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Abstract

Despite its importance, generating attacks for multi-
label learning (MLL) models has received much less atten-
tion compared to multi-class recognition. Attacking an MLL
model by optimizing a loss on the target set of labels has of-
ten the undesired consequence of changing the predictions
for other labels. On the other hand, adding a loss on the re-
maining labels to keep them fixed leads to highly negatively
correlated gradient directions, reducing the attack effective-
ness. In this paper, we develop a framework for crafting
effective and semantic-aware adversarial attacks for MLL.
First, to obtain an attack that leads to semantically consis-
tent predictions across all labels, we find a minimal super-
set of the target labels, referred to as consistent target set.
To do so, we develop an efficient search algorithm over a
knowledge graph, which encodes label dependencies. Next,
we propose an optimization that searches for an attack that
modifies the predictions of labels in the consistent target set
while ensuring other labels will not get affected. This leads
to an efficient algorithm that projects the gradient of the
consistent target set loss onto the orthogonal direction of
the gradient of the loss on other labels. Our framework can
generate attacks on different target set sizes and for MLL
with thousands of labels (as in OpenImages). Finally, by
extensive experiments on three datasets and several MLL
models, we show that our method generates both successful
and semantically consistent attacks.1

1. Introduction
Despite the tremendous success of Deep Neural Networks
(DNNs) for image recognition, DNNs are vulnerable to
adversarial attacks, i.e., imperceptible image perturbations
that result in incorrect prediction with high confidence
[9, 25, 27, 30, 35, 39, 53, 60, 69, 70, 98]. Understand-
ing and improving the robustness of DNNs has motivated
a large body of research on generating adversarial perturba-
tions and subsequently using them to design defense mech-

1The code of this work is available at https://github.com/hassan-
mahmood/SemanticMLLAttacks.git
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Figure 1. Generating effective attacks for an MLL model is challenging.
Top: Two groups of semantically related labels. Green nodes show labels
predicted as present before the attack. Bottom: While an attack on the
target label ‘bicycle’ succeeds, it fails to turn off ‘vehicle’ and ‘wheeled
vehicle’ for ϵ < 0.2. On the other hand, for ϵ > 0.125, the attack changes
the prediction for the non-target label ‘person’, which is undesired.

anisms, e.g., by detecting attacks or retraining the model
using perturbed images. The majority of existing works,
however, have focused on multi-class recognition (MCR),
in which only one class must be predicted in an image
[14, 21, 26, 31, 37, 82, 85].

On the other hand, many real-world applications require
finding multiple labels in an image. This includes human-
object interaction learning (e.g., recognizing hands and in-
teracting objects), autonomous driving (e.g., recognizing
cars, bikes, pedestrians, roads, signs, etc), assistive robotics
and surveillance. Therefore, multi-label learning (MLL)
aims at recognizing all labels in an image [14, 26, 38, 50,
61, 85, 94]. However, despite its importance and fundamen-
tal differences with respect to attacks for MCR (see Figure
1), adversarial attacks for MLL has received much less at-
tention in the literature [1, 2, 36, 71, 86, 87].

The main difference between attacks for MCR and MLL
stems from the different ways decision boundaries between
labels is learned and structured for the two problems. In
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MCR, different labels compete with each other as only one
label must be present/predicted. Therefore, attacking an on
present label leads to turning it off while automatically turn-
ing on another label, see Figure 2 (left). On the other hand,
in MLL, labels do not compete, where none, some or all
labels can be predicted as present in an image. Thus, at-
tacking a present or an absent label can lead to changing the
predictions for none, several or all other labels, as shown in
Figure 2 (right). This often has the undesired effect of in-
consistent predictions, which can simply be used to detect
the attack (e.g., turning off ‘pedestrian’ can turn on ‘bike’
and ‘stop sign’ while turning off ‘road’).

One can try to prevent changing predictions of other la-
bels by crafting the attack while including a loss that en-
forces predictions of other labels to stay intact. However,
as we show, the gradient of the loss for fixing other labels
often is highly negatively correlated with the gradient of the
loss on the label we want to attack, hence, counteracting the
effect of each other. This problem gets more pronounced
when the number of labels increases (e.g., in Open Images
dataset [40] with 9,600 labels) and the gradient of this ad-
ditional loss gets larger too. Also, fixing predictions for all
other labels still may lead to semantic inconsistency among
predictions (e.g., turning off ‘vehicle’ requires turning off
‘car’ and ‘truck’ too, otherwise ‘vehicle’ being absent while
‘car’ being present can be used to detect the attack).
Paper Contributions. We develop a framework for craft-
ing adversarial attacks for MLL that addresses the above
challenges. First, to obtain an attack on a target set of labels
that leads to semantically consistent predictions across all
labels, we find a minimal superset of the target set (referred
to as consistent target set) to be attacked/modified. To do so,
we develop an efficient search algorithm over a knowledge
graph, which encodes label dependencies. Second, we show
that finding the attack by optimizing the sum of two losses,
one over the consistent target set and the other over other
labels, has opposite gradient directions for the two losses,
which leads to inefficient perturbations. Third, we propose
an optimization that searches for an attack that modifies the
predictions of labels in the consistent target set while en-
suring that other labels will not get affected. Our optimiza-
tion leads to a projected gradient algorithm that projects the
gradient of the loss for the consistent target set onto the or-
thogonal direction of the gradient of the loss on other labels.
Finally, by extensive experiments on three datasets and sev-
eral MLL models, we show that our framework generates
both successful and semantically consistent attacks.

2. Related Work
2.1. Multi-Label Recognition

The goal of multi-label learning (MLL) is to find all classes
of objects (or even abstract concepts) in an image. As
compared to multi-class classification, which finds a sin-

Figure 2. Left: In multi-class recognition (MCR), attacking the present
label leads to automatically turning on another label, as labels compete
with each other. Right: In multi-label learning (MLL), attacking a label
can lead to none (x′

1), some (x′
2) or all (x′

3) other labels changing.

gle dominant class in an image, MLL is a harder task, since
any combination of labels can be present in an image and
many labels often correspond to small image regions. This
has motivated a large body of research for designing effec-
tive MLL methods, using graphical models[44, 46], differ-
ent loss functions for handling label imbalance [6, 18, 48,
49, 76, 91], exploiting external knowledge, label correla-
tions, and hierarchical relations among labels [13, 19, 33,
43, 56, 78, 88, 89, 92, 97], or using a combination of label
and image feature correlations [41, 45, 47, 77, 79, 83] to
improve the multi-label performance.

2.2. Adversarial Attacks
Deep Neural Networks (DNNs) have been shown to be vul-
nerable to small adversarial perturbations, which can easily
fool the model [3, 12, 66, 73, 81]. Therefore, many works
have studied different ways to design efficient attacks and
defense mechanisms for DNNs [4, 5, 10, 11, 20, 22, 23, 28,
29, 34, 42, 51, 57–59, 62, 67–69, 74, 75, 84, 93]. The adver-
sarial attacks can be divided into several categories based on
different criteria [90] such as white-box and black-box, im-
age agnostic and image-specific, targeted and untargeted, or
restricted to perturb small image regions and unrestricted at-
tacks. In the paper, we generate white-box attacks for multi-
label recognition, i.e., assume access to the MLL model.

2.2.1 Multi-Label Adversarial Attacks
Motivated by the increasing interest in the multi-label
recognition problem, few works have recently studied MLL
attacks. [71] studies a framework for attacking multi-label
recognition and ranking systems. However, it does not
exploit any relationships among labels to design attacks,
which as we show is important to design effective attacks.
We use the attacks from this work as baselines in our exper-
iments. Yang et al. [86, 87] designed untargeted attacks for
multi-label classification to change as many labels as possi-
ble and proposed a framework to measure how well an MLL
model can be attacked. In comparison, our focus is targeted
multi-label attacks with semantic relationships. Hu et al.
[32] proposed to exploit ranking relations to design attacks
for top-k multi-label models and [96] proposed an attack to

24252



Naive 
MLA

*Vehicle

Person

Plant

Car
Motorcycle

✓
✓
û
✓
✓

MLL
Output

Ours 
(GMLA)

û
✓
û
✓
✓

û
✓
û
û
û

✓
✓
✓
✓
û

✓
✓
û
û
û

✓
û
û
û
û

Tree

Animal

*Person

*Bird

Car

Plant ✓ ✓ ✓

LabelsImages

Figure 3. Multi-label learning predicts several labels for an image (see
“MLL Output”). Attacking a target set (‘vehicle’ on the top or ‘person’ and
‘bird’ on the bottom) using a naive multi-label attack leads to prediction se-
mantic inconsistencies (‘car’ and ‘motorcycle’ being on while ‘vehicle’ is
off or ‘person’ and ‘bird’ being off while ‘animal’ is on). However, GMLA
handles a large number of labels while achieving semantic consistency.

hide all labels present in an image, whereas we consider the
minimal set of semantically related labels to be attacked.
Aich et al. [2] leveraged local patch differences of different
objects to generate multi-object attacks and [1] proposed a
CLIP-based generative model to generate multi-object at-
tacks in the black-box setting. Jia et al. [36] proposed the-
oretical robustness guarantees to defend against multi-label
adversarial attacks and [52] exploited domain knowledge
context to detect adversarial attacks. Context-aware attacks
[7, 8] fool context-aware attack detection methods by at-
tacking the label and its context simultaneously. The con-
text in these works is defined in terms of cooccurring la-
bels. In comparison, we propose to attack labels based on
their semantic relationships. Moreover, none of these works
have addressed the problem of negative gradient correlation
in generating large-scale dataset attacks. Among the ex-
isting literature, Nan et al. [95] is also comparable to our
attack method, and we use it as a baseline. They proposed a
fast linear programming-based adversarial example genera-
tion algorithm for MLL to minimize the perturbation norm
required to achieve a target label.

3. Multi-Label Learning Attack (MLA)
3.1. Problem Setting

We study generating adversarial attacks for the Multi-Label
Learning (MLL) task. In MLL, multiple labels can appear
in an image, see Figure 3, as opposed to the multi-class
recognition (MCR), where each image has only one label.
Let C denote the set of all labels. For an image x ∈ Rd, let
y ∈ {0, 1}|C| denote the set of its labels, indicating the pres-
ence (1) or absence (0) of each label in C in the image. Let
F : Rd → R|C| be a multi-label classifier, which we assume

has already been learned using training images. The multi-
label classifier F = {f1, f2, . . . , f|C|} consists of |C| binary
classifiers for each label, where fc(x) ∈ (−∞,+∞) is the
score of the classifier c. Therefore, the probability of label
c being present in the image x is given by ŷc = σ(fc(x)),
where σ(·) is the sigmoid function. Finally, let Ωx ⊆ C de-
note the target set of labels in the image x which we want
to attack, i.e., after the attack the present labels in Ωx must
become absent and vice versa. In the next subsection, we
study the existing approaches [71] to generate multi-label
attacks and identify their drawbacks.

3.2. Naive Multi-Label Attack (MLA)
For an attack on x that modifies the labels in Ωx, one can
generate a small perturbation e ∈ Rd by minimizing the
negative multi-label learning loss for labels in Ωx while re-
stricting the magnitude of e. More precisely, we can solve

MLA-U: min
e

−Lbce(x+ e,Ωx) s. t. ∥e∥p ≤ ϵ, (1)

where ∥ · ∥p is the ℓp-norm and Lce(x
′,Γx′) is the binary

cross-entropy loss for image x′ on labels in Γx′ , defined as

Lbce(x
′,Ωx′) ≜∑

c∈Ωx′

−yc log σ(fc(x
′))− (1−yc) log(1−σ(fc(x

′))). (2)

The drawback of (1) is that attack on Ωx can lead to chang-
ing the predictions for other labels too, see Figure 2 (right).
This often leads to inconsistent predictions, which can sim-
ply be used to detect the attack (e.g., turning off ‘pedestrian’
can turn on ‘bike’ and ‘stop sign’ while turning off ‘road’),
hence significantly reducing the effectiveness of the attack.

To address this drawback, one can try to prevent chang-
ing predictions of other labels (Ω̄x, which is the comple-
ment of Ωx with respect to C) by crafting the attack while
including a loss that enforces predictions of other labels to
stay intact. More precisely, one can solve

MLA-C: min
e

−Lbce(x+ e,Ωx) + Lbce(x+ e, Ω̄x),

s. t. ∥e∥p ≤ ϵ,
(3)

where the first term in the objective function tries to flip the
labels in Ωx while the second term preserves the labels in
Ω̄x. Notice that with the additional objective, the space of
perturbations in (3) is smaller than that in (1), yet it ensures
not modifying labels outside the target set. However, as we
verify by empirical results, the gradient of the loss for fixing
other labels often is highly negatively correlated with the
gradient of the loss on the target labels, hence, counteract-
ing the effect of each other. We hypothesize that this effect
is due to strong spurious correlations among labels, learnt
by the model during training. Given two highly-correlated
labels in an image, attacking one label while fixing the other
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using (3) would lead to opposite gradients. This problem
gets more pronounced when the number of labels increases
(e.g., in Open Images dataset [40] with 9,600 labels) and the
gradient of this additional loss gets larger too. Moreover,
fixing predictions for labels in Ω̄x still may lead to seman-
tic inconsistencies in predictions (e.g., turning off ‘vehicle’
requires turning off ‘car’ and ‘truck’, otherwise ‘vehicle’
being off while ‘car’ being on can be used to detect the at-
tack), hence, reducing the attack effectiveness.

4. Generalized Multi-Label Attack (GMLA)
We develop a framework for crafting adversarial attacks for
MLL that addresses the challenges of conventional MLA,
discussed above. First, to obtain an attack on a target la-
bel set Ωx that leads to semantically consistent predictions
across all labels, we find a minimal superset of the target
set Ψx (referred to as consistent target set) that needs to be
attacked/modified. Given that there are often multiple such
supersets, we develop an efficient search algorithm over a
knowledge graph G that encodes label dependencies. We
denote by Ψx = h

(
Ωx,G

)
the output of the search algo-

rithm, which we will describe in detail later in this section.

4.1. Proposed Optimization

We then study a projection-based optimization that searches
for an attack that modifies the predictions of labels in Ψx

while ensuring that other labels Ψ̄x will not get affected.
More specifically, we propose to solve

GMLA: min
e

−Lbce(x+ e,Ψx),

s. t. Lbce(x+ e, Ψ̄x) = Lbce(x, Ψ̄x),

∥e∥p ≤ ϵ, Ψx = h
(
Ωx,G

)
,

(4)

where we only minimize the attack loss on the consistent
target set Ψx, while requiring that the binary cross-entropy
loss on other labels Ψ̄x stay the same after the attack. This
means that instead of trying to make the predictions on other
labels more confident as in (3), we try to keep them stay the
same after the attack. As we also show in the experiments
(see Figure 8), this significantly boosts the attack by resolv-
ing the high negative correlation of the gradients of the two
losses in (3) and finding better attack directions.

Since solving the optimization in (4) that ensures the first
constraint is satisfied is difficult, we take a first-order ap-
proximation on this constraint around x (as e is small),

Lbce(x+ e, Ψ̄x) ≈ Lbce(x, Ψ̄x) + g⊤
x,Ψ̄x

e,

where, gx,Ψ̄x
≜

∂Lbce(x, Ψ̄x)

∂x
.

(5)

Thus, we can rewrite (4) as

min
e

−Lbce(x+ e,Ψx),

s. t. g⊤
x,Ψ̄x

e = 0, ∥e∥p ≤ ϵ, Ψx = h
(
Ωx,G

)
.

(6)

The constraint g⊤
x,Ψ̄x

e = 0 implies that e must be in the
orthogonal space to the gradient direction gx,Ψ̄x

, hence not
changing other labels. Thus, we can write

e = P x,Ψ̄x
α, P x,Ψ̄x

≜ I −
gx,Ψ̄x

g⊤
x,Ψ̄x

∥gx,Ψ̄x
∥22

, (7)

for some α ∈ Rd, where P x,Ψ̄x
is the orthogonal projec-

tion matrix on the gradient gx,Ψ̄x
. Thus, we can write the

optimization in (4) as

GMLA: min
α

−Lbce(x+ P x,Ψ̄x
α,Ψx),

s. t. ∥P x,Ψ̄x
α∥p ≤ ϵ, Ψx = h

(
Ωx,G

)
.

(8)

We follow AutoPGD [17] to iteratively solve (8). At each it-
eration, we linearly approximate the objective function and
solve (gx,Ψx

is the gradient of Lbce(x,Ψx))

min
α

− g⊤
x,Ψx

(P x,Ψ̄x
α),

s. t. ∥P x,Ψ̄x
α∥p ≤ ϵ, Ψx = h

(
Ωx,G

)
.

(9)

As we show in the supplementary materials, we can solve
(9) for p = ∞ and get the closed form update for e as

e = ϵ ·
P x,Ψ̄x

ν

∥P x,Ψ̄x
ν∥∞

, ν ≜ sgn(gx,Ψx
) . (10)

We further enhance the effectiveness of the attack, espe-
cially for the case when the gradients of both the targeted
and non-targeted classes are aligned (have positive correla-
tion). In such instances, our approach involves finding the
direction e using

min
e

eT
(
−

gx,Ψx

∥gx,Ψx
∥2

+
gx,Ψ̄x

∥gx,Ψ̄x
∥2

)
s. t. ∥e∥p ≤ ϵ. (11)

We provide more details and analysis in the supplementary.

4.2. Consistent Target Set via Knowledge Graph

We obtain a consistent target set by developing an efficient
search algorithm over a knowledge graph G that encodes la-
bel dependencies. Assume G = (C, E) is a directed acyclic
knowledge graph built on the labels C, where E denotes
the set of edges (see below for details about building this
graph). A consistent target set Ψx is defined as a superset
of the target nodes/labels Ωx that if attacked successfully
leads to MLL outputs so that i) when MLL predicts 1 for
a parent node/label, then at least one of its children is also
predicted as 1; ii) when all children of a node/label are pre-
dicted as 0, then the parent is predicted as 0.

Algorithm 1 shows our algorithm and the time complex-
ity for each step to obtain the consistent target set. The al-
gorithm works as follows. Given the target set Ωx, MLL
predictions S, and the adjacency matrix E of the knowledge
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graph, the algorithm finds the minimal superset of Ωx to
be modified. While attacking a label, we need to maintain
its consistency with respect to its children and parents. To
maintain children consistency, each child of the target node
must be turned OFF unless that child has multiple parents
ON. We parse the path from target node to the leaf nodes
and perform the same operation on every node. Similarly,
to maintain parents consistency, all parents must be turned
OFF unless some parent has more than one child ON. We
perform this process for each node along the path from tar-
get node to the root until there are no more nodes to modify.
The upper bound of algorithm’s time complexity is O(ΩC).
As Figure 4 shows, on the same graph, consistent target sets
depend on the MLL predictions.

Knowledge Graph Construction. To construct G, we use
WordNet [54], which contains rich semantic relationships
between labels2. One can also use other sources, such as
ConceptNet [72] or OpenImages semantic hierarchy [40].
We build a tree G = (C, E) on all labels C using hypernym
and hyponym relations of labels. This can also be easily
extended to other relationships e.g., antonymy, entailment,
etc. For each label in C, we use WordNet to extract its parent
and child labels (e.g., for ‘car’, we obtain ‘vehicle’ as par-
ent using its hypernyms). Since a word can be associated
with several synsets, we choose the synset with the closest
match to the label description. To build the tree, we use the
maximum WUP similarity [80] between a child and multi-
ple parent nodes to select a single parent.

5. Experiments
5.1. Experimental Setup

Datasets. We use Pascal-VOC [24], NUS-WIDE [16] and
OpenImages [40] for studying the effectiveness of multi-
label attacks. For Pascal-VOC, we trained each MLL model
on 8,000 images from the training sets of PASCAL-VOC
2007 and PASCAL-VOC 2012 and created the adversarial
examples for the test set of PASCAL-VOC 2007. To build
G, we extracted abstract classes from WordNet using which
and the original 20 labels, we obtained 35 labels/nodes. For
NUS-WIDE, we trained each MLL model on 150K images
from the training set and attacked the models using the test
set of the dataset. We used Wordnet to extract abstract
classes and built a tree on labels. The total number of labels
are 116, which includes 80 original labels and 36 additional
abstract classes from WordNet. For OpenImages, we used
pre-trained model from [64] and used test images to gener-
ate the attacks. We use the official class hierarchy provided
in OpenImages as semantic relationship information.

Multi-Label Recognition Models. We investigate the ef-

2WordNet is a lexical database for the English language, containing
155,327 words organized in 175,979 synsets.

Algorithm 1: Consistent Target Set Construction
Input: Ω: Target Set, S: MLL Label Predictions,

E : Knowledge Graph’s Adjacency Matrix
Output: Γ: Expanded Target Set

1 Procedure: fselect(X): return {i : Xi = True}
2 Procedure fchild.(n, E,S):
3 return fselect(E[n,:] ⊙ S == 1)
4 Procedure fpar.(n, E,S):
5 return fselect(E[:,n] ⊙ S == 1)
6 Procedure Consistent Comp(n, V,Γ, f1, f2):
7 QueueQ
8 I ← f1(n, E,S) ▷ O(1)
9 Q.enqueue(I) ▷ O(1)

10 whileQ is not empty do ▷ O(C)
11 vn = Q.dequeue() ▷ O(1)
12 if vn /∈ V then
13 V ← V ∪ {vn} ▷ O(1)
14 I ← f2(vn, E,S)\Γ ▷ O(1)
15 if |I| < 2 then
16 Γ← Γ ∪ {vn} ▷ O(1)
17 I ← f1(vn, E,S) ▷ O(1)
18 Q.enqueue(I) ▷ O(1)

19 Γ = {}
20 foreach n ∈ Ω do ▷ O(Ω)
21 V = {n}
22 Γ← Consistent Comp(n,V,Γ, fchild., fpar.) ▷ O(C)
23 Γ← Consistent Comp(n,V,Γ, fpar., fchild.) ▷ O(C)

t t t

t

Figure 4. Examples of different consistent target sets obtained by Algo-
rithm 1. Green nodes show the present labels predicted by the MLL and
Ω = {t} is the target. The labels to be modified, Ψ are shown within the
red region and the labels to be fixed Ψ̄ are shown within the green region.

fectiveness of multi-label attacks on three MLL models.
– ML-GCN [15]: It explicitly learns relationships among
labels using Graph Convolutional Networks (GCN). It
builds a graph using the word embeddings and the co-
occurrence matrix of labels and uses a GCN to extract in-
formation about label relationships. We trained the model
using the binary cross-entropy loss.
– Asymmetric Loss (ASL) [64]: It is an effective multi-
label learning method that uses a novel loss for better op-
timization over highly imbalanced positive and negative
class distributions. Following their experimental setting, we
trained the TResNet-L [63] backbone.
– ML-Decoder [65]: It is an attention-based unified de-
coder architecture for zero-shot, single-label, and multi-
label classification. It uses a group-decoding scheme to al-
leviate the problem of scaling to large number of classes.

Perturbation Generation. For PASCAL-VOC and NUS-
WIDE, we show results on a range of perturbation budgets.
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Figure 5. Naive fooling rate (FRN ) and graph-based fooling rate (FRS ) of different attacks on ML-GCN model, trained on PASCAL-VOC for one and
two label/node attacks. The x-axis shows the upper bound on the l∞-norm of perturbations (ϵ).

Dataset PASCAL-VOC NUS-WIDE
Target Set Size |Ω| = 1 |Ω| = 2 |Ω| = 1 |Ω| = 2

Model Attack ↑ FRN ↑ FRS ↓ NTR ↑SSIM ↑ FRN ↑ FRS ↓ NTR ↑SSIM ↑ FRN ↑ FRS ↓ NTR ↑SSIM ↑ FRN ↑ FRS ↓ NTR ↑SSIM

M
L

-G
C

N
[1

5] MLA-U [71] 100.0 75.5 4.9 0.97 100.0 68.0 4.5 0.97 99.7 43.5 1.5 0.96 99.3 31.7 1.6 0.96

MLA-C [71] 99.9 68.9 3.0 0.96 99.8 60.2 2.8 0.97 96.4 27.4 0.4 0.97 92.4 18.5 0.4 0.97

MLA-LP [65] 56.1 6.70 0.1 0.99 46.7 6.00 0.3 0.99 19.3 3.50 0.1 0.98 11.4 3.30 0.0 0.98

GMLA (Ours) 100.0 99.4 2.7 0.97 100.0 98.4 2.5 0.98 99.2 95.8 0.5 0.97 99.1 91.3 0.4 0.97

A
SL

[6
4]

MLA-U [71] 100.0 52.8 4.6 0.97 100.0 48.3 4.8 0.98 100.0 50.0 2.0 0.97 100.0 43.3 2.1 0.97

MLA-C [71] 100.0 39.7 2.3 0.97 99.7 33.2 2.1 0.98 100.0 35.5 0.7 0.97 100.0 30.0 0.7 0.96

MLA-LP [65] 15.8 2.40 0.1 0.99 11.9 2.90 0.5 0.99 20.8 4.80 0.0 0.98 16.1 3.10 0.0 0.98

GMLA (Ours) 100.0 98.8 2.2 0.97 100.0 98.8 2.0 0.98 100.0 96.1 0.8 0.97 100.0 93.2 0.7 0.97

M
L

-D
ec

[6
5] MLA-U [71] 99.7 66.2 5.3 0.97 99.8 62.0 5.7 0.98 98.8 56.4 4.1 0.97 97.9 50.4 4.6 0.98

MLA-C [71] 99.1 50.6 2.7 0.98 97.5 40.7 2.4 0.97 73.6 30.4 1.0 0.97 68.2 26.7 0.9 0.97

MLA-LP [65] 19.4 3.70 0.1 0.98 17.6 3.20 0.2 0.98 13.3 4.10 0.0 0.97 9.7 2.90 0.0 0.98

GMLA (Ours) 99.1 96.2 2.7 0.98 99.3 97.1 2.5 0.97 95.1 84.9 1.1 0.97 93.9 82.0 1.0 0.98

Table 1. Experimental evaluation of the four attack methods on three models for ϵ = 0.01. The values represent the mean computed using the attack
performance across all the combinations of target classes of size |Ω|.

For OpenImages with 9,600 labels, we perform experiments
for large-scale attacks with different sizes of the target set
for a fixed epsilon value. To generate the target sets for
attack, we randomly draw 100 samples of size k labels. For
each draw from OpenImages, we randomly sample k/2 leaf
nodes (labels) from the graph G and sample the remaining
labels which are not part of the graph.

Baselines. We use MLA-U and MLA-C as baselines, fol-
lowing Song et al. [71]. Additionally, we use MLA-LP
[65] as a baseline, which generates adversarial perturbation
for multi-label recognition by solving a linear programming
problem using the interior point method while minimizing
the l∞ norm. In contrast to other methods, it requires com-
puting the Jacobian at each optimization step. In our ex-
periments, MLA-LP did not converge for OpenImages. To
provide a comprehensive comparison, we extend our eval-
uation to ML-DP [71], a greedy algorithm that computes
multi-label attack perturbations using constraint lineariza-
tion as introduced in DeepFool [55]. We show the results
for ML-DP in supplementary material.

Evaluation Metrics. Let I be the set of images that are
attacked and A ⊆ I denote the set of images that are suc-
cessfully attacked, i.e., for x ∈ A, all labels in Ωx change
after the attack. Let AG ⊆ A denote the subset of A for

which the attack produces semantically consistent predic-
tions in the output of MLL according to G.

We define naive fooling rate, FRN and semantic-based
fooling rate, FRS , as

FRN =
|A|
|I| , FRS =

|AG |
|I| . (12)

Thus, FRN measures fraction of attacked images whose at-
tacks has been successful, without considering whether the
MLL predictions are semantically consistent. On the other
hand, FRS captures fraction of attacked images whose at-
tacks have been successful and produced semantically con-
sistent MLL predictions. We also define non-target flip rate,
NTR, which is the percentage of semantically unrelated la-
bels (labels in Ψ̄k) which were flipped by the attack, i.e.,

NTR =
1

|A|
∑
k∈A

∑
i∈Ψ̄k

(1 − δ(f
(k)
i , y

(k)
i ))

|Ψ̄k|
, (13)

where, δ is kronecker delta function that equals 1 when the
two inputs are equal and 0 otherwise, y(k)i , f

(k)
i ∈ {0, 1}

are the model predictions on clean and adversarial im-
ages respectively, of ith non-target class of kth success-
fully attacked image. Finally, we measure the impercepti-
bility of the perturbations using average structural similarity
(SSIM ) between pairs of original and adversarial images.
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Figure 6. Performance of different multi-label attacks with fixed ϵ =
0.05 on OpenImages as we increase the target set size.

Note that FRN , FRS , and SSIM should be high while
NTR should be low for a good attack method.

5.2. Experimental Results

Figure 5 shows the performance of different attack methods
on PASCAL-VOC for one- and two-node attacks for dif-
ferent epsilon values using ML-GCN classifier. In Table 1,
we show the evaluation across the three MLL models for
a fixed ϵ = 0.01 for which the performance of all attacks
has plateaued3. We also show the evaluation on OpenIm-
ages for different target sizes in Fig. 6 and Tab. 2. From the
results, we make the following conclusions:

– As Fig. 5 shows, all methods achieve high naive fooling
rate FRN given large enough perturbation budget, yet once
we filter out the attacks leading to semantically inconsistent
predictions, the performance (FRS) of all baselines signif-
icantly decreases. However, our GMLA achieves very high
semantic-based fooling rate than baselines. From Tab. 1 and
2, our method achieves naive fooling rate FRN comparable
to the other methods but outperforms them over FRS by a
significant margin.

– Notice from Fig. 5 and 6 that MLA-U has higher naive
and semantic-based fooling rates than MLA-C. The reason
is the strong positive correlations learned among related co-
occurring labels during model training, which MLA-U im-
plicitly exploits. However, MLA-U being oblivious to the
relationships among labels can inevitably affect unrelated
labels, as shown in Tab. 1 and 2. This explains why MLA-
U has the highest NTR across different settings. The dif-
ference becomes more apparent as we move to attack larger
datasets e.g. OpenImages. This is because, a larger number
of labels increases the chances of learning spurious correla-
tions among unrelated labels.

– Based on Fig. 5, MLA-LP achieves lowest performance
compared to other attack methods for both fooling rates on
PASCAL-VOC and NUS-WIDE datasets, and does not con-
verge for OpenImages experiments. This is because MLA-
LP uses interior point method at each iteration to solve a

3We show results of ablation experiment on GMLA in supplementary.

Attack |Ω| = 1 |Ω| = 2 |Ω| = 3 |Ω| = 4 |Ω| = 5

MLA-U 0.47± 0.02 0.57± 0.03 0.66± 0.03 0.75± 0.04 0.87± 0.03

MLA-C 0.32± 0.09 0.31± 0.09 0.09 ± 0.07 0.06 ± 0.04 0.0 ± 0.0

GMLA (Ours) 0.32 ± 0.14 0.16 ± 0.12 0.21± 0.13 0.11± 0.07 0.06± 0.04

Table 2. Percentage of semantically unrelated labels (NTR) affected at
ϵ = 0.05 for ASL[64] on OpenImages.
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Figure 7. Transferability across models on PASCAL-VOC. The y-axis
shows the source model which generates the perturbation and x-axis shows
the target model evaluated on that perturbation.

system of equations, which define the constraints on the
target and non-target labels. Because of the complex rela-
tionships among different labels, the feasible region for the
given linear problem might be empty. This has also been
identified by [96]. When the LP problem has a feasible so-
lution, MLA-LP successfully finds the perturbation that sat-
isfy the attack constraints. This explains why, for the small
number of successfully attacked images, MLA-LP affects
the least percentage of non-targeted labels, achieving low
NTR as shown in Tab. 1.

– Each attack method produces imperceptible perturbations,
as we constrain the maximum infinity norm of the perturba-
tion to 0.01 (on images with pixel values between 0 to 1).
Notice also from Table 1 that the average SSIM scores be-
tween the adversarial and original images is very close to 1,
showing imperceptibility of perturbations.

– Notice from Fig. 6 that MLA-C fails to successfully attack
large-scale datasets and its performance drops drastically as
we increase the target set size. As mentioned earlier, this
is attributed to the observation that gradients of target and
non-targeted classes are often opposite (as shown in Fig. 8)
and as MLA-C optimizes the target and non-target loss si-
multaneously, the resulting perturbations are sub-optimal.
From Tab. 2, MLA-C achieves lowest NTR for target sizes
greater than 2 but also performs poorly on fooling rates.
Note that despite achieving high fooling rates FRN and
FRG, our GMLA method affects very small percentage of
semantically unrelated labels, which shows the success of
our constraint proposed in (6).

Attack Transferability. Figure 7 shows the cross-model
transferability of different attacks. For each source model,
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Figure 8. Stacked bar charts showing the correlation between the gradient
of the loss on target labels gx,Ψx

and on other labels gx,Ψ̄x
for different

sizes of the target set on OpenImages. Left: Using (3) as objective. Right:
using our proposed (6) that optimizes the loss on target labels while keep-
ing the loss on non-target labels the same (as a constraint).
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Figure 9. Results of attacking ML-GCN on PASCAL-VOC (first two
columns) and NUS-WIDE (last two columns). Each column shows the
model predictions for clean (ϵ = 0) and attacked images. Rounded rect-
angles group semantically related labels. Inconsistent predictions caused
around target labels are shown with red rectangles. The red labels at the
top are targeted labels and the arrows show the relationships.

we compute the perturbations (scaled to ϵ = 0.1) for images
and evaluate the target models exclusively on the images
that were successfully attacked by the respective source
model (hence the diagonal values are all 1). Notice that
although all attacks, other than MLA-LP, are transferable,
GMLA semantic attack transfers better and achieves the
highest FRN and FRS . From Table 1, notice that all attacks
were able to achieve non-trivial graph-based fooling rate.
However, GMLA is the most effective method to generate
semantically consistent and generally transferrable attacks.

Gradient Correlations. Figure 8 shows the correlation be-
tween the gradient of the loss on target labels (to be mod-
ified), gx,Ψx

, and on other labels (to be fixed), gx,Ψ̄x
, for

different sizes of the target set on OpenImages. Notice that
adding the two losses leads to highly negatively correlated
gradients for them. However, only optimizing the loss on
target labels while keeping the loss on non-target labels the
same (as a constraint) leads to significant increase in gradi-
ent correlations, which can justify the success of GMLA.

Qualitative Results. Figure 9 shows qualitative results of
attacking ML-GCN using PASCAL-VOC and NUS-WIDE.
Notice that in all four cases, respectively, MLA-U and
MLA-C lead to inconsistencies. For example, to turn off the
boat label in the first image, MLA-U attacks the boat and

GMLAMLA-LPMLA-CMLA-U

Target Class: Horse

Original Images

Target Class: Person

D: 0.152, S: 0.999 D: 1.00, S: 0.986

Target Class: Bicycle

Target Class: Sofa

D: 0.229, S: 0.992D: 0.507, S: 0.986

D: 0.442, S: 0.995 D: 1.00, S: 0.987D: 0.415, S: 0.987D: 0.414, S: 0.986

D: 0.198, S: 0.991 D: 1.00, S: 0.978D: 0.181, S: 0.977D: 0.176, S: 0.977

D: 0.624, S: 0.990 D: 1.00, S: 0.965D: 0.623, S: 0.965D: 0.607, S: 0.965

Figure 10. Since the adversarial images have imperceptible changes, we
visualize the perturbations computed using different methods for various
target classes of PASCAL-VOC. The perturbations are computed by set-
ting the maximum budget ϵ = 0.01 and are scaled for visualization. For
each perturbation, we compute it’s dot product (D) with the perturbation
computed using our proposed attack - GMLA, and the structural similarity
(S) of the original and the adversarial image (after adding the perturbation).

craft labels but does not attack the vehicle label, leading to
semantically inconsistent prediction. MLA-C successfully
attacks boat, but keeps all other labels fixed, causing incon-
sistent predictions. For the second image, MLA-U success-
fully kept consistency around one group of labels but causes
inconsistency in the other group. Similar to MLA-C, MLA-
LP causes semantic inconsistencies for all images. Notice
that in all cases, GMLA successfully modifies the necessary
labels to ensure semantic consistency.

In Figure 10, we visualize the perturbations computed by
different methods and compare the SSIM (S) of baselines
with GMLA. We also show the dot product (D) between the
perturbation computed using each baseline method and the
one computed using GMLA. We can see that GMLA finds
different attack directions than the baseline methods, which
results in semantically consistent and transferable attacks.

6. Conclusions
We developed an efficient framework to generate attacks for
multi-label recognition that ensures semantic consistency of
the output labels based on relationships among labels while
effectively attacking a large number of labels. By extensive
experiments on three datasets and several MLL models, we
showed that our method generates both semantically con-
sistent and successful adversarial attacks.
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