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Abstract

Vision-Language Models (VLMs) are pretrained on
large, diverse, and noisy web-crawled datasets. This un-
derscores the critical need for dataset pruning, as the qual-
ity of these datasets is strongly correlated with the perfor-
mance of VLMs on downstream tasks. Using CLIPScore
from a pretrained model to only train models using highly-
aligned samples is one of the most successful methods for
pruning. We argue that this approach suffers from multiple
limitations including: false positives and negatives due to
CLIP’s pretraining on noisy labels. We propose a pruning
signal, Sieve, that employs synthetic captions generated by
image-captioning models pretrained on small, diverse, and
well-aligned image-text pairs to evaluate the alignment of
noisy image-text pairs. To bridge the gap between the lim-
ited diversity of generated captions and the high diversity
of alternative text (alt-text), we estimate the semantic tex-
tual similarity in the embedding space of a language model
pretrained on unlabeled text corpus. Using DataComp, a
multimodal dataset filtering benchmark, when evaluating
on 38 downstream tasks, our pruning approach, surpasses
CLIPScore by 2.6% and 1.7% on medium and large scale
respectively. In addition, on retrieval tasks, Sieve leads to a
significant improvement of 2.7% and 4.5% on medium and
large scale respectively.

1. Introduction
Contrastive Language-Image Pre-training (CLIP) [32] mod-
els have shown great success in solving zero-shot image
classification and multimodal retrieval tasks. In addition,
many foundational Vision-Language Models (VLMs) use
pretrained CLIP encoders to condition image generation on
CLIP text embeddings [33] in retrieval augmented vision-
language models [13, 42], and to align modalities including
audio, depth, and thermal with language through CLIP im-
age embeddings [10]. Therefore, the quality of CLIP repre-
sentations can influence the performance of many VLMs.
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To pretrain CLIP, billions of image-text pairs are col-
lected using common crawl. The raw data is highly di-
verse but contains many noisy image-text pairs, including
low quality images, low quality alternative text (alt-text),
and misaligned image-text pairs. Pretraining CLIP mod-
els on noisy data can have adverse effects on the learned
representations, thus leading to poor performance on down-
stream tasks [1].

To address this challenge, researchers have developed
data pruning methods to remove low quality image-text
pairs. Heuristics that filter out image-text pairs based on im-
age dimensions, aspect ratio, alt-text length, and complex-
ity are commonly used [9, 36] to reduce noise, but can also
limit the diversity of the dataset [26]. Methods that use im-
ages or class names from datasets, like ImageNet, to sample
semantically similar image-text pairs can lead to higher ac-
curacy on downstream tasks [40], but limit the diversity of
the selected samples as they sample image-text pairs close
to a specific dataset.

One of the most effective pruning methods, CLIP-
Score [11, 36], computes the cosine similarity between im-
age and text embeddings using a pretrained CLIP model.
This score is then used to rank the alignment of image-text
pairs. However, as shown in Figure 1, using CLIPScore
can lead to false positives – samples that are poorly aligned
but have high CLIPScore (i.e., bad samples) due to spuri-
ous correlations learned by the pretrained CLIP model [41].
In addition, using CLIPScore can lead to false negatives –
samples that are aligned but have low CLIPScore (i.e., hard
samples) due to the poor discrimination between hard and
bad samples. Excluding hard samples and including bad
samples can negatively affect the generalization of CLIP
image and text encoders.

The goal of this work is to reduce both false negatives
and positives induced by CLIPScore ranking by relying on
an image-captioning model pretrained on small, diverse,
and well-aligned image-text pairs. As shown in Figure 1,
Sieve can reduce false positives or false negatives in differ-
ent scenarios, such as samples where CLIPScore focuses on
geographic or chronological context of an image rather than
the content of an image. As depicted in Figure 2, we evalu-
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ALT-Text: 
A view of the interior pool

CLIPScore: 0.23
False Negative

Generated Caption: 
a large indoor swimming pool with a skylight

Sieve: 0.65
True Positive

ALT-Text: 
The Great Sphinx of Giza 

CLIPScore: 0.25
False Negative

Generated Caption: 
the great sphinx and the pyramids of giza

Sieve: 0.91
True Positive

ALT-Text: 
The Best Places to Stay in Kaikoura, New 
Zealand

CLIPScore: 0.30
False Positive

Generated Caption: 
a living room with a large window and a couch

Sieve: 0.12
True Negative

ALT-Text: 
The area were evacuated and Keiserville Rd. 
in Washington Twp. Pa., was closed as 
crews worked on the Marcellus street

CLIPScore: 0.31
False Positive

Generated Caption: 
a view of a construction site with water 
coming out of it

Sieve: 0.21
True Negative

Figure 1. Examples of image-text pairs in which the scores of pretrained CLIP models, a commonly used image-text data filtering approach,
fail to measure their alignment. Our proposed approach, Sieve, provides an accurate alignment score using a caption generator and sentence
transformer. Top left and bottom left: Examples of false positives where alt-text describes concepts that are not found or unrelated to the
image. CLIP is trained on similar noisy image-text pairs, thus, it assigns a relatively high score. Sieve can detect that such image-text pairs
are misaligned. Top right and bottom right: Examples of false negatives where images are aligned with the alt-text but are assigned low
CLIP scores, either due to the low likelihood of these pairs in the pretraining data, or because CLIP may have seen similar images aligned
with other noisy labels. Sieve can detect that such image-text pairs are well-aligned and selects them for pretraining.

ate the alignment of web-crawled image-text pairs by first,
generating multiple captions for each image using nucleus
sampling [12], followed by removing phrases that describe
the medium (e.g., “an image of”, “a photo of”) rather than
visual concepts. Finally, to evaluate semantic similarity be-
tween the limited diversity of generated captions and the
high diversity of alt-text, we utilize the embedding space of
a lightweight sentence transformer pretrained on unlabeled
text corpus. The alignment between the generated captions
and the alt-text is then used as a proxy for image-text align-
ment. Our goal is to fuse this alignment signal with CLIP-
Score to minimize false positives and negatives, leading to a
more aligned pretraining dataset. To evaluate the effective-
ness of our proposed pruning method, we utilize the Dat-
aComp [9] benchmark, which fixes the pretraining hyper-
parameters of CLIP and provides multiple candidate pools
of noisy image-text data for pretraining CLIP models. The
goal is to select a subset of noisy image-text data that leads
to the best performance on 38 downstream tasks. Using
image-captioning model alignment scores fused with CLIP-
Score, we surpass CLIPScore filtering by 2.6% and 1.7% on
the average of 38 downstream tasks on medium and large
scale pool respectively. In addition, on multimodal retrieval
tasks, our approach leads to an improvement of 2.7% and
4.5% on medium and large scale respectively.

2. Related Work
Heuristics are basic filtering methods including: filtering
non-English alt-text using fastText [15], filtering alt-text

with a few words [9, 36], filtering alt-text with low text com-
plexity [30], and filtering images by size or aspect ratio [9].
A combination of these unimodal filtering approaches has
been explored by DataComp [9]. An example of a multi-
modal filtering approach is text spotting: detecting and rec-
ognizing text in images and filtering image-text pairs with
high overlap between spotted text (text detected in image)
and alt-text (associated label of image) [30].

Datasets as Priors was proposed in DataComp [9], re-
lying on sampling image-text pairs that are semantically
similar to diverse and curated datasets like ImageNet [5].
Text-based sampling selects image-text pairs with alt-text
overlapping one of the ImageNet classes. CiT [40] uses
cosine similarity to filter alt-text that are similar to Ima-
geNet classes. Image-based sampling approaches encode
images from the unfiltered candidate pool using the Ope-
nAI CLIP’s ViT-L/14 vision encoder, and clusters the im-
ages into 100,000 groups using FAISS [14]. Then, embed-
dings of ImageNet training samples are used to keep the
closest cluster to each sample. The main limitation of such
approaches is that they bias the CLIP model and may not
generalize well to new downstream tasks. We argue that se-
lecting samples that match the distribution of downstream
tasks encourages overfitting to the evaluation set and, thus
limits generalization to other downstream tasks. Our ap-
proach, Sieve, does not use any dataset as a prior.

Pretrained VLMs One of the most successful methods
for evaluating image-text alignment is CLIPScore [11].
LAION filtering [36] uses an OpenAI CLIP model [32] pre-
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trained on 400 million image-text pairs to evaluate image-
text alignment of large webscale datasets, and filter out
samples with the lowest CLIPScore. Filtering using CLIP-
Score can suffer from false negatives, which leads to fil-
tering out hard informative samples, and false positives,
which leads to including misaligned samples. Another ap-
proach proposes a non-filtering approach that utilizes pre-
trained VLMs [26], using large image-captioning models
like BLIP2 [21] to replace alt-text labels with descriptive
synthetic captions. The synthetic captions are then used to
train CLIP models. The authors [26] demonstrate that at
scale, the improvement of synthetic captions is capped by
the limited diversity of generated captions compared to the
high diversity of noisy text labels. Compared to [26], we
do not alter the original alt-text and thus our focus is on the
dataset pruning challenge.
Concurrent Work Inspired by text spotting [30], T-
MARS [24] is concurrent work that detects and masks text
regions in images before computing CLIPScore, resulting in
improved visual representations. We reason that T-MARS is
orthogonal to our approach as we can apply the same mask-
ing before calculating Sieve. In addition, Devil is In the De-
tails (DID) [44], utilizes a combination of multiple filters
and sampling approaches, which is orthogonal to our ap-
proach as Sieve can be combined to other filters. Moreover,
most of DID’s accuracy improvements is from aligning the
selected data distribution with the DataComp [9] evaluation
set (downstream tasks), which overfits downstream tasks
as discussed in previous sections. More importantly, T-
MARS [24] and DID [9] only perform pruning experiments
on the medium scale of DataComp [9], while Sieve shows
results on both medium and large scales. Finally, DFN [8],
uses CLIPScore from a CLIP model pretrained on a private
357 million human verified image-text labels, which is 25⇥
bigger than the dataset our selected captioning models were
pretrained on, and is bigger than DataComp’s medium scale
pool.

3. Methodology
Let D = {(Ii, Ti)}Ni=1 denote an uncurated dataset consist-
ing of N image-text pairs crawled from the web. Our goal
is to curate a dataset, D0 = {(Ii0 , Ti0)}N

0

i0=1, that is a subset
of the pool, D0 ✓ D, N 0  N , to train a new CLIP model
from uninitialized weights, ⇥0, to new weights, ⇥0:

⇥0 = train(⇥0,D0) (1)

For a given scoring function, f , that maps an image-text
pair to a scalar value, s = f(Ii, Ti), we express a prun-
ing function that selects a fraction, k, of dataset, D, using
function, f :

prunef (D, k) s.t. 0  k  1, f : (Ii, Ti) ! R (2)

where prunef (D, k) applies function, f , on each image-text
sample in D to obtain a score for each sample, ranks the
scores in descending order, and returns a set of the top k
portion of the samples.

One common approach for pruning is CLIPScore [9, 36].
Let E be a CLIP model consisting of an image encoder,
Eimage, that maps an image, I , to an embedding vector,
Eimage(I) 2 Rd, and a text encoder, Etext, that maps a text
sample, T , to an embedding vector, Etext(T ) 2 Rd. CLIP-
Score is a measure of alignment between I and T , and is
defined as:

fCLIP(I, T ) = hEimage(I), Etext(T )i (3)

where hx,yi is the cosine similarity between two vectors, x
and y, which is defined as the dot product of the l2 normal-
ized vectors. The most common CLIP model used for prun-
ing is pretrained on 400 million noisy image-text pairs [36].
Our proposed pruning method, Sieve attempts to minimize
the false positives and negatives induced by CLIPScore fil-
tering. Sieve consists of two main components: Image-
Captioning and Sentence Transformer.
Image-Captioning Let G be a captioning model that gen-
erates text, TG

i , describing the content of image, Ii:

TG
i = G(Ii) (4)

Given a captioning model pre-trained on a small, represen-
tative and well-aligned dataset of image-text pairs, we are
interested in estimating the alignment between image-text
pairs sampled from a very large, diverse but noisy dataset.
The alignment score can then be used as a ranking metric
for dataset filtering. We hypothesize that:
• The probability of generating a caption that is semanti-

cally similar to the alt-text from an aligned pair is much
higher than that from a misaligned pair.

• The probability of generating a caption that is semanti-
cally similar to a hard alt-text is higher than generating
a caption that is semantically similar to a misaligned alt-
text. Here, a hard alt-text is a text label with low likeli-
hood with respect to the captioning model, but is aligned
with the image content.
As images can contain multiple objects with complex at-

tributes and relationships, there exist multiple ways to de-
scribe their content. Given the inherent many-to-many re-
lationship between images and text labels, our goal is to in-
crease the probability of generating a caption that matches
an aligned alt-text. To achieve this, we utilize nucleus sam-
pling [12], a decoding strategy used to sample multiple cap-
tions, r, per-image:

G(I, r) = {TG
0 , TG

1 , . . . , TG
r�1} (5)

Sentence Transformer Given an image, its alt-text, and a
set of generated captions, our goal is to estimate the align-
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Image 
Captioning 

Model

An image of a rabbit eating a 
slice of apple

An image of a rabbit
A close-up picture of a rabbit
A rabbit next to a fruit
White and brown rabbit eating an apple

Mask 
Medium 
Phrases

Sentence 
Transformer

Cosine 
Similarity

Generated 
Captions Alignment

ScoresCaption 
Embeddings 

ALT-text 
Embeddings 

Image

alt-text

Figure 2. Our proposed framework enables dataset pruning using image-captioning models. To evaluate the alignment of a noisy image-
text pair, we generate multiple captions per image using nucleus sampling. Then medium phrases, like “an image of” or “a photo of”,
are masked from alt-text and generated captions. Finally, a lightweight sentence encoder is used to semantically compare the generated
captions with alt-text.

ment between the generated captions and the alt-text. How-
ever, there is a very large diversity gap between the gen-
erated captions and the highly diverse alt-text as measured
by the number of unique nouns and trigrams [26]. On the
other hand, constructing a large, diverse and curated image-
text dataset is expensive, which limits the diversity of the
generated captions. We propose to bridge this gap by uti-
lizing a light-weight sentence similarity model to encode
the alt-text and the generated captions. We expect the se-
mantically similar alt-text and generated caption pairs to be
closely clustered in the embedding space compared to se-
mantically distinct pairs. We reason that the rich semantic
textual embedding space of the sentence similarity model
enables pretraining the captioning model only on a small
but curated image-text dataset. Thus, we rely on the seman-
tic understanding of the sentence similarity model to bridge
the gap between the limited diversity in the generated cap-
tions and the highly diverse alt-text labels.

To estimate the alignment score, we compute the cosine
similarity between embeddings of each generated caption
and text label. Let S be a language model that encodes a
text sample, T , to a vector, S(T ) 2 Rd. We define the
alignment between two text samples, Ta and Tb, as the co-
sine similarity between their language model encodings:

hS(Ta), S(Tb)i (6)

This estimate can then be used as a proxy for the image-text
alignment of an image, I , and text, T :

hS(G(I)), S(T )i

If the image captioning model generates r different cap-
tion candidates for an image, I , we can use the maxi-
mum alignment between each of the generated captions,

G(I, r) = {TG
0 , TG

1 , . . . , TG
r�1}, and a text sample, T :

max
TG
j 2G(I,r)

hS(TG
j ), S(T )i (7)

In literature, there are different models and approaches
to obtain text embeddings. [16] uses the average of N-gram
features of each word in a text sample to obtain an em-
bedding. A more common option is to use the logits of
the last token generated by a decoder-only language model,
which is the approach taken with CLIP’s text encoder [32],
in GPT-1 [31], as well as in [1]. Encoder-only models, such
as BERT [6] or RoBERTa [23], can also be used, where the
embedding vector may be either the logits of the classifica-
tion token, or the average pool of the logits of all tokens.
Although such language models may have strong genera-
tion or classification capabilities, they were not optimized
for sentence similarity tasks, but either for next word pre-
diction (i.e., causal language modeling) or masked word
prediction (i.e., masked language modeling) tasks. There-
fore, their embeddings may not be ideal to measure align-
ment between sentences. More importantly, such models
are large in size and hence slow to infer on large datasets.
A language model finetuned on a sentence similarity task,
such as SNLI [3], aligns with the goal of estimating seman-
tic textual similarity between alt-text and captions. We find
that sentence similarity models [34] pretrained using a self-
supervised instance discrimination task on unlabeled cor-
pus of sentences perform well in estimating the alignment
between text pairs, and are lightweight in size and latency
(e.g., tens of millions of parameters in contrast to billions
of parameters of performant decoder-only large language
models).
Masking Medium Words Phrases such as “image of”,
“picture of”, or “photo of” can appear in either alt-text or
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generated captions. We refer to such phrases as “medium
phrases”, as they describe the medium rather than the con-
tents of an image. We notice that the existence of such
medium phrases adds noise to the sentence similarity score,
as shown in Figure 3. A pair of sentences that each have
a medium phrase are assigned a misleadingly high sentence
similarity score by a sentence transformer, as they have been
trained on a wide and diverse corpus of text, rather than on
image captions. Hence, the existence of medium phrases
may increase their attention to the topic of images or media,
rather than the topic of the content of such images. There-
fore, we neutralize the effect of medium phrases by remov-
ing them from both alt-text and generated captions. We
express the operation of masking medium words in a text
sample, M(T ), on text, T , as masking all possible contigu-
ous subsequences of the text, where masking on a phrase,
t, removes it if it is in the pre-determined list of medium
phrases, M = {“image of”, “picture of”, “photo of”, . . .},
or keeps it otherwise.

Putting it all together, we define the Sieve score function
as:

fSieve(I, T ) = max
TG
j 2G(I,r)

hS(M(TG
j )), S(M(T ))i (8)

The dataset pruned using Sieve with the top k portion of its
samples can be expressed as:

DSieve,k = prunefSieve
(D, k) (9)

We summarize our approach in Figure 2 and as psue-
docode in Algorithm 1 in the Appendix.

4. Experiments
4.1. Training and Evaluation
We utilize the DataComp benchmark to evaluate the utility
of image-captioning models for multimodal dataset prun-
ing. Two candidate pools are considered, the medium and
the large scale, consisting of 128 million and 1.28 billion
image-text pairs, respectively. To train CLIP models, we
use DataComp’s hyperparameters and architectures to stan-
dardize training [9]: 5 ⇥ 10�4 learning rate, 500 iterations
warmup, AdamW optimizer, for medium scale: ViT-B/32
image encoder [7], batch size 4096, 128M training sam-
ples as a compute budget, and for large scale: ViT-B/16 im-
age encoder, batch size 8192, 1.28B training samples as a
compute budget. We evaluate the zero-shot performance on
38 downstream tasks, including classification and retrieval
tasks [18, 32, 45].

For our captioning model, we utilize BLIP with ViT-
B/16 image encoder pretrained on 14 million image-text
pairs [20], including highly curated web datasets: Con-
ceptual Captions [37], Conceptual 12M [4] and SBU cap-
tions [29]; as well as small human-annotated datasets:

COCO, and Visual Genome [17]. To compute the align-
ment between generated captions and alt-text, we use a
lightweight distilled sentence transformer, all-MiniLM-L6-
v2 [39], further finetuned using self-supervised contrastive
learning on unlabeled text corpus.

4.2. Main Results
Table 1 reports multiple baselines from DataComp [9], in-
cluding applying no filtering, basic filtering, and CLIP-
Score filtering. On the medium scale, Sieve with an image-
captioning model pretrained on 30 times less but curated
data surpasses CLIPScore by 1.8% on average. In addi-
tion, we demonstrate that Sieve’s alignment score provides
a complimentary signal to CLIPScore by fusing Sieve with
CLIPScore. We apply min-max normalization to Sieve
alignment scores and CLIPScore independently, then take
the per-sample weighted average of both scores:

fSieve+CLIP(I, T ) =

(1� ↵)⇥ fSieve(I, T ) + ↵⇥ fCLIP(I, T )

s.t. f(I, T ) =

f(I, T )�min(Ii,Ti)2D f(Ii, Ti)

max(Ii,Ti)2D f(Ii, Ti)�min(Ii,Ti)2D f(Ii, Ti)

where the weight ↵ used in the reported results is 0.5.
Finally, we select the top 20% of samples. We observe
that the fused approach improves CLIPScore average per-
formance by 2.6% and 1.7% on medium and large scale
respectively, demonstrating the complementarity of Sieve’s
alignment score. Moreover, Sieve without fusion achieves
the best performance on retrieval tasks on both medium and
large scale experiments. Relative to CLIPScore, a signif-
icant portion of Sieve’s retrieval gain is effectively trans-
ferred when fusing Sieve with CLIPScore (i.e., +2.7% and
+4.5% on medium and large scale). This is also promising
as retrieval performance is critical for retrieval augmented
VLMs [13, 42].

4.3. Per-Task Performance
Figure 5 shows the change in accuracy introduced by Sieve
as well as Sieve+CLIPScore on each task compared to
CLIPScore on medium scale, and Figure 6 of the Appendix
shows for the large scale. We observe that in addition to
outperforming on image retrieval tasks, Flickr [43], and
MS COCO [22], Sieve’s greatest performance boost comes
from WingoGAViL [2], a retrieval task which requires di-
verse reasoning skills, including general knowledge, com-
mon sense, and abstraction. This high performance can be
attributed to Sieve’s preference towards keeping samples
where the alt-text correctly describes visual concepts and
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Sentence 1 Sentence 2 Sentence 
Similarity

A picture of a cat

A picture of a happy dog 0.520

An animal 0.469

A mammal 0.399

Sentence 1 Sentence 2 Sentence 
Similarity

a cat

a happy dog 0.389

An animal 0.569

A mammal 0.502

Sentence 1 Sentence 2 Sentence 
Similarity

An image of a beautiful 
park

Image of a building 0.484

An image of a factory 0.359

Trees and grass 0.357

Sentence 1 Sentence 2 Sentence 
Similarity

a beautiful park

a building 0.338

a factory 0.248

Trees and grass 0.367

Mask Medium 
Words

Mask Medium 
Words

Figure 3. Masking medium phrases improves the ranking of sentence similarity scores. On the left, sentence pairs with misleadingly high
(or low) sentence similarity due to the existence (or absence) of medium phrases are highlighted in dark red (or light red). On the right,
similarity scores that are more aligned with semantics are highlighted in dark green. The sentence similarity scores are computed using the
all-MiniLM-L6-v2 sentence transformer [39].

Scale Filtering Dataset
Size ImageNet ImageNet

dist. shifts VTAB Retrieval Average over
38 datasets

Medium
(128 Million)

No Filtering 128M 17.6 15.2 25.9 21.9 25.8
Basic Filtering 30M 22.6 19.3 28.4 25.1 28.5
LAION Filtering 13M 23.0 19.8 30.7 23.3 29.2
CLIPScore 38M 27.3 23.0 33.8 25.1 32.8
Sieve 24M 29.4 25.0 35.2 28.9 34.6
Sieve+CLIPScore 24M 30.3 25.4 36.2 27.8 35.4

Large
(1.28 Billion)

No Filtering 1.28B 45.9 37.8 42.6 41.9 43.7
Basic Filtering 298M 51.6 42.3 44.6 48.0 45.8
LAION Filtering 130M 55.3 45.3 51.0 49.5 50.1
CLIPScore 384M 57.8 47.4 53.8 46.6 52.9
Sieve 235M 57.3 47.8 52.0 52.0 52.3
Sieve+CLIPScore 235M 59.7 49.1 54.8 51.1 54.6

Table 1. Zero-shot performance of CLIP models pretrained using various filtering strategies on medium and large scale pools of the
DataComp benchmark. Sieve fused with CLIPScore beats CLIPScore by 2.6% and 1.7% on medium and large scale respectively. In
addition, on retrieval tasks, Sieve achieves best performance on both scales and after fusing with CLIPScore, leads an improvement on
retrieval over CLIPScore of 2.7% and 4.5% on medium and large scale respectively.

their attributes and relations. Sieve, especially when com-
bined with CLIPScore, significantly outperforms on medi-
cal diagnosis tasks, Camelyon17 and PatchCamelyon.

Sieve mainly underperforms in tasks requiring parsing
text from images, such as MNIST [19], SVHN [25], and
Rendered SST-2 [28], concluding that Sieve is less likely
to select image-text pairs that are useful for OCR tasks. In
addition, Sieve underperforms CLIPScore on context-based
tasks like Country211 [27], a task assessing the geolocation
capability of visual representations, demonstrating Sieve’s
preference towards selecting samples based on the align-
ment of alt-text with visual concepts rather than context.
Interestingly, when fusing with CLIPScore, we improve the
performance of all these tasks while retaining the advantage

of Sieve especially at large scale (see Figure 6).

4.4. Ablation Studies

We conduct studies on the medium scale pool and report the
average of three runs per experiment.
Pretraining data-distribution We study the effect of the
pretraining data distribution used to train the captioning
model on the quality of the alignment score. This is mea-
sured based on the downstream performance of the CLIP
model trained using the selected image-text pairs. Two pre-
training data distributions proposed by BLIP [20] are inves-
tigated. The first uses 14 million curated image-text pairs,
while the second uses an additional 115 million web im-
ages with noisy alt-text [36]. Although the original BLIP
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Figure 4. Evaluating CLIP models pretrained on different fractions of the top ranked samples based on our proposed approach (Sieve),
CLIPScore, and fusing Sieve with CLIPscore (Sieve+CLIPSCore), on medium scale.

Percentage
Kept

Caption Generator
Pretraining Data ImageNet ImageNet

dist. shift VTAB Retrieval Average over
38 datasets

10 BLIP-129M 23.00 20.60 30.20 21.40 30.00
BLIP-14M 26.50 22.50 32.10 23.75 30.90

15 BLIP-129M 25.95 22.80 32.80 24.40 32.40
BLIP-14M 29.05 24.60 33.35 26.95 32.70

20 BLIP-129M 27.85 23.65 33.45 26.35 33.05
BLIP-14M 29.60 24.93 35.07 28.57 34.03

Table 2. Effect of a caption generator’s pretraining data-distribution on Sieve. The 14M pretraining dataset consists of curated image-text
pairs, while the 129M dataset includes an additional 115M noisy image-text pairs from LAION [36].

work reports higher captioning performance when pretrain-
ing on 115 million samples, our results in Table 2 indicate
that for the purpose of dataset pruning, using curated image-
text pairs results in a better alignment score than using a
much larger noisy dataset. This highlights the importance
of using a captioning model pretrained on higher quality
data for large-scale dataset pruning.

Captioning models We conduct experiments to investigate
the generalizability of Sieve to other captioning models. In
Table 3, we compare GIT [38], which utilizes an image en-
coder, and a text decoder captioning model, pretrained on
10 million image-text pairs to BLIP [20], which utilizes an
image encoder, text encoder and a text decoder and is pre-
trained on 14 million image-text pairs. We observe that fus-
ing Sieve with CLIPScore based on GIT and BLIP improves
retrieval performance by 3.13% and 3.83% and improves
average performance on 38 downstream tasks by 1.07% and
2.52% respectively.

Text embedding space In Table 4, we ablate over embed-
dings from different text models and show that embeddings
from our selected sentence transformer perform better than
embeddings from CLIP and BLIP text encoders. The CLIP
text encoder was pretrained along with the CLIP vision en-
coder to map text and images to the same embedding space,
and is used in diffusion models to condition image genera-

Filtering ImageNet VTAB Retrieval Avg

CLIPScore 27.13 33.90 24.17 32.63
Sieve-GIT 27.47 33.20 27.27 32.40
+CLIPScore 28.90 34.83 27.30 33.70
Sieve-BLIP 29.60 35.07 28.57 34.03
+CLIPScore 30.35 35.90 28.00 35.15

Table 3. Effect of captioning models, GIT [38] pretrained on 10M
image-text pairs, and BLIP [20] pretrained on 14M pairs

tion [33]. However, we observe that the CLIP text encoder
suffers from poor semantic textual understanding, leading
to a large drop in accuracy when used as a caption similar-
ity measure. BLIP’s text encoder performs better than that
of CLIP, but the lightweight sentence transformer specifi-
cally pretrained on aligning semantically similar texts per-
forms significantly better with � 2% improvements across
various task types. In Figure 7 in the Appendix we show
how cosine similarities of sentence similarity models result
in better semantic textual clustering compared to CLIP and
BLIP text encoders.
Pruning percentage We study the effect of the fraction of
samples selected for pretraining. For each experiment, we
compute the Sieve alignment score and CLIPScore for each
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Text
Encoder ImageNet ImageNet

dist shift VTAB Retrieval Average over
38 datasets

CLIP 18.00 15.65 26.90 20.95 25.90
BLIP 27.20 22.10 32.70 25.45 31.85

Sentence Transformer 29.60 24.93 35.07 28.57 34.03

Table 4. Effect of the sentence encoder on the performance of Sieve. CLIP uses the text encoder pretrained on 400M samples [36], BLIP
uses the text encoder pretrained on the curated 14M samples defined in [20], and Sentence Transformer uses a language model pretrained
on unlabeled text corpus [39]. Each encoder encodes generated captions and the alt-text where the textual semantic alignment is computed.

(a) Sieve gain over CLIPScore on medium scale pool.

(b) Sieve+CLIPScore gain over CLIPScore on medium scale pool.

Figure 5. The relative performance gain of Sieve and
Sieve+CLIPScore relative to CLIPScore on 38 downstream tasks
on the medium scale pool.

sample. The top-k% and pretraining CLIP models are then
selected. Here, k% is set to 10%, 15%, 20%, 25% and 30%.
Finally, we report the zero-shot performance on ImageNet
and the average on 38 tasks in Figure 4. We observe that
Sieve achieves the best performance using 20% of the data,
while CLIPScore peaks at 30% (similar to results reported
in 9). Hence, pruning using Sieve achieves better perfor-
mance with less data, compared to CLIPScore.
Number of generated captions and fusion with CLIP-
Score We study the effect of using multiple captions per
image to maximize the alignment of the generated captions
with the alt-text. For nucleus sampling [12], we set the

Generated
Captions

CLIP
weight ImageNet Average over

38 datasets
1 0.0 28.60 32.50
2 0.0 29.00 33.40
4 0.0 29.53 33.70
8 0.0 29.60 34.03

8
0.3 30.10 34.40
0.5 30.35 35.15
0.7 30.25 34.35

Table 5. Effect of number of generated captions and weight of
CLIPScore on zero-shot performance of pretrained CLIP models

cumulative probability of the smallest set of words to 0.9,
and the minimum and maximum sequence lengths to 5 and
20, respectively. We study the effect of sampling 1, 2, 4,
and 8 captions. For each input image-text pair, we assign
the maximum alignment score between the alt-text and the
generated captions. We observe in Table 5 that increasing
the number of generated captions improves the performance
on downstream tasks. We reason that due to the many-to-
many relationship between images and captions, generating
more captions increases the probability of matching a hard
aligned alt-text. We also investigate the effect of fusing the
Sieve alignment score with CLIPScore in Table 5. Each
score is independently normalized, and a weighted average
is applied between the two scores. Finally, the top 20% of
samples ranked by Sieve+CLIPScore are selected. We ob-
serve that a weight of 0.5 achieves the best performance.

5. Conclusion
We introduce a novel method, Sieve, that enables prun-
ing large-scale noisy web-crawled image-text datasets. We
propose utilizing synthetic captions from image-captioning
models pretrained on small, diverse, and curated datasets
to evaluate the alignment of noisy image-text pairs. Using
the embedding space of a lightweight sentence transformer,
we compute an alignment score between generated captions
and alt-text. We demonstrate that Sieve provides a comple-
mentary pruning signal to CLIPScore, effectively minimiz-
ing false positives and negatives, leading to improved zero-
shot classification and retrieval performance.
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