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Abstract

Recent advances in large video-language models have dis-
played promising outcomes in video comprehension. Current
approaches straightforwardly convert video into language
tokens and employ large language models for multi-modal
tasks. However, this method often leads to the generation
of irrelevant content, commonly known as “hallucination”,
as the length of the text increases and the impact of the
video diminishes. To address this problem, we propose
VISTA-LLAMA, a novel framework that maintains the con-
sistent distance between all visual tokens and any language
tokens, irrespective of the generated text length. VISTA-
LLAMA omits relative position encoding when determining
attention weights between visual and text tokens, retaining
the position encoding for text and text tokens. This amplifies
the effect of visual tokens on text generation, especially when
the relative distance is longer between visual and text tokens.
The proposed attention mechanism significantly reduces the
chance of producing irrelevant text related to the video con-
tent. Furthermore, we present a sequential visual projector
that projects the current video frame into tokens of language
space with the assistance of the previous frame. This ap-
proach not only captures the temporal relationship within
the video, but also allows less visual tokens to encompass
the entire video. Our approach significantly outperforms
various previous methods (e.g., Video-ChatGPT, MovieChat)
on four challenging open-ended video question answering
benchmarks. We reach an accuracy of 60.7 on the zero-shot
NExT-QA and 60.5 on the zero-shot MSRVTT-QA, setting a
new state-of-the-art performance. This project is available
at https://jinxxian.github.io/Vista-LLaMA.

1. Introduction
The surge in multi-modal vision-and-language models [1,
12, 14], capable of comprehending both visual (e.g., im-
age/video) and language data, can be attributed to the recent

∗ Corresponding author

[Video Frames]

Text Tokens

Visual Tokens

Vanilla Attention

EDVT Attention

[Answer 1]
A cat.

[Answer 2]
A dog.

[Question]
What animal
is shown in
the video？

LLaMA

Vista-LLaMA

Figure 1. Video language processing with LLaMA [26] and our
VISTA-LLAMA. The vanilla LLaMA treats visual tokens ( )
the same as other language tokens ( ), weakening the impact for
tokens in long distance. Our model retains the same mechanism
for language tokens and strengthens the impact of the visual tokens.
The intensity of the impact of each token is conveyed through the
depth of the line color ( ). Our model provides the accurate
response for the presented scenario.

achievements of large language models (LLMs) such as
GPT [8], GLM [38], and LLaMA [40]. Video-language
models (video-LMs) pose greater challenges in scaling due
to increased computational and annotation costs compared
to image-language models (image-LMs). Recent research
has therefore focused on effectively training video-LMs by
utilizing pre-trained image-LMs [22, 40].

Video-LMs benefit from this warm-start approach to en-
hance visual representation learning by projecting video
frames into language space and treating videos as several
prompt language tokens [18, 34]. However, this diminishes
the visual impact of videos on text generation and lacks ex-
plicit temporal modeling in videos. The generated text is
often not related to the video content, as depicted in Fig-
ure 1, a phenomenon known as hallucination in language
processing [6]. The distance between the generated text
token and the visual tokens in large language models may
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be a contributing factor, especially when the visual tokens
are distant from the generated text. Additionally, handling
longer videos poses a challenge because of the constraints
on context length in large language models, where numerous
visual tokens take up a substantial portion of the context.

We present VISTA-LLAMA, an innovative video lan-
guage framework to tackle above issues. The primary con-
cept is to preserve equal distance between all visual tokens
and any language tokens, while also retaining the relative
distance between any two language tokens, as depicted in
Figure 1. The rotary position embedding is only applied to
language tokens to capture relative distance when calculat-
ing similarity between language tokens. When computing
similarity between visual and text tokens, the rotary posi-
tion embedding is removed to reduce the impact of relative
distance. With the equal distance to visual tokens (EDVT)
attention, the impact of visual cues on text production is am-
plified without compromising the text production capability.
The experiments also show that our design produces more
precise text description for input videos and the phenomenon
of visual hallucinations occurring in language models has
been greatly reduced.

To further improve the temporal modeling of video, we
introduce a sequential visual projector. Instead of mapping
each frame of the video independently into fixed-length vi-
sual tokens, which ignores the temporal relationship between
frames, we generate visual tokens for each frame using the
previous projected visual tokens. It not only incorporates
the temporal relationship between frames into the language
model to improve video comprehension without any extra
parameters, but also enables the language model to encode
longer videos with fewer visual tokens by sampling fewer
projected frames.

We demonstrate the effectiveness of VISTA-LLAMA on
four challenging video question answering (QA) bench-
marks, where our method outperforms several previous
works, and achieves the state-of-the-art in zero-shot NExT-
QA [30], and MSRVTT [32]. We also show that our attention
design and the temporal modeling mechanism improves ca-
pacity of large language model on video-question answering
by a large margin. Comprehensive experiments are con-
ducted to demonstrate the effectiveness of our designs. We
summarize our contributions as follows:

• We introduce a novel video-language model, dubbed as
VISTA-LLAMA, to enhance the video understanding and
facilitate temporal modeling within the language model.

• A novel multi-modal attention is proposed to enable reli-
able video text generation by maintaining equal distance
to visual tokens. Additionally, temporal modeling is facili-
tated by employing a sequential visual projector.

• Our method exhibits superior empirical performance, es-
tablishing new benchmarks for zero-shot open-ended
video question answering tasks.

• A detailed analysis further explains the design choices
inherent in our proposed framework, contributing signifi-
cantly to a better comprehension of multi-modal dynamics
in large language models.

2. Related Work
2.1. Large Language Models

Large language models (LLMs) [2, 19, 27, 28, 42] have
demonstrated exceptional proficiency in understanding lan-
guage and reasoning, resulting in the generation of high-
quality natural language text in diverse domains. LLMs have
already initiated a technological revolution and have found
extensive application in various domains. Additionally, a
series of open source large models, including LLaMA [26],
and OPT [41], have significantly contributed to technologi-
cal advancements and made remarkable contributions to the
NLP community. Leveraging the foundation established by
these impressive LLMs, researchers have further expanded
their capabilities and developed exceptional models for di-
verse NLP tasks (e.g. Vicuna [4]). Our work is also built
upon these remarkable LLMs, and we equip the language
models with a novel attention mechanism and a sequential
visual projector that enhances their abilities to comprehend
visual content in videos.

2.2. Multi-modal Large Language Models

Researchers have been diligently exploring the application of
LLMs for processing multi-modal problems [9, 13, 15, 17].
The existing approaches can be classified into two primary
categories. In the first category, LLMs are treated as con-
trollers while the multi-modal models as tools [10]. When
presented with the specific task, the LLMs first interact with
user instructions and decide which tools to employ. Subse-
quently, it generates comprehensive responses by amalga-
mating the outcomes derived from these readily available
multi-modal models. These approaches, such as Visual Chat-
GPT [29], HuggingGPT [21], and DoraemonGPT [35], have
shown impressive results on various multi-modal tasks with-
out training models. For the second category, large-scale
multi-modal models are trained on the multi-modal data. The
principle behind this line of researches is to align other modal
pre-trained models with textual LLMs. Flamingo [1] incor-
porates a perceiver resampler and a gated cross-attention
layer to connect a frozen image encoder with the LLM.
BLIP2 [12] introduces a Q-Former to map each image into
fixed-length tokens in the language embedding space via
the learned queries. LLaVA [14], mPLUG-owl [36], and
MiniGPT4 [42] develop the image-LLMs utilizing image-
instruction training pairs. Video Chat [13] extends image
encoders to enable large models to comprehend visual con-
tent in videos. Video-ChatGPT [18] is trained on video in-
structional data to give appropriate answers for multi-modal
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inputs. In this work, we improve the understanding of videos
in a video-language model by incorporating temporal mod-
eling and a novel multi-modal attention mechanism.

2.3. Video Question Answering

Video Question Answering (VideoQA) is a task that in-
volves answering language questions that are based on a
given video [32]. It requires the ability to understand and
reason across different semantic levels, which in turn de-
mands a capacity for multi-modal understanding. Previ-
ous VideoQA benchmarks primarily concentrated on short
videos, asking questions according to the specified visual
facts (e.g., location and objects) [16, 33]. Recently, several
new benchmarks have been proposed to focus on resolving
temporal and causal questions in longer video clips [25].
NExT-QA [30] is an example of such a benchmark, aiming
to uncover the causalities or intentions of particular events,
and infer subsequent actions within the video. In this work,
we investigate the video-language model on zero-shot open-
ended VideoQA where no training question-answer pairs are
provided in the training stage.

3. Method
3.1. Overview

VISTA-LLAMA comprises three fundamental components:
a visual encoder, a visual projector, and a pre-trained large
language model. Figure 2 shows an overview of VISTA-
LLAMA. The components’ design and implementation de-
tails are provided below:
• Visual Encoder. We utilize pre-trained EVA-CLIP-g [24]

and ViT-L [20] as visual encoder. The last layer of ViT
encoder is removed because it specializes in aggregating
the features of the first token for contrastive learning.

• Visual Projector. The visual projector maps the output of
the visual encoder into tokens that occupy the same space
as the text features from word embedding. Various visual
projectors are considered in Sec. 3.3. The visual projector
is to be trained in our work.

• Pre-trained Large Language Model. In this study, we
utilize LLaVa [14], which is fine-tuned on Vicuna-7B [4]
using instructional image-text pairs, for processing videos
and texts. The causal mask is employed in all attention
processes, incorporating the attention interplay between
visual and text tokens. The pre-trained language model is
frozen in the present study, and a new attention mechanism
is developed to maintain a consistent distance to visual
tokens for all textual tokens.
In our framework, the video is first encoded into visual

tokens using the frozen visual encoder and the trainable
visual projector. These visual tokens are then combined with
text tokens, which are projected with word embedding from
the prompt and question sentences. The combined visual

Algorithm 1 Pseudocode of EDVT attention in a PyTorch-
like style.

# x: hidden input in each attention laye
# v_mask: indcitate which input are from visual tokens

def edvt_attention_layer(x, v_mask):
# query, answer, value projection
q, k, v = qkv_proj(x)

# apply RoPE for query and key inputs
r_q, r_k = rope(q, k)

# attention weights without RoPE
attention = bmm(q.T, k)

# attention weights with RoPE
r_attention = bmm(r_q, r_k)

# Merge attention weights based on visual token
attention = v_mask * attention + (1 - v_mask) *

r_attention
attention = Softmax(attention, dim=-1)

# Update representation based on attention weights
v = bmm(attention, v)
out = linear_proj(v)
return out

qkv proj: linear projection layer; bmm: batch matrix multiplication; rope: apply
rotary position embedding.

and text tokens are then input into the language model to
generate answers.

3.2. Equal Distance to Visual Tokens

Preliminary. For the concatenate visual-text input, three
linear projection layers are applied in every attention layer
to produce the query Q, key K, and value V. Let qj be jth

query in Q. The conventional attention mechanism updates
the input by initially determining the similarity between the
query and key, then applying the attention weights to the
value state. Specifically, for the jth position, the update
procedure can be articulated as follows:

Attention(Q,K,V)j =

∑j
i=1 sim(qj ,ki)vi∑j
i=1 sim(qj ,ki)

, (1)

where sim(qj ,ki) = exp(qT
j ki/

√
d). Here, a causal mask

is utilized so that the jth query can only attend to the key
positioned less than j.
EDVT-Attention. The vanilla attention model lacks po-
sitional awareness, with no encoded relative distance for
natural language processing. In contrast, Rotary Positional
Embeddings (RoPE) [23] encodes the position data of tokens
using a rotation matrix, which inherently includes an explicit
relative position dependency. Within each attention layer,
RoPE is implemented across all projected query and key in-
puts in order to compute the attention weights via leveraging
relative distance between tokens. The query situated at the
jth position incorporates rotary position embedding through
q̃j=Rjqj , wherein Rj ∈Rd×d represents the rotary matrix
for the jth position. Consequently, the attention involving
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for a while?
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Projector
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Figure 2. The framework of VISTA-LLAMA. The visual encoder and large language model are both frozen ( ) during training, while the
projector is trainable ( ) to map video into the language’s space. The attention operation in each layer is present on the right part. Only the
text tokens are applied with rotary position embedding to include relative distance information. The attention weights between visual and
language tokens are calculated without the rotary position embedding. The casual mask is applied to the bottom-right attention weights.

relative position embedding is expressed as follows:

Attentionrope(Q,K,V)j =

∑j
i=1 sim(Rjqj ,Riki)vi∑j
i=1 sim(Rjqj ,Riki)

. (2)

RoPE inherently integrates relative position data via the
multiplication of rotation matrices rather than appending it
to the input as a positional embedding. In natural language
processing, this relative proximity between two words is
vital, given that remote words should have less influence
than adjacent words when generating the current word. How-
ever, using the same attention mechanism for visual and text
tokens may result in unintentional text generation, a phe-
nomenon often referred to as hallucination in LLMs. With
multi-modal input, the generated text should depend on the
visual content, disregarding the influence of relative distance.

To alleviate this issue and enhance the video understand-
ing with LLMs, we introduce the EDVT-Attention where
the equal distance to visual tokens is maintained while the
relative distance between text tokens is attained. As shown
in Figure 2, the rotary position embedding is only applied on
text tokens. Let V and T be the set of visual and text tokens.
The EDVT-Attention is formulated as:

Attentionedvt(Q,K,V)j =

∑
ki∈T

sim(q̃j , k̃i)vi +
∑

ki∈V
sim(qj ,ki)vi∑

ki∈T
sim(q̃j , k̃i) +

∑
ki∈V

sim(qj ,ki)
,

(3)

where q̃j and k̃j denote the query and key applied with
rotary embedding, separately. The distance between lan-
guage tokens is determined using the rotary matrix, while

the correlation between visual and textual inputs remains
unaffected by the rotary embedding. This improves the in-
fluence of visual information on long-term text generation
and decreases the incidence of hallucinations wherein the
fabricated content is absent in the videos.

For ease comprehension of how EDVT-Attention works,
Algorithm 1 exhibits the pseudo-code in the decoder layer
of LLMs. It involves the combinations of attention weights
prior to and subsequent to the implementation of rotary em-
bedding with the visual mask.

3.3. Sequential Visual Projector

The visual projector aims to map video features into the
language embedding space, allowing for the fusion and pro-
cessing of visual and textual inputs by the substantial lan-
guage model. As shown in Figure 3, earlier visual projectors
either employ the linear layer or the query transformer (Q-
Former) [12] to directly convert frame features into language
tokens. However, the lack of temporal relationship in these
methods impedes thorough video understanding in LLMs.
We introduce the sequential visual projector in Figure 3 to
encode the temporal context into the visual tokens.

Let o ∈ Rt×l×d be the extracted video feature of length
t where l denotes the length of visual tokens. We use a
Q-Former fQ to map each frame into the fixed length of k
representations xi = fQ(oi,p) ∈ Rk×d where p ∈ Rk×d is
the learnable query embedding. In the prior approach, all pro-
jected frame features are merely combined with word tokens
to serve as mixed input for LLMs. For encoding temporal

13154



Linear
Projection Q-Former

Q-Former

(a) Frame linear projector (b) Frame Q-Former projector

(c) Temporal Q-Former projector

Frame Feature Visual TokenQuery Token

Q-FormerQ-Former

Linear
Projection

Figure 3. Comparison of three visual projectors. (a): Each frame
feature is projected into the visual tokens independently with the
linear projection. (b): Q-Former uses shared learnable query tokens
to separately map each frame into fixed-length tokens. (c): The
sequential Q-Former with linear projection layer to enable temporal
modeling.

context, we utilize the previously projected frame feature as
the query to attend to the current frame feature. The current
projected frame feature is then updated accordingly:

xt = fQ(oi,xt−1), (4)

where xt−1 ∈ Rk×d represents the previous projected frame
feature. This allows the visual tokens to encode the temporal
relationship, as the current frame’s visual token is generated
using the previous feature.

Moreover, we can represent the entire video with fewer
tokens by merely sampling a small number of visual to-
kens. This method tackles the challenge of encoding lengthy
videos by employing sequential encoding. By integrating
prior visual context into subsequent visual tokens, we can
accomplish an adequate representation of the entire video
through sparse sampling of projected frame features. Be-
sides, this technique permits larger language models to man-
age much longer videos without length limitation.

3.4. Implementation Details

We fine-tune the model based on LLaVA [14] and use 100K
video instruction pairs provided by [18]. We add Q-Former
initialized from BLIP2 [12] to project frame features into
fixed-length tokens. We test our model with both ViT-L-
14 [20] and EVA-CLIP-g [24] visual encoders in experi-
ments. We only update the visual projector, which contains
the Q-Former and linear projection layer to project the video

features to the LLMs’ input space. The visual backbone and
the language model are frozen during training. The VISTA-
LLAMA is fine-tuned for 3 epochs on 8 A100 80GB GPUs
with a learning rate of 2e−5 and an overall batch size of
32. We run all the inference experiments with FP16 to save
memory and faster testing.

4. Experiments
4.1. Experimental Setup

Datasets. Our method is evaluated on four datasets:
• NExT-QA [30] is designed to advance video understand-

ing from descriing to explaining the temporal actions. It
comprises 5,440 videos and approximately 52K manually
annotated QA pairs, which are categorized into temporal
(Tem.), causal (Cau.), and descriptive (Des.) questions.

• MSVD-QA [32] is a dataset built upon Microsoft Research
Video Description Corpus [3], commonly used in video
caption tasks. The MSVD-QA dataset comprises a total of
1,970 video clips with 50,505 QA pairs.

• MSRVTT-QA [32] is based on MSR-VTT dataset [33],
which includes 10Kvideos and 243KQA pairs with larger
and has more complex scenes.

• ActiviytNet-QA [37] is a fully annotated and large-scale
videoQA dataset. It contains 58K QA pairs derived from
5,800 complex web videos derived from the popular Ac-
tivityNet dataset [11].

Evaluation. We adopt two metrics to evaluate the perfor-
mance of video-language models.
• Open-Ended Zero-Shot Question-Answer Evaluation.

As video-language models generate responses of varying
lengths to open-ended questions, it is challenge to evalu-
ate models with traditional word matching strategy. We
employ LLM-Assisted evaluation, in line with [18], for
fair comparison. Given the question, correct answer, and
predicted answer, GPT3.5-turbo-0613 is used to return
True or False judgement and relative score (0 to 5).

• Video-Based Text Generation Benchmarking. We eval-
uate the text generation performance following [18] from
five aspects: Correctness of Information, Consistency, De-
tail Orientation, Contextual Understanding, and Temporal
Understanding. The test set for this evaluation is based on
the ActivityNet-200 [7], featuring videos with rich, dense
descriptive captions and associated question-answer pairs
from human annotations. The evaluation pipeline is also
built with the GPT-3.5 model and relative score (0 to 5) is
generated.

4.2. Comparison to State-of-the-Arts

For the zero-shot open-ended video question answering
tasks, we compare our model with FrozenBiLM [34], Video
Chat [13], LLaMA Adapter [40], VideoLLaMA [39], Video-
ChatGPT [18], and MovieChat [22] in Tab. 1. FrozenBiLM
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Method NExT-QA [30] MSVD-QA [32] MSRVTT-QA [32] ActivityNet-QA [37]
Accuracy Score Accuracy Score Accuracy Score Accuracy Score

FrozenBiLM [34] - - 32.2 - 16.8 - 24.7 -
Video Chat [13] 56.2 3.2 56.3 2.8 45.0 2.5 26.5 2.2
LLaMA Adapter [40] - - 54.9 3.1 43.8 2.7 34.2 2.7
Video LLaMA [39] - - 51.6 2.5 29.6 1.8 12.4 1.1
MovieChat [22] 49.9 2.7 61.0 2.9 49.7 2.8 51.5 3.1
Video-ChatGPT [18] 54.6 3.2 64.9 3.3 49.3 2.8 35.2 2.7

VISTA-LLAMA (Ours) 60.7 3.4 65.3 3.6 60.5 3.3 48.3 3.3

Table 1. Comparison with SoTA methods on zero-shot VideoQA. See §4.2 for more details.

Method Cr. Cs. De. Ct. Te.

Video Chat [13] 2.23 2.24 2.50 2.53 1.94
LLaMA Adapter [40] 2.03 2.15 2.32 2.30 1.98
Video LLaMA [39] 1.96 1.79 2.18 2.16 1.82
Video-ChatGPT [18] 2.40 2.37 2.52 2.62 1.98

VISTA-LLAMA (Ours) 2.44 2.31 2.64 3.18 2.26

Table 2. Quantitative results on video-based text generation with
different video-language methods (§4.2). For clarity, five scores are
reported (“Cr.”: Correctness of Information, “Cs.”: Consistency,
“De.”: Detail Orientation, “Ct”: Contextual Understanding, “Te.”:
Temporal Understanding).

adapts frozen the bidirectional language model, showing
promising results in zero-shot VideoQA settings. Other com-
pared models are built on recent large auto-regressive lan-
guage models. Despite pre-existing models have produced
substantial results, VISTA-LLAMA consistently outper-
forms them, achieving state-of-the-art (SoTA) performance
across three datasets: NExT-QA [30], MSVD-QA [32], and
MSVTT-QA [32]. Our method obtains the highest results,
with 60.5% accuracy on MSRVTT, elevating the perfor-
mance of the second-best model by nearly 10%. Addi-
tionally, our method attains 60.7% accuracy on NExT-QA,
markedly superior to Video-ChatGPT [18]. These results
demonstrate VISTA-LLAMA’s capability to comprehend
video content and produce precise answers.

We present the results of the evaluation of video-based
text generation in Tab. 2. The results reveal its competent per-
formance across all aspects when compared with the recent
video-language models, Video Chat[13], VideoLLaMA [39],
and Video-ChatGPT [18]. Despite being trained with identi-
cal datasets, our model outperforms Video-ChatGPT in four
aspects. Our mothod offers a more comprehensive interpreta-
tion, and its responses are more in tune with the overarching
context of the video content than comparable approaches.
By utilizing the EDVT-Attention and sequential temporal
modeling techniques, our model demonstrates a strong abil-
ity to generate text that is contextually appropriate, detailed,
and includes precise timing for video inputs.

Tem. Des. Cau. Avg.
0.0
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0.4

0.5

0.6

0.7
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Figure 4. Comparison of different design choices on NExT-
QA [30](§4.3). For clarity, accuracy of base model and two variants
are given (“Baseline”: the frozen LLaVA [14] with trainable Q-
Former [12], “w Seq”: base model with sequential visual projector,
“w Seq&EDVT”: base model with both sequential visual projector
and EDVT-Attention).

4.3. Abalation Study

Effect of Design Choices. We investigate the effect of our
two designs, including the equal-distance to visual-tokens
(EDVT) attention and the sequential visual projector. As
shown in Figure 4, our model is tested on NExT-QA [30],
which comprises three different types of questions. The
baseline model employs LLaVA [14] as the language model,
and Q-Former in BLIP-2 [12] as the visual projector. We first
incorporate temporal modeling into the baseline, utilizing
the projected tokens from the previous frame as the query
tokens to generate visual tokens for the current frame, a
setup denoted as “w Seq” in Figure 4. Further enhancing this
version with EDVT-Attention, we introduce “w Seq&EDVT”,
ultimately forming our final VISTA-LLAMA. The results
affirm the efficacy of our design across all question types.
EDVT-Attention. We here validate the effectiveness of our
core EDVT-Attention. Table 3 reports the comparison re-
sults of different models in combination with our EDVT-
Attention on NExT-QA [30]. Initially, we integrate the
EDVT-Attention into Video-ChatGPT [18], where only the
attention component is substituted with our EDVT-Attention
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NExT-QA [30]Method
Tem. Cau. Des. Avg.

Video-ChatGPT [18] 37.6 65.1 54.9 54.6
+ EDVT-Attention 39.5 (+1.9) 72.8 (+7.7) 54.8 59.3 (+4.7)

VISTA-LLAMA (ViT-L-14) 34.0 69.1 42.2 53.6
+ EDVT-Attention 36.8 (+2.8) 72.2 (+3.1) 47.7 (+5.5) 56.5 (+2.9)

VISTA-LLAMA (EVA-CLIP-g) 34.3 65.8 55.9 54.1
+ EDVT-Attention 40.7 (+6.4) 72.3 (+6.5) 57.0 (+1.1) 59.7 (+5.6)

Table 3. Comparison of EDVT-Attention design with diffent
visual encoders on NExT-QA [30] (§4.3). For clarity, accuracy
of all questions and three types of questions are reported (“Tem.”:
temporal, “Cau.”: causal, “Des.”: descriptive, “Avg.”: average).

Text TokensVisual Tokens

(a) Vanilla attention
Text TokensVisual Tokens

(b) EDVT-Attention (Ours)

Figure 5. Comparison of attention weights for varing context
lengths. Lighter colors represent higher weights. To improve clarity,
we have combined visual token weights into the first four tokens.
We recommend zooming in for optimal viewing.

during training. Further deployment of the EDVT-Attention
into Video-ChatGPT [18] yields significant performance
gains (e.g., 65.1% escalates to 72.8% for causal questions).
The accuracy is enlarged across all three setting types, indi-
cating that our EDVT-Attention considerably enhances the
multi-modal understanding in large language models.

We further illustrate the attention weights of both EDVT-
Attention and conventional attention in Figure 5. For this
experiment, we employ 128 visual tokens and integrate the
attention weights into the first four tokens to enhance visual-
ization. The attention weights assigned to visual tokens are
markedly greater in our EDVT-Attention compared to those
in conventional attention. This indicates that the impact of
visual tokens on language tokens is considerably more sub-
stantial under the proposed EDVT-Attention, shedding light
on why the performance notably improves with our design.
Visual Projector. The visual projector is trainable within
the model. Therefore, we have examined the impacts of
different visual projector designs, as shown in Table 4. We
evaluated three visual projector variants. The Q-Former,
initialized using BLIP-2 [12], considerably outperforms the
Q-Former that was initialized with BERT [5]. This indicates
that visual projectors, when pre-trained on image-text pairs,
can significantly enhance video comprehension. The model’s
performance peaks when integrating the sequential design,

NExT-QA [30]Visual projector
Tem. Cau. Des. Avg.

Linear Projector 37.6 65.1 54.9 54.6
Q-Former (BERT init.) 35.2 62.7 49.2 51.8
Q-Former (BLIP-2 init.) 34.3 65.8 55.9 54.1
SeqQ-Former (BLIP-2 init.) 36.2 68.5 51.1 55.4

Table 4. Comparison of different visual projectors on NExT-
QA [30]. The linear projector is initialized with pre-trained weights
in LLaVa [14]. BERT init. and BLIP-2 init. indicate that the visual
projector is initialized with weights from BERT [5] and BLIP-
2 [12]. SeqQ-Former is the proposed sequential visual projector.
See §4.3 for more details.
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Figure 6. The effect of training visual tokens on NExT-QA [30].
Accuracy of all questions and three types of questions, including
temporal (Tem.), descriptive (Des.), and causal (Cau.), are pre-
sented with different colors.

referred to as “SeqQ-Former” in the figure, outperforming
all other visual projectors in terms of accuracy.
Number of Training Visual Tokens. We assess the im-
pact of visual tokens on NExT-QA as illustrated in Figure 6.
In this study, a frame is converted into 32 visual tokens
using Q-Former. Frames were sampled at various times-
tamps throughout the training process. The overall accuracy
improves as more visual tokens are incorporated into the
language model. However, for temporal queries, precision
declined with an increased number of visual tokens. The ac-
curacy of temporal reasoning questions is notably lower than
that of other question types. Temporal reasoning presents
more difficulties, and the language model may not excel at
the temporal modeling of visual tokens. In terms of descrip-
tive question types, the accuracy steadily increases as the
model gains more visual information.
Quantitative Results. We visualize the generated responses
of Video-ChatGPT [18] and VISTA-LLAMA for different
videos in Figure 7. The frames sampled at different times-
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Question: Which side of the phone did the person show the camera at the end ? 

Answer: Show brand of phone

Ours: The person in the video shows the camera side of the phone at the end.

Video-ChatGPT : The person shows the camera at the bottom left side of the phone.

Question: What is the person in pink shorts doing when the man in white is playing with dog ? 

Answer: Stand and watch

Ours: The person in pink shorts is watching the man in white play with the dog.

Video-ChatGPT: The person in pink shorts is sitting on the ground and watching the man play with the dog.

Question: What did the man do after he reached the cameraman ? 

Answer: Stop

Ours: After the man reached the cameraman, he stopped and turned to face the camera.

Video-ChatGPT: The man in the video is walking down a snow-covered mountain and is seen walking on a snowy 
mountain. He is wearing a backpack and appears to be walking on a snowy path. After reaching the cameraman, he 
turns around and continues walking down the mountain.

Figure 7. Visualization results on different video questions. The questions and annotated answers are located on the left side. The generated
text from Video-ChatGPT [31] and our model is presented in the green and orange boxes, respectively. See §4.3 for more details.

tamps is presented, with questions listed below the images.
In the first video, the mobile phone is turned, sequentially
exposing each side over time. The question asks for the side
of the mobile phone at the end of the video. Video-ChatGPT
gives the wrong response, as the camera is never present at
the bottom left side in the video. The hallucination occurs
in Video-ChatGPT, whereas our model predicts the answer
correctly. The responses in three cases demonstrate that
Video-ChatGPT provides unrelated answers that do not cor-
respond to the video content. In the second case, the person
in pink is always standing while the man is sitting on the
ground, but Video-ChatGPT incorrectly states that the per-
son in pink is also sitting on the ground. In the third video,
the man is consistently walking up the mountain and never
walking down. However, Video-ChatGPT falsely outputs
that the man continues walking down the mountain. In con-
trast, our model provides the correct and reliable responses.
This demonstrates that our model significantly reduces hallu-
cination in video understanding and delivers more accurate
responses.

5. Conclusion

In this work, we present VISTA-LLAMA to improve the
video understanding in large language model. A new vision-
aware attention is introduced to maintain same relative dis-
tance between all visual tokens and language tokens. In
addition, we propose a sequential visual projector to map
video into the language space to enable temporal model-
ing. Experiments on several video question answering task
demonstrate that our designs significant improves the current
SoTA. Current work is built on the pre-trained image-text ar-
chitecture, the power of our designs could be enlarged when
applied in pre-training stage. Furthermore, the performance
of our sequential encoder on longer videos can also be as-
sessed. We would consider evaluating the model in more
tasks and applied the attention mechanism to more vision
language models.
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