achieves a realistic
separation of specular and diffuse components.

5.2. Ablation Studies

Number of Gaussians. One important hyperparameter in
the Gaussian directional encoding is the number of Gaus-
sians, as it directly influences the model’s capacity to repre-
sent specular colors. We conduct experiments to evaluate the
impact of varying the number of Gaussians on five scenes
from the Eyeful Tower dataset, and show the relationship
between the number of Gaussians and the rendering qual-
ity in Figure 8. The rendering quality improves when using
more Gaussians, but the improvement saturates as the num-
ber increases beyond 400. Note that using a larger number
of Gaussians also entails greater computation costs and GPU
memory requirements for every rendered pixel. Therefore,
we use 256 Gaussians for all experiments, to strike a balance
between rendering quality and computational efficiency.

Optimizing Gaussians. To optimize the Gaussian direc-
tional encoding effectively, we first initialize them by train-
ing an incident light field, and then jointly finetune the Gaus-
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Table 2. Ablations of our method on the Eyeful Tower dataset [53].
The “e.s.” indicates early stopping the Lmono after 4K iterations.

Gaussians Mono. E. S.
Method Init. Opt. Prior Lmono| PSNRT SSIM?T LPIPS]
Full v o v v 32.58 0.9328 0.1445
w/0 init X Vv v v 32.52 0.9304 0.1429
w/o opt. v X v v 32.06 0.9265 0.1581
w/o Liyono vV X — 32.31 0.9288 0.1503
w/o e.s. v v v X 32.46 0.9292 0.1502

Full w/o init w/o opt.

Tint Specular

Final

Error map

Figure 9. Example results under different Gaussian optimization
settings. Without initializing the Gaussian parameters (‘w/o init’)
or optimizing Gaussians jointly with the NeRF (‘w/o opt.”), the
Gaussian embedding struggles to model specularities accurately.

sian encoding together with the NeRF model. We demon-
strate the significance of initialization (‘w/o init’) and fine-
tuning (‘w/o opt.”) by omitting each process individually.
We show quantitative results in Table 2 and a qualitative
example in Figure 9. Without initialization, the model can
still reconstruct reflections to some extent, resulting in a
slightly better average LPIPS score, yet it fails to model
some specular details, such as the light blobs. Neglecting
the joint optimization of Gaussians leads to complete failure
in modeling specular reflections. As illustrated in Figure 9,
with the inaccurate specular modeling, the tints suppress the
specular reflections, which ultimately leads to the inability
to represent reflections in the final rendered image.

6. Discussion and Conclusion

Applications. Our primary goal was to improve the quality
of novel-view synthesis with specular reflective surfaces. We
achieve this via our proposed Gaussian directional encoding
that enables a meaningful decomposition of specular and
diffuse components in a scene. Moreover, this also enables
applications other than novel-view synthesis, such as reflec-
tion removal, and surface roughness editing. For instance,
Figure 7 shows that we can easily remove reflections using
the diffuse component. Furthermore, Figure 10 demonstrates

Final

Specular

——-

Increasing roughness

Figure 10. We can control the roughness of the scene by adding an
offset to the input roughness.

Ours

Figure 11. Our method cannot reconstruct mirror-like perfect re-
flections due to the limited capacity of the 3D Gaussian encoding.

an example of editing roughness. By adding an offset to the
predicted roughness during rendering, we can effectively
manipulate the glossiness of the real surface.

Limitations. While our method improves on existing base-
lines, it has some limitations. As we parameterize the spec-
ular color via only several hundreds of Gaussians, the en-
coding is limited to relatively low frequency compared with
perfect mirror-like reflections. We show such a failure case
in Figure 11. We can see that our method is only able to
learn a blurry version of the reflection. This could be allevi-
ated by using many more Gaussians, as demonstrated in 3D
Gaussian splatting [20]. However, the computational cost
of traversing all Gaussians for every pixel quickly becomes
prohibitive in our implementation. More efficient traversal,
such as by rasterization, could be interesting future work.

Conclusion. In this paper, we proposed a pipeline to im-
prove the existing approach in modeling and reconstructing
view-dependent effects in a NeRF representation. Central
to our approach is a new Gaussian directional encoding to
enhance the capability of neural radiance fields to model
specular reflections under near-field lighting. We also uti-
lize monocular normal supervision to help resolve shape—
radiance ambiguity. Experiments have demonstrated the ef-
fectiveness of each of our contributions. We believe this work
proposes a practical and effective solution for reconstruct-
ing NeRFs in room-scale scenes, specifically addressing the
challenges of accurately capturing specular reflections.
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