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Abstract

The quality of the prompts provided to text-to-image dif-
fusion models determines how faithful the generated content
is to the user’s intent, often requiring ‘prompt engineer-
ing’. To harness visual concepts from target images with-
out prompt engineering, current approaches largely rely
on embedding inversion by optimizing and then mapping
them to pseudo-tokens. However, working with such high-
dimensional vector representations is challenging because
they lack semantics and interpretability, and only allow sim-
ple vector operations when using them. Instead, this work
focuses on inverting the diffusion model to obtain inter-
pretable language prompts directly. The challenge of doing
this lies in the fact that the resulting optimization problem
is fundamentally discrete and the space of prompts is ex-
ponentially large; this makes using standard optimization
techniques, such as stochastic gradient descent, difficult.
To this end, we utilize a delayed projection scheme to op-
timize for prompts representative of the vocabulary space
in the model. Further, we leverage the findings that differ-
ent timesteps of the diffusion process cater to different levels
of detail in an image. The later, noisy, timesteps of the for-
ward diffusion process correspond to the semantic informa-
tion, and therefore, prompt inversion in this range provides
tokens representative of the image semantics. We show that
our approach can identify semantically interpretable and
meaningful prompts for a target image which can be used
to synthesize diverse images with similar content. We fur-
ther illustrate the application of the optimized prompts in
evolutionary image generation and concept removal.

1. Introduction

Text-to-image conditional diffusion models [31, 38, 41] are
trained on an enormous amount of image-text data and have
transformed the domain of generative learning in computer
vision. These models demonstrate exceptional generative
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Figure 1. Illustration of Hard Prompt Inversion. Target images
(top) along with inverted prompts (bottom) obtained using pro-
posed PH2P approach; note the exhibited prompt semantics.

capabilities and provide an opportunity for creative image
generation with customized concepts [22, 32, 34, 35, 43].
The quality and the regularity of the content produced by
diffusion models are, however, subject to the quality of the
input prompts; which in turn depends on the training data
[16, 57]. For pre-trained diffusion models, identifying and
formulating the prompts that produce the intended visual
content is challenging in the large-scale data regime.

For example, to generate the painting shown in Fig. 1,
one would require an understanding of art styles such as
acrylic or impressionism. These concepts, though encoded
in the diffusion model, might not be accessible without spe-
cialized domain knowledge or without access to the model’s
training vocabulary. Additionally, in many downstream ap-
plications of diffusion models such as image composition
[24, 27, 49] or segmentation [50] target concepts are avail-
able solely as images and require the discovery of the appro-
priate prompt as an intermediate step. This drives a relevant
research question: What is a likely prompt that would gen-
erate visual contents of the target image? Discovering, or
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optimizing, such prompts would greatly simplify creative
and editing processes; particularly for novice users.

Prompts for the visual content of interest are predomi-
nantly hand-crafted through laborious trial and error requir-
ing human intervention and expertise [17, 20, 30]. Inspired
by the inversion techniques that search semantics of the tar-
get images in the latent space of generative adversarial net-
works (GANs) [2, 8, 16, 58], recent work has instead re-
sorted to the automated discovery of the target visual con-
cepts through inversion of diffusion models [14, 24, 40, 48].
With text-guided synthesis at its core, text-conditioned dif-
fusion models apply inversion to the conditioning represen-
tations. Specifically, new pseudo-tokens are introduced in
the model vocabulary and the corresponding embeddings
are optimized for the target image(s). These embeddings,
however, have been found to display less or no correlation
to the original model vocabulary [40]. Moreover, a single
vector representation encodes varied concepts for a collec-
tion of images, thereby restricting the readability and gen-
eralization capabilities of the learned concepts.

The aforementioned limitations can be addressed by in-
verting the diffusion model to yield the text tokens i.e. hard
prompts within the model’s vocabulary.1 Optimization of
the hard prompts involves a discrete optimization proce-
dure with re-projection of the learned embedding onto the
nearest neighbor in the pre-specified vocabulary [49]. Hard
prompt inversion in diffusion models is particularly cum-
bersome owing to the complexity of the generative model
with a two-stage pipeline consisting of the conditioning net-
work (CLIP text encoder; [33]) and the generative compo-
nent (a U-Net [39]) making the flow of gradients to the input
layer difficult (vanishing gradients). Secondly, the diffu-
sion trajectory has high variance given the stochastic com-
ponents in the generative model [44]. As a result, it can be
observed (see Sec. 4), that standard SGD-based optimiza-
tion with projection leads to poor performance in practice.

We overcome these challenges for hard prompt inversion
and make the following significant contributions:
• We study the effect of prompt conditioning at different

timesteps of the diffusion process (Fig. 2b). We observe
that noisy, later steps, have greater sensitivity to prompt
conditioning.

• Based on our findings, we propose a Prompting Hard or
Hardly Prompting (PH2P)2 inversion procedure where
the diffusion loss is applied to the sub-range of the
timesteps, thereby reducing the high variance of the opti-
mization process. Prompt inversion in the conditioning-
sensitive range also provides with better flow of gradients.
We employ quasi-newton L-BFGS [42] based reprojec-
1‘Hard’ here also refers to the fact that these tokens are discrete choices,

and not ‘soft’ weightings of the training vocabulary, which result in con-
tinuous vectors in the text embedding space.

2Code available at https://github.com/ubc- vision/
Prompting-Hard-Hardly-Prompting

tion techniques to learn discrete tokens. This provides a
refined framework for sensitive multi-token optimization.

• We empirically validate that our approach yields semanti-
cally meaningful prompts that can synthesize accurate yet
diverse images for a target visual concept. The prompts
obtained with our proposed inversion technique are in-
terpretable and applicable to a broad set of tasks, such
as evolutionary image generation and concept removal in
images through negative visual concepts.

2. Related Work
Text-guided image synthesis. Extension of deep genera-
tive models to conditional, controllable generation is well-
founded in generative adversarial networks (GANs) [15, 37,
46, 52], variational autoencoders (VAEs) [23, 53, 59] and
normalizing flows [1, 12, 13]. Early work for text-to-image
synthesis built upon GANs [37] and more recently on the
normalizing flow-based priors [28] to align the image-text
distributions. High quality and realistic image synthesis
is now possible with models such as DALL-E [35] and
Cogview [11] that build upon the more expressive neural
architectures such as transformers [47] and discrete varia-
tional autoencoders (VQ-VAE) [36].

High-fidelity image generation has been revolutionized
with diffusion models [21] and has gained traction for con-
trollable generation [18, 31, 38, 54]. Nichol et al. [31] use
CLIP [33] guidance to replace class labels and classifier-
free guidance for conditional generation. Saharia et al. in-
stead of training the text encoder on paired image-text data,
utilize a pre-trained language model as a text-encoder [9].
Recent approaches [18, 38] apply diffusion models to the
low-dimensional representations of the input thereby reduc-
ing the complexity of the generative component. These
low-dimensional diffusion models trained on large-scale
datasets have become a standard backbone for the cur-
rent generative modeling tasks such as visual art genera-
tion [22, 32] or multi-frame generation in videos or stories
[34, 43]. The quality of the synthesized content in these
models is influenced by the guiding text. It is important to
find the correct text that yields desired visual concepts of in-
terest and therefore, in this work, we develop our approach
with latent diffusion models as working backbone.
Prompting in diffusion models. The natural language
descriptions are referred to as discrete prompts or hard
prompts and have a significant impact on image generation
in diffusion models [17]. To this end, various approaches
have explored diverse prompting techniques based on re-
trieval and captioning to enhance the quality of the prompts
[19, 30, 50] and consequently image synthesis. Wu et al.
[50] introduce sub-classes in the prompts based on the main
class in images. Ni et al. [30] specify the name of the target
object to be generated as input to a general purpose trans-
former (GPT) [4]. Hertz et al. [20] modify words in the
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(a) Overview of prompt optimization with Latent Diffusion Model. (b) Effect of the conditioning on diffusion objective at different timesteps.

Figure 2. Prompt Inversion in Diffusion Models. Left: Overview of the text-to-image diffusion model with a CLIP text-encoder. Right:
Analysis of the sensitivity of different timesteps to conditioning information for a given target image illustrated on the left.

text and inject the cross-attention maps of the pixels corre-
sponding to target styles. Moreover, Brack et al. [3] relies
on user-defined prompts for image editing. Our work, on
the other hand, aims to generate the prompts directly from
the text-prior within the diffusion model without any auxil-
iary task or model and without human intervention.

Inversion in diffusion models. Inspired by the opti-
mization methods for inversion in GANs [2, 8, 16, 58],
optimization-based approaches have been developed for
diffusion models. In order to synthesize concepts with novel
scenes, in diffusion models, the few approaches directly
perform inversion in the image space [6, 10, 29, 44]. Song et
al. and Mokady et al. [29] approaches search for the initial
noise that reconstructs the image [44]. Instead of working
directly with the image features, recent approaches bene-
fit from the controllability in the textual embedding space
[14, 40, 48]. At a high-level, these methods invert visual
concepts in the embedding space of the text and encode
new features as new tokens in the vocabulary. The Dream-
Booth approach of [40] fine-tunes the diffusion model to
learn a new visual featues and Kumari et al. update the
parameters of the cross-attention layers. Textual inversion
[14] inverts the concepts from a set of reference images in
the textual embedding space by introducing a new “pseudo-
word” and adding a new representation to the model vocab-
ulary. Voynov et al. [48] introduce a new token for each
of the layers of the U-Net in the diffusion model. The ap-
proaches provide better editing freedom to the users com-
pared to approaches that modify the image space. However,
the inverted features are not interpretable in the space of
text and therefore, have limited generalization. Moreover,
the recovered embeddings can be redundant and the image-
level features may be present in the model vocabulary. Re-
cent, unpublished as of this submission, work of Wen et al.
[49] attempts to optimize hard prompts for CLIP [33] with
image-text similarity matching. Similar in spirit, to avoid

biases, we propose hard prompt optimization that leverages
text-conditioned diffusion model and its loss directly.

3. Prompt Inversion for Diffusion
While prior work for textual inversion [14, 48] is confined
to the embedding space of the conditioning variable, in this
work, we explicitly aim to find the text tokens that un-
der the parameterized diffusion model would yield the tar-
get image, i.e., what prompt would likely generate the de-
sired image? We formalize our approach under the con-
straint that we do not have access to any additional aux-
iliary image-text similarity model and have access only to
the pre-trained conditional diffusion model along with the
text encoder used for conditioning.

3.1. Conditional Diffusion Model Backbone

We first provide an overview of the model components: the
diffusion model with U-Net and the conditioning network,
that we consider in the prompt inversion.
Latent diffusion model. We consider the Latent Diffu-
sion Model (LDM) [38] as the class of generative model for
which we recover the prompt tokens likely to generate the
target image. In LDM, the diffusion process is applied to a
lower-dimensional spatial representation x of the input im-
age I. An encoder E(·) maps the input image I ∈ RH×W×3

to a latent representation x ∈ Rh×w×c, downsampling the
image to a lower spatial dimension. The decoder D(·) maps
x back to the original image space. In a conditional setting,
the diffusion model is applied to the representation x, where
time-conditioned U-Net [39] ϵθ(xt, t) is employed to model
the diffusion process. The diffusion process is applied over
T timesteps where noise is gradually added to x to generate
a series of noisy representations x1:T .

For a conditional generative model, in addition to the
timesteps, the U-Net is conditioned on f(S), where con-
ditioning input S is encoded with the mapping f(·). The
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Figure 3. Effects of Timesteps on Prompt Inversion. Prompts generated for the different sections of timesteps in text-to-image diffusion
models with maximum noise at timestep T . The images generated show that the semantic information is completely recovered for the
range starting from the middle timesteps. Once the semantic information appears in the images, only image-level details change when
considering the larger range starting from the early steps of the forward diffusion process.

objective of the conditional latent diffusion model is,

LLDM := Et,x,ϵ

[
∥ϵ− ϵθ(xt, t, f(S))∥22

]
. (1)

During training, given the image x and the conditioning
input e.g. a prompt S, a timestep is randomly chosen from
{1, . . . , T} at each learning step and the model parameters
θ that minimize Eq. (1) are estimated.
Embedding space for optimization. The text encoder
f(.) takes the input prompt S, which is input to the la-
tent diffusion model. As shown in Fig. 2a, the text tok-
enizer converts the prompt strings into tokens, the indices
in a pre-specified vocabulary of size |V |. Each token is
then mapped to its corresponding embedding vector ei ∈ E
where i ∈ {1, . . . , |V |} in the embedding space E . The em-
bedding vectors of the tokens in an input prompt are com-
bined with the positional embeddings which are input to the
transformer layer to get the encoded representation f(S).

Prior work on textual inversion in the embedding space
E [14, 48] aims to learn new concepts for a set of images
by introducing placeholder strings that are associated with
a newly learned embedding vector. This entails extend-
ing the existing vocabulary with new concepts. These new
concepts have, however, been found to be un-interpretable
when read as natural language because the learned embed-
dings are typically far away from the embeddings of the
original vocabulary. In our approach, on the other hand,
given the target image, we aim to optimize the embedding

vectors ei, i ∈ {1, . . . , L} from the existing vocabulary for
a prompt with maximum length L. This yields prompts that
are human-readable. Concurrent work in this direction op-
timizes the hard prompts with CLIP similarity [49] of the
image and text encoding from the image and text CLIP en-
coders [33]. In contrast, our approach is agnostic to the
choice of encoders and depends entirely on the latent diffu-
sion backbone utilized to perform prompt inversion.

3.2. Prompting Hard or Hardly Prompting

Given a target image I and the latent diffusion model pa-
rameterized by ϵθ, we optimize for the tokens in the existing
vocabulary of the conditioning text encoder (CLIP text en-
coding) that best represent the visual content of the image.
To learn the optimal tokens S∗ that are likely to generate the
target image, we use the following formulation:

S∗ = argmin
S

Et,x,ϵ[∥ϵ− ϵθ(xt, t, f(S))∥22]. (2)

We aim to recover the tokens S∗ which would satisfy the
vocabulary of the conditional diffusion model. Note that
we keep the parameters of the text encoder and the diffusion
model frozen. Our approach, therefore, takes into account
the language prior introduced in the generative model.

A naive approach to solving Eq. (2) would be to optimize
for all diffusion time steps, with the typical SGD optimizer.
This, however, does not work in practice as we will show
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in Sec. 4. We thus introduce two key insights: (1) we fo-
cus on time steps that actually matter; (2) we keep our so-
lutions strictly within the vocabulary space that the model
was trained with through projected gradient descent.
Timesteps for semantic information. To enable efficient
and effective optimization, we investigate the impact condi-
tioning has within a pre-trained diffusion model. Figure 2b
shows the diffusion loss of different prompts for a given im-
age at different timesteps of the forward diffusion process.
We observe that the conditioning signal for the diffusion
model is stronger at the later, more noisy timesteps of the
diffusion process. Conversely, the values of the diffusion
loss are similar in the initial timesteps irrespective of the
prompt used for the given image.

More specifically, consider the image (Fig. 2a), which
was generated with stable diffusion using the prompt “A
cabin on a snowy mountain in the style of Disney”. In
Fig. 2b a random prompt “Two dogs playing” has an ob-
jective value very close to that of the original prompt in the
initial timesteps up to ∼ 400. The values of the objective
diverge only for the later timesteps. Moreover, when we
provide random prompts with more information represen-
tative of the content of the image as well as the original
prompt, the difference between the objective values of the
random and the original prompts decreases. This hints that
the high-level semantic information is encoded in the later
timesteps while the low-level details are present in the ini-
tial timesteps of the forward diffusion process.

Furthermore, in Fig. 3, we show the effect of optimiz-
ing a prompt from different timestep ranges. We observe
that as we increase the range of timesteps to be optimized
from more noise t = T to less noise T = 0, the semantic
information gradually increases up to the middle range of
timesteps ∼ 500. For the larger ranges including the initial
timesteps of the forward diffusion, no new semantic details
are recovered from the target image.

We use these key observations in our optimization re-
fined prompting hard or hardly prompting (PH2P) algo-
rithm (Algorithm 1) where we limit the range of t to the later
timesteps ≥ 500. Optimizing only for the later timesteps
has two-fold advantage. First, since we are optimizing for
the initial layers of a very deep neural network, the gradi-
ents are very small. By optimizing for larger values of loss,
we get better gradients and therefore, a better direction for
descent in the high-dimensional space. Secondly, we em-
pirically observe that the tokens in the generated prompts,
when optimized for the earlier timesteps, do not add any
new conditioning information for the prompt optimization
and may contain special characters; see Fig. 3. Thus, op-
timizing in the noisy range of the diffusion process yields
tokens that are more representative of the content.
Projected gradient descent for meaningful prompts. Fol-
lowing our observations, we choose the starting timestep

Algorithm 1: PH2P Prompt Inversion

1 Input: Diffusion model parameters: θ, Target image:
x = E(I), Initial prompt: S, Prompt embedding:
ê, Timesteps: [ta, T ]; Learning rate: λ,
Optimization steps: N

2 for i← 1 to N do
/* Projection on feasible set */

3 ẽ = ProjE(ê)
/* Select diffusion timestep */

4 t = random([ta, T ])
/* Apply L-BFGS to Eq. (2) */

5 g = LBFGSẽ(LLDM (xt, θ, t, f(ẽ))
6 ê = ê− λg

7 end
/* Delayed projection */

8 return ProjE(ê)

ta < T and optimize Eq. (2) with t ∈ [ta, T ] using pro-
jected gradient descent with delayed projections [7, 25, 45]
in our PH2P prompt inversion for text-to-image diffusion
models as shown in Algorithm 1. Starting with a random
prompt with embedding ê, the loss is computed with re-
spect to the embeddings in the feasible set i.e. the embed-
dings representing the vocabulary. During optimization, the
variable ê is updated without the projection. This improves
the efficiency of the descent. Concurrent work builds upon a
similar theory of delayed projected descent and applies the
projection for CLIP similarity matching [49] with standard
gradient descent. However, when using a diffusion model,
image encoders are not accessible and hence one cannot use
projection with the image-text similarity loss. In our work,
at each iteration, the update is computed with respect to the
projections of the updated embeddings using the L-BFGS
[42] algorithm. The variable updates performed in this man-
ner provide for better convergence compared to projected
descent with Adam optimizer; see Tab. 4.

4. Experiments

We empirically demonstrate our prompt inversion proce-
dure on the COCO [26] and the SUN [51] datasets. We
validate our results on 500 images from the validation sets
across 5 seeds and use Stable Diffusion v1.5 as the pre-
trained diffusion model.
Evaluation metrics. We consider the following three as-
pects when evaluating the quality of inverted prompts:
• Accuracy of the inverted prompts: we measure the CLIP

[33] and the LPIPS [55] image similarity scores to mea-
sure the semantic similarity between the target and the
generated images.

• Diversity of the generated images: we measure the diver-
sity of the generated images using LPIPS between differ-
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Method COCO LSUN

CLIP Similarity(↑) LPIPS Similarity (↓) LPIPS Diversity (↑) CLIP Similarity(↑) LPIPS Similarity (↓) LPIPS Diversity (↑)

PEZ [49] 0.72 0.477 0.417 0.70 0.480 0.420
PH2P(Ours) 0.77 0.462 0.435 0.77 0.463 0.422

Table 1. Quantitative Evaluation. Evaluation of the quality of the images generated with the prompts from inversion.

Target Image PEZ [49] PH2P (Ours)

visited retro vw ptic unpopular beetle isn ldnont evie ”@ oudiscovery-
destinations dyk ote avalley

pressed shops converted volkswagen rat headlights seized rescued
danube smithsonian museum dose tycoon outdated

xian horticulitinerary seis ,@ #@ yu :-rillagamification
recommend blancvisubrook

pavilion pagoda depicted japanese resources
bearing hilltop bearing mainland tang

rts disability featured ,@ nyc autism / kidpatrick sinai kf enjoys grasp
hugging otw waves toby enjoying rough navigate surfing surf wave implications

bbloventureaktail vows skipped glacier corrie you ¡¡¡ pow tour guided
vinci agronhikes alps tux beautiful skiing else S after resort

blogged clegg pulls paleo jaredbroccoli bres ’? ” beans protein omo
chili homemade cauliflower chilli meals broccoli ashi rice

Table 2. Qualitative Comparison. Target image, inverted prompts (from PEZ [49] and PH2P), and corresponding generated images.

ent generated samples.
• Interpretability of the inverted prompts: we use the

BertScore [56], which correlates well with human judg-
ment. We measure the semantic equivalence between the
embeddings of two sentences by taking into account the
context of the tokens.

4.1. Evaluation of the Inverted Prompts

Image generation with inverted prompts. We assess the
effectiveness of the prompts generated using our PH2P in-
version for image generation. Given a target image, we

first perform inversion to retrieve the prompt and eval-
uate the relevance of the images generated with the re-
covered prompt using the diffusion model. We com-
pare our approach to the prompts generated using (con-
current/unpublished) PEZ [49] as a baseline. As shown in
Tab. 1, the images generated with our PH2P prompts out-
perform the PEZ prompts in terms of CLIP similarity by
an absolute value of 5 percentage points and 7 percentage
points on the COCO and SUN datasets, respectively. Fur-
thermore, our PH2P prompts display better performance in
terms of the LPIPS similarity. This demonstrates the ac-
curacy and relevance of the PH2P prompts for generating
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Target Image Attented regions in the target image for PH2P prompt inversion

Figure 4. Application of Unsupervised Segmentation. Illustration of the tokens and corresponding regions (that can be used for unsuper-
vised segmentation; see [50]) obtained for the target images. Note the accuracy of both prompts and corresponding attention.
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Figure 5. Application of Evolutionary Multi-concept Genera-
tion with Proposed PH2P. Images generated with the composed
prompts are inverted with PH2P to create prompts which are fur-
ther combined with prompts recovered from the new target image.

images with visual concepts of intent.
When comparing the diversity of the images generated

with our PH2P versus PEZ [49], our PH2P approach yields
higher diversity while maintaining the image semantics.
Our results highlight that our approach recovers the prompts
in the space of the model’s vocabulary; these prompts can
be used to sample diverse yet relevant images with visual
concepts aligned with those of the target image.

Extensive qualitative results in Tab. 2 show that our ap-

Method Precision(↑) Recall (↑) F1 (↑)

PEZ [49] 0.772 0.835 0.802
PH2P (Ours) 0.803 0.838 0.820

Table 3. Quantitative Evaluation of Prompt Quality. Evaluation
of quality of prompts generated on the COCO dataset as captured
bu the BertScore [56]. We compare the similarity between the
inverted prompts and the ground-truth captions.

Method CLIP Similarity(↑) LPIPS Similarity (↓) LPIPS Diversity (↑)

PH2P 0.77 0.462 0.435
LDM+adam 0.65 0.501 0.400
LDM+all t 0.72 0.479 0.423

Table 4. Ablation. Ablations study the significance of optimiza-
tion choices for inversion in PH2P.

proach generates prompts representative of the visual con-
tent in the target images. Unlike PEZ [49], where the gen-
erated images, at times, cannot capture the intended target
concepts (e.g., row 2), our approach consistently generates
images with accurate semantics.
Quality of the prompts. We compare the contextual simi-
larity between the prompts inverted for the COCO dataset
and the ground-truth annotations (captions) of the corre-
sponding images, with the BertScore [56]. Results in Tab. 3
show that our approach outperforms the prompts gener-
ated by PEZ [49] in terms of BertScore, especially with re-
spect to the precision evaluation validating that our PH2P
prompts have greater semantic similarity to the human cap-
tions. Our PH2P provides relatively precise prompts com-
pared to those from PEZ and has better contextual similarity
to the ground-truth captions. We observe from Tab. 2 that
the prompts from our PH2P approach are more crisp and
clear compared to those from PEZ [49]. The prompts gen-
erated with PEZ tend to have a high frequency of special or
uninterpretable characters; see rows 2, 4, 6 in Tab. 2.
Ablations. To justify the optimization choices for PH2P
prompt inversion in diffusion models, we show in Tab. 4 the
performance of prompt inversion with Adam optimizer and
with optimization for all timesteps (as opposed to the se-
lected range). When using Adam optimizer, the approach
yields prompts that generate images with relatively low
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Figure 6. Application of Concept Removal with Negative Target Images. PH2P yields a prompt that removes the visual concept given
in the negative image from the positive target image. The PH2P prompts can be used to generate diverse images with removed concepts.

CLIP and LPIPS similarity. The Adam optimizer with a
fixed learning rate often does not converge to a good so-
lution. Similarly, when optimizing with all the timesteps
even though, the CLIP similarity of the generated images
with recovered prompts is comparable to that of PEZ, due
to high variance in the trajectory the results lag behind our
proposed PH2P procedure.

4.2. Applications of Prompt Inversion

In this section, we show the benefits of prompt inversion
in evolutionary multi-concept synthesis and in concept re-
moval via negative image prompting.

Evolutionary multi-concept image synthesis. Consider
an application where the goal of the user is to synthesize
a mentally constructed image (e.g., an image of a flooded
city). A convenient way to do so, would be to select some
sample images (e.g., obtained from Google image search)
that contain concepts he/she wants to see (e.g., car, flooded
street). These images can be used to prompt the text-
to-image generative model to generate desired illustration.
Once the target images are generated, a user may realize that
inserting a boat may give a more striking impact and would
want to incorporate that concept. Such creative process is
fundamentally enabled by our prompt inversion. Consider
the two examples in Fig. 5. In the first step the concepts
of two (or more) images can be composed by performing a
prompt inversion of each image (set) and subsequently con-
catenating the prompts of the two (sets) of images. In step
two, the newly composed images generated with the con-
catenated prompt can further be inverted to get a precise
prompt that takes into account the text prior within the dif-
fusion models. The inverted prompt in step 2 can further be
combined with the inverted prompt of a new image depict-
ing an additional concept. This allows convenient multi-
concept composition (also enabling user prompt editing).

Negative image prompting. Our PH2P algorithm allows
for the removal of concepts from images through negative
image prompting; see Fig. 6. Given an input prompt, a set of
positive images is generated representing the semantics of
the input prompt. To remove a visual concept from the posi-
tive images, a negative target image with the negative visual

concept is presented. To do this, we adapt our PH2P proce-
dure and include negative gradients for the negative target
image, generating prompts that drive towards the concepts
in positive images and at the same away from the concepts
in the negative target image; see supplemental for details.
Unsupervised Segmentation. Another application of
prompt inversion is to generate results for unsupervised se-
mantic segmentation (see [50]) where the cross-attention
maps are used to generate segmentation masks. With our
approach, one can generate prompts for the representative
concepts directly from the diffusion model without any ex-
ternal information. For a given target image, we first per-
form PH2P inversion to generate such prompts. We visu-
alize in Fig. 4 the cross-attention maps between the target
image and the generated prompts [5]. Clearly, the tokens
reflect the concepts relevant to the image, accurately attend
to corresponding image, and can generate segmentations.

5. Conclusion
In this paper, we designed a simple but effective procedure
for prompt inversion in text-to-image diffusion models. The
prompts generated with our approach are readable, crisp,
and importantly, representative of the content of the target
image. We demonstrate the effectiveness of our inverted
prompts for diverse image generation, evolutionary concept
generation, and even concept removal. We believe that our
inversion procedure would make prompting diffusion mod-
els much easier by allowing users to construct (and edit)
effective textual descriptions of concepts they desire.
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