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Abstract

The key lie in semi-supervised semantic segmentation
is how to fully exploit substantial unlabeled data to im-
prove the model’s generalization performance by resorting
to constructing effective supervision signals. Most methods
tend to directly apply contrastive learning to seek additional
supervision to complement independent regular pixel-wise
consistency regularization. However, these methods tend
not to be preferred ascribed to their complicated designs,
heavy memory footprints and susceptibility to confirmation
bias. In this paper, we analyze the bottlenecks exist in con-
trastive learning-based methods and offer a fresh perspec-
tive on inter-pixel correlations to construct more safe and
effective supervision signals, which is in line with the na-
ture of semantic segmentation. To this end, we develop a
coherent RankMatch network, including the construction
of representative agents to model inter-pixel correlation
beyond regular individual pixel-wise consistency, and fur-
ther unlock the potential of agents by modeling inter-agent
relationships in pursuit of rank-aware correlation consis-
tency. Extensive experimental results on multiple bench-
marks, including mitochondria segmentation, demonstrate
that RankMatch performs favorably against state-of-the-art
methods. Particularly in the low-data regimes, RankMatch
achieves significant improvements.

1. Introduction
Semantic segmentation, which aims to explain visual
semantics at the pixel level, has achieved conspicuous
achievements attributed to the recent advances in deep neu-
ral network [28] as a fundamental task in computer vi-
sion with widespread applications such as visual under-
standing [11], autonomous driving [12], etc. However,
its data-driven nature makes it labor-intensive and time-
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Figure 1. Illustration of our motivation. (a) shows the differ-
ences between independent pixel-wise consistency regularization
and correlation-wise consistency regularization. Evidently, tak-
ing the rich inter-pixel correlation into account can bring rich
extra supervision. (b) shows the straightforward implementation
of correlation-wise consistency regularization, i.e., treating each
agent independently. (c) shows our core idea, rank-aware correla-
tion consistency. We harness the inter-agent relationship by con-
sidering every possible agent rank permutation probability.

consuming to gather massive pixel-level annotations as
training data. To alleviate the data-hunger issue, consider-
able works [19, 44, 57] have turned their attention to semi-
supervised semantic segmentation task. However, since
only limited labeled data is accessible, how to fully exploit
a large amount of unlabeled data to improve the model’s
generalization performance by resorting to constructing ef-
fective supervision signals is thus extremely challenging.

In previous literature, pseudo-labeling [1, 22] and con-
sistency regularization [2, 21] have emerged as mainstream
paradigms to leverage unlabeled data for semi-supervised
semantic segmentation. Recently, these two paradigms are
typically encapsulated into a teacher-student scheme [46]
(where the teacher and student can be identical), that is,
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the teacher network with weakly augmented perturbation
view generates corresponding pseudo-labels to instruct the
student network under the presence of strongly augmented
perturbation view, using a form of pixel-wise consistency
regularization (see Figure 1 (a)).

After an in-depth analysis of the teacher-student scheme,
we argue that constructing extra supervision from substan-
tial unlabeled samples matters in semi-supervised semantic
segmentation, which is intuitively sensible from the defini-
tion of the task itself; that is, empowering regular consis-
tency regularization to adapt to dense pixel-level prediction
rather than suffering from the supervision signals of lim-
ited capacity derived at the individual pixel level (Figure 1
(a)). Inspired by the recent popularity of representation
learning [8, 18], it naturally comes into mind to directly ap-
ply contrastive learning [33, 48, 50, 52] to semi-supervised
semantic segmentation to establish an ample set of posi-
tive/negative samples in the representation space, aiming at
seeking additional supervision to complement independent
pixel-wise consistency regularization.

Despite their promising results, these methods tend not
to be preferred ascribed to complicated designs and heavy
memory footprint raised by the existence of ad hoc nu-
merous positive/negative samples, inevitably compressing
their capability and compromising the inherent simplicity
of the teacher-student scheme. Plus, considering the ab-
sence of ground truth in unlabeled data, the determination
of positive/negative samples is entirely conditioned on the
model’s biased predictions (erroneous pseudo-labels), lead-
ing to confirmation bias [14]. To make matters worse, the
corollary of error accumulation is inevitably amplified by
inbuilt low-data regimes of semi-supervised semantic seg-
mentation, hindering the generalization ability of the model.

In this paper, we analyze the bottlenecks exist in con-
trastive learning-based methods for improving pixel-wise
consistency regularization, and offer a fresh perspective on
inter-pixel correlations to construct more safe and effec-
tive supervision signals for robust semi-supervised seman-
tic segmentation. Intuitively, most methods neglect the fact
that dense pixel prediction task carries rich inter-pixel in-
formation beyond basic individual pixel-wise consistency,
shedding light on the possibility of closer collaboration be-
tween the inter-pixel correlation and the consistency regu-
larization (i.e., correlation-wise consistency regularization,
right part of Figure 1 (a)) to comprehensively probe unla-
beled data. The main idea is, we prepend the agent-level
correlation consistency through a set of representative ref-
erence points (referred to as agents) to model the inter-pixel
correlation (see Figure 1 (b)). For each pixel from the
weakly augmented or corresponding strongly augmented
view, we can obtain the agent-level correlation (i.e., a like-
lihood vector) by comparing this pixel with a set of agents.
In essence, the agent-level correlation reflects the consensus

among representative agents with a broader receptive field,
thus it encodes a higher-order consistency regularization to
adapt to dense pixel-level prediction. However, it is non-
trivial to attain the appropriate agents without any supervi-
sion signals for training. Intuitively, the agents should res-
onate favorably with diverse semantic cues from the original
pixels with a wide range of semantic contrast descriptions.
To this end, we devise an orthogonal selection strategy to
pick the most representative agents from the feature map,
preserving as much critical information as possible in the
original pixels. In this way, benefiting from the richer de-
scription of the data distribution in agent-level correlation,
we can achieve better exploitation of the unlabeled data.

Based on the above discussion, it is natural to integrate
the resultant agent-level correlation into the teacher-student
scheme and impose consistency constraint resorting to KL
divergence, etc. ( Figure 1 (b)). However, such a straightfor-
ward constraint treats each agent independently and heavily
relies on strong i.i.d. assumption, hindering the potential
for further optimization of the model. In fact, there exist
specific relationships between agents that should also be
considered in the agent-level correlation consistency reg-
ularization. For example, as shown in Figure 1, agent a
and agent b are two pixels that reside in the same car while
agent c situates from the road. Thus, agent a should hold
a tighter relationship with agent b than agent c. To har-
ness the inter-agent relationship modeling structure infor-
mation for more effective supervision signals, instead of
taking each agent independently, we carefully design the
rank-aware correlation consistency to strive to further un-
lock the potential of agents by imposing the agent-level
correlation rich in inter-agent relationship to be consistent
between the teacher and student networks (i.e., weak and
strong augmented views, Figure 1 (c)). The core idea is
that we take the agent ranking as a random event rather
than a deterministic permutation. For instance, the corre-
lation between different agents and a given pixel pw varies,
which can be regarded as the probabilities in ranking. The
probability of being ranked first of the agent a is 0.3 while
0.5 of the agent b. From this perspective, the ranking per-
mutation reflects the relationship of agents w.r.t. the pixel.
In this way, for a given pixel, we consider every possible
rank permutation of the agents (e.g., abc, cba, etc.), and
transform the agent-level correlation into the agent-ranking
probability distribution. By constraining the consistency of
the agent-ranking probability distribution between teacher
and student networks, the model can be guided by more ef-
fective supervision signals. Ultimately, we term our final
model as RankMatch.

In this work, our contributions can be summarized as
follows: (1) We analyze the bottlenecks exist in con-
trastive learning-based methods for improving pixel-wise
consistency regularization, and offer a fresh perspective
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Figure 2. The framework of our RankMatch. The student network is guided by two sources of supervision, including the ground truth
for the labeled data and the pseudo-labels generated by the teacher network for the unlabeled data. In previous consistency regularization
methods, consistency is imposed at the pixel-level. While our work focuses on the rich correlations between pixels and imposes consistency
constraint at the correlation-level. Furthermore, we design the ranking-aware correlation consistency for more effective supervision signals.

on inter-pixel correlations to construct more safe and ef-
fective supervision signals which is in line with the na-
ture of semantic segmentation. (2) We develop a coher-
ent RankMatch network, including the construction of rep-
resentative agents to model inter-pixel correlation beyond
regular individual pixel-wise consistency, and further un-
lock the potential of agents by modeling inter-agent rela-
tionships in pursuit of rank-aware correlation consistency.
(3) Extensive experiments on three challenging benchmarks
including mitochondria segmentation demonstrate that our
RankMatch outperforms state-of-the-art semi-supervised
semantic segmentation methods. Particularly in low-data
regimes, RankMatch achieves significant improvements.

2. Related Work

Semi-supervised Learning. Semi-supervised learn-
ing [13, 37, 62] (SSL) is a well-studied topic and recent
research can be summarized in two branches: Pseudo-
labeling and consistency regularization. Pseudo-labeling [1,
5, 22, 59] methods involve training the model on unlabeled
samples using pseudo-labels generated from the most up-
to-date optimized model. On the other hand, consistency
regularization-based [21, 46, 47, 55] methods leverage the
smoothness assumption [32], encouraging the model to
exhibit consistency when presented with the same exam-
ple under different perturbations. Notably, recent SSL
methods [3, 4, 15, 40, 56] have demonstrated the synergy
between consistency regularization and Pseudo-labeling.

One prominent example is FixMatch [40], which gener-
ates pseudo-labels from weakly augmented unlabeled im-
ages for strongly augmented versions of the same images.
This concise yet powerful approach has gained widespread
adoption in recent SSL studies.
Semi-supervised Semantic Segmentation. Benefits from
the advances in deep neural network [30, 35, 41, 42, 45,
51, 53, 54] and various kinds of semi-supervised seman-
tic segmentation (SSSS) algorithms [25, 27, 36, 44, 60, 61]
have been proposed based on the mature combination of
Pseudo-labeling and consistency regularization. Most of
all, UniMatch [57] taking into account the nature of se-
mantic segmentation tasks, incorporates suitable data aug-
mentations into FixMatch, thus evolving into a concise yet
powerful SSSS baseline. On top of these fundamental
designs, motivated by representation learning, a series of
works [33, 48, 50, 52] have incorporated contrastive learn-
ing into SSSS, tailoring it to the characteristics of the dense
prediction task. In this paper, we offer a fresh perspective
on inter-pixel correlations to construct more safe and effec-
tive supervision signals for robust semi-supervised semantic
segmentation.

3. Method
In this section, we first formulate the semi-supervised se-
mantic segmentation problem as preliminaries and intro-
duce the core idea of the proposed RankMatch from the per-
spective of correlation. Then we describe the details of the
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construction of the agent-level correlation to mine more re-
liable information in the unlabeled data. Finally, rank-aware
correlation consistency regularization is devised to harness
the inter-agent relationship for more effective supervision
signals. In Algorithm 1, we present the pseudo algorithm of
our RankMatch to clearly summarize the method.

3.1. Preliminaries

Given a labeled set Dl = {(xl
i,y

l
i)}N

l

i=1 and an unlabeled set
Du = {xu

i }N
u

i=1, where Nu ≫ N l, semi-supervised seman-
tic segmentation aims to train a segmentation model with
limited labeled data and vast unlabeled data. As shown in
Figure 2, the popular teacher-student scheme consists of a
teacher network fT and a student network fS . The student
network is guided by two sources of supervision, includ-
ing the ground truth for the labeled data and the pseudo-
labels generated by the teacher network for the unlabeled
data. The teacher network can either be identical to the stu-
dent network or an exponentially moving average (EMA)
version of the student network. In specific, for the labeled
data, the supervised loss Lsup can be formulated as:

Lsup =
1

N l

N l∑
i=1

1

HW

HW∑
j=1

ℓce
(
yl
ij , fS(x

l
i)j

)
, (1)

where H and W represent the height and width of the input
image, ℓce denotes the standard pixel-wise cross-entropy
loss. For the unlabeled data, the teacher network takes
the weak augmented view aug(xu

i ) as input and generates
pseudo-labels ŷu

i for the student network as:

ŷu
ij =

{
argmax fT (aug(x

u
i ))j , cuij > γ

ignore index, otherwise
, (2)

where cuij = max fT (aug(x
u
i ))j represents the confidence

of the teacher prediction for jth pixel and γ denotes the con-
fidence threshold to exclude unreliable pseudo-labels from
training. As result, we can obtain the consistency regular-
ization loss Lreg as:

Lreg =
1

Nu

Nu∑
i=1

1

HW

HW∑
j=1

ℓce
(
ŷu
ij , fS(Aug(xu

i ))j
)
, (3)

where Aug(·) means the strong augmentation. By imposing
consistency regularization, the model can learn reliable in-
formation from unlabeled data. The overall loss of the com-
monly used teacher-student scheme is L = Lsup + Lreg .

Note that the above consistency regularization is oper-
ated at pixel-level, still stuck in the mindset of classification
task. We contend that there exist substantial inter-pixel cor-
relations within an image inherently, which should be taken
into account in consistency regularization. What follows,
we detail the process of modeling inter-pixel correlation.

3.2. Agent-level Correlation

To mine more reliable information in the unlabeled data, the
idea arises naturally that we can impose consistency regu-
larization at the correlation level, which is much richer than
pixels. However, simply enforcing the correlations of all
pixels (i.e., the self-correlation matrix) to be consistent be-
tween teacher and student is not desirable. Lots of noise in
the self-correlation matrix interferes with the optimization
of the model, leading to a sub-optimal result.

In order to better model the inter-pixel correlation for
consistency regularization, we construct the agent-level cor-
relation by comparing each pixel with a set of represen-
tative reference points (referred to as agents). Intuitively,
the agents should resonate favorably with diverse seman-
tic cues from original pixels with a wide range of semantic
contrast descriptions. For this purpose, we design an or-
thogonal selection strategy to pick the most representative
agents from the image. Specifically, we obtain the feature
map F ∈ RC×h×w for an unlabeled image xu extracted by
the feature extractor of the segmentation model. Then, we
incrementally build a set of agents A = {fa

i }Ni=1 ∈ RC×N

sampled from the F such that a new agent is maximally
orthogonal (i.e., minimal cosine similarity) to the agents
already selected, starting with a pixel feature at random,
where N denotes the number of agents. This greedy strat-
egy is dynamic, since it selects agents from the feature of
the current image, preserving as much critical information
as possible in the original pixels.

In this way, we can get the agent-level correlation c ∈
R1×N (omit the subscript i, j for convenience), i.e., pixel-
agent-level correlation for a given pixel feature f by

c = softmax(fAT), (4)

where T refers to the matrix transpose operation. Straight-
forwardly, we can impose the consistency regularization be-
tween the agent-level correlation cw of teacher network and
the cs of student network resorting to KL divergence as:

Lcorr =
1

Nu

Nu∑
i=1

1

HW

HW∑
j=1

ℓkl
(
cwij , c

s
ij

)
. (5)

However, such a naive constraint treats each agent indepen-
dently hindering the potential for further model optimiza-
tion. In the next, we introduce rank-aware correlation con-
sistency regularization to model the specific relationships
between agents.

3.3. Rank-aware Correlation Consistency

To harness the inter-agent relationship for more effective su-
pervision signals, we carefully design the rank-aware con-
sistency regularization. The core idea is that we take the
agent ranking as a random event rather than a deterministic
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Algorithm 1 Pseudo algorithms of RankMatch.

1: Inputs: Labeled Set Dl = {(xl
i,y

l
i)}N

l

i=1, Unlabeled Set Du = {xu
i }N

u

i=1 (Nu ≫ N l)
2: Define: Teacher Network fT , Student Network fS , Weak Augmentation aug(·), Strong Augmentation Aug(·)
3: Output: Student Network fS
4: for each batch of (xl

i,y
l
i), x

u
i in Dl, Du do

5: # Labeled Data:
6: Calculate Lsup for fS by Equation (1) ▷ Supervised Loss
7: # Unlabeled Data:
8: Obtain pseudo-labels from fT by Equation (2)
9: Calculate Lreg for fS by Equation (3) ▷ Pixel-wise Consistency Regularization Loss

10: Obtain agents for fT and fS respectively through orthogonal selection strategy
11: Calculate the agent-level correlation by Equation (4)
12: Transform the agent-level correlation into agent-ranking probability distribution by Equation (6)
13: Calculate Lrank for fS by Equation (8) ▷ Rank-aware Correlation Consistency Regularization Loss
14: Gradient backward Lsup + Lreg + λLrank ▷ Update Model
15: end for

permutation. That is to say, every permutation of the agents
exists with some probability rather than only the permuta-
tion from largest to smallest exists. The probability of one
permutation π ∈ P (|P| = N !) given c can be derived as:

P (π|c) =
N∏

n=1

cπ(n)∑N
n′=n cπ(n′)

, (6)

where π(n) denotes the nth agent index of this permutation.
For example, suppose we have three agents: a, b and c. One
permutation of these three agents is π = (a, b, c). Based on
the agent-level correlation c, we can derive the probability
of permutation π:

P (π|c) = c(a)
c(a) + c(b) + c(c)

· c(b)
c(b) + c(c)

· c(c)
c(c)

. (7)

From this perspective, the ranking permutation reflects the
relationship of agents. By calculating the probabilities for
all |P| permutations, we transform the agent-level correla-
tion c into agent-ranking probability distribution P (P|c) ∈
R1×|P|, which has modeled the inter-agent relationship. In
fact, if we calculate the full permutations for all N agents,
the computational overhead is indeed unacceptable. For
computational efficiency, we focus on the permutations of
the top-4 agents for each pixel, based on our observation
that in every agent-level correlation, the top-4 agents have
occupied almost all weight. Then, the rank-aware correla-
tion consistency regularization can be obtained by:

Lrank =
1

Nu

Nu∑
i=1

1

HW

HW∑
j=1

ℓkl
(
P (P|cwij), P (P|csij)

)
.

(8)
Finally, the overall loss objective of our RankMatch is

derived as:

L = Lsup + Lreg + λLrank, (9)

where the λ is the trade-off weight.

4. Experiments

4.1. Experimental Setup

Datasets: (1) PASCAL VOC 2012 [11] is an object-centric
semantic segmentation dataset, containing 20 object classes
in the foreground and a background class with 1,464 and
1,449 finely annotated images for training and validation,
respectively. Many researches [9, 19] augment the original
training set (i.e., classic) with additional 9,118 coarsely an-
notated images in SBD [16] to get a blender training set.
(2) Cityscapes [10] is an urban scene understanding dataset
consisting of 2,975 images for training and 500 images for
validation. The initial 30 semantic classes are re-mapped
into 19 classes for the semantic segmentation task.
Implementation Details: For a fair comparison, we use
ResNet-50/101 [17] pretrained on ImageNet [20] as the
backbone and DeepLabv3+ [7] as the decoder. The crop
size is set as 513 × 513 for PASCAL and 801 × 801 for
Cityscapes, respectively. We adopt stochastic gradient de-
scent (SGD) optimizer with an initial learning rate of 0.001
for PASCAL and 0.005 for Cityscapes. Polynomial De-
cay learning rate policy is applied throughout the whole
training. The strong augmentation Aug(·) contains random
color jitter, grayscale and Gaussian blur. The weak augmen-
tation aug(·) consists of random crop, resize and horizontal
flip. The features used to construct the correlation consis-
tency are extracted from the output of the ASPP module [6]
and the channel number is 256. We set the number of agents
N = 128 and trade-off weight λ = 0.1 for all experiments.
The model is trained for 80 epochs on PASCAL and 240
epochs on Cityscapes with a batch size of 8, using 8× RTX
3090 GPUs (memory is 24G/GPU).
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Table 1. Quantitative results of different SSL methods on Pascal classic set. We report mIoU (%) under various partition protocols and
show the improvements over Sup.-only baseline. The best is highlighted in bold.

Method ResNet-50 ResNet-101
1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464) 1/16(92) 1/8(183) 1/4(366) 1/2(732) Full(1464)

Sup.-only 44.0 52.3 61.7 66.7 72.9 45.1 55.3 64.8 69.7 73.5

FixMatch[NeurIPS’20] [40] 60.1 67.3 71.4 73.7 76.9 63.9 73.0 75.5 77.8 79.2
iMAS[CVPR’23] [60] − − − − − 68.8 75.3 79.1 80.2 82.0

AugSeg[CVPR’23] [61] 64.2 72.1 76.1 77.4 78.8 71.0 75.4 78.8 80.3 81.3
DGCL[CVPR’23] [50] − − − − − 70.4 77.1 78.7 79.2 81.5

CSS[ICCV’23] [48] 68.0 71.9 74.9 77.6 − − − − − −
LOGICDIAG[ICCV’23] [25] − − − − − 73.2 76.6 77.9 79.3 −
NP-SemiSeg[ICML’23] [49] 65.7 72.3 75.7 77.4 − − − − − −

DAW[NeurIPS’23] [44] 68.5 73.1 76.3 78.6 79.7 74.8 77.4 79.5 80.6 81.5
Switch[NeurIPS’23] [36] 70.7 74.5 76.4 77.6 78.1 − − − − −

UniMatch[CVPR’23] [57] 67.4 71.9 75.3 78.0 79.3 73.5 75.4 78.7 80.2 81.9

RankMatch (Ours) 71.6 74.6 76.7 78.8 80.0 75.5 77.6 79.8 80.7 82.2
∆ ↑ +27.6 +22.3 +15.0 +12.1 +7.1 +30.4 +22.3 +15.0 +11.0 +8.7

Table 2. Quantitative results of different SSL methods on Pascal blender set. We report mIoU (%) under various partition protocols and
show the improvements over Sup.-only baseline. The best is highlighted in bold.

Method ResNet-50 ResNet-101
1/16(662) 1/8(1323) 1/4(2646) 1/16(662) 1/8(1323) 1/4(2646)

Sup.-only 62.4 68.2 72.3 67.5 71.1 74.2

FixMatch[NeurIPS’20] [40] 70.6 73.9 75.1 74.3 76.3 76.9
ST++[CVPR’22] [58] 72.6 74.4 75.4 74.5 76.3 76.6
U2PL[CVPR’22] [52] − − − 77.2 79.0 79.3

AugSeg[CVPR’23] [61] 74.6 75.9 77.1 77.0 77.3 78.8
iMAS[CVPR’23] [60] 75.9 76.7 77.1 77.2 78.4 79.3
CFCG[ICCV’23] [23] 75.0 77.1 77.7 76.8 79.1 79.9

NP-SemiSeg[ICML’23] [49] 73.4 76.5 76.7 − − −
DAW[NeurIPS’23] [44] 76.2 77.6 77.4 78.5 78.9 79.6

UniMatch[CVPR’23] [57] 75.8 76.9 76.8 78.1 78.4 79.2

RankMatch (Ours) 76.6 77.8 78.3 78.9 79.2 80.0
∆ ↑ +14.2 +9.6 +6.0 +11.4 +8.1 +5.8

4.2. Comparison with State-of-the-art Methods

For parameter efficiency, we adopt the popular consis-
tency regularization framework UniMatch [57] as our base-
line, that is the teacher and student networks are identi-
cal. We evaluate our method on both PASCAL (classic
and blender) and Cityscapes datasets with both ResNet-50
and ResNet-101 backbone under diverse partition protocols,
and make exhaustive comparisons with the state-of-the-art
methods [23–25, 33, 36, 40, 44, 48–50, 52, 58, 60, 61]. The
consistently dominant performance under all partition pro-
tocols with different backbones on all datasets proves the
effectiveness of our RankMatch.
Results on PASCAL. Table 1 and Table 2 show the com-
parison of our method with the SOTA methods on PASCAL
classic and blender set. Compared with the supervised-only
(Sup.-only) model, our method achieves considerable per-
formance improvements, suggesting that the information in
unlabeled data is effectively utilized in our method. More-
over, we consistently observe substantial performance gains
when compared to the baseline method, i.e., UniMatch.

Specifically, our approach achieves 71.6% and 75.5% un-
der 1/16(92) partition on classic set with the backbone
ResNet-50 and ResNet-101, boosting the baseline by 4.2%
and 2.0%, respectively. These results underscore the power-
ful information mining capability of RankMatch under the
extremely scarce labeled data setting.

Results on Cityscapes. Table 3 presents a comparative
result of RankMatch against the SOTA methods on the
Cityscapes dataset. Specifically, with the backbone ResNet-
50, RankMatch outperforms the Sup.-only model by 12.1%,
7.5%, 6.1% and 2.9% under 1/16, 1/8, 1/4 and 1/2 par-
tition protocols, respectively. Furthermore, when com-
pared with the recent and competitive contrastive method
ESL [33], our method maintains superior performance, e.g.,
2.0% performance lift under 1/16 partition protocol with
the ResNet-101 backbone, showing the superiority of our
method over contrastive learning.

Qualitative Results. We compare the qualitative results of
our method with different SOTA methods on the PASCAL
dataset. As shown in Figure 3, RankMatch shows more
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Table 3. Quantitative results of different SSL methods on Cityscapes. We report mIoU (%) under various partition protocols and show the
improvements over Sup.-only baseline. The best is highlighted in bold.

Method ResNet-50 ResNet-101
1/16(186) 1/8(372) 1/4(744) 1/2(1488) 1/16(186) 1/8(372) 1/4(744) 1/2(1488)

Sup.-only 63.3 70.2 73.1 76.6 66.3 72.8 75.0 78.0

FixMatch[NeurIPS’20] [40] 72.6 75.7 76.8 78.2 74.2 76.2 77.2 78.4
AEL[NeurIPS’21] [19] 74.0 75.8 76.2 − 75.8 77.9 79.0 80.3

AugSeg[CVPR’23] [61] 73.7 76.4 78.7 79.3 75.2 77.8 79.5 80.4
iMAS[CVPR’23] [60] 74.3 77.4 78.1 79.3 − − − −
ESL[ICCV’23] [33] − − − − 75.1 77.1 78.9 80.4

Co-Train[ICCV’23] [24] − 76.3 77.1 − 75.0 77.3 78.7 −
NP-SemiSeg[ICML’23] [49] 73.0 77.1 78.8 78.7 − − − −

Switch[NeurIPS’23] [36] − − − − 76.8 78.4 79.4 80.5
DAW[NeurIPS’23] [44] 75.2 77.5 79.1 79.5 76.6 78.4 79.8 80.6

UniMatch[CVPR’23] [57] 75.0 76.8 77.5 78.6 76.6 77.9 79.2 79.5

RankMatch (Ours) 75.4 77.7 79.2 79.5 77.1 78.6 80.0 80.7
∆ ↑ +12.1 +7.5 +6.1 +2.9 +10.8 +5.8 +5.0 +2.7

U𝟐PLImage Ground Truth DGCL UniMatch Ours

Figure 3. Qualitative comparison with different methods. Note that significant improvements are marked with yellow boxes.

Table 4. Ablation studies of different components.

Contrastive Correlation Rank mIoU(92) mIoU(1464)

67.4 79.3

✓ 68.6 79.6

✓ 70.3 79.5
✓ ✓ 71.6 80.0

Table 5. Ablation on different
agent selection strategies.

Agent Selection mIoU

All 69.8

Random 70.2

Top-N 70.6

Orthogonal 71.6

Table 6. Ablation on different
correlation consistency.

Corr. Consis. mIoU

L2 70.2

CE 70.1

KL 70.3

Rank-aware 71.6

powerful segmentation performance in fine-grained details
(e.g., the dogs on the bed and the man on horseback). With
the help of rank-aware correlation consistency, RankMatch
exhibits superior abilities in most scenarios.

4.3. Ablation Study and Analysis

To look deeper into our method, we perform a series of ab-
lation studies on PASCAL classic set under 1/16(92) parti-

Table 7. Evaluation of the
Agents number N .

Agents number N mIoU

64 69.0

128 71.6

256 71.1

512 69.9

Table 8. Evaluation of the
trade-off weight λ.

Trade-off weight λ mIoU

0.05 70.8

0.1 71.6

0.2 71.2

0.5 70.9

tion protocol with ResNet-50 to analyze our RankMatch.
Effectiveness of Components. In Table 4, we report the
results of 1/16(92) and Full(1464) to clearly substantiate
the effectiveness of our design. Note that, “Contrastive”
denotes the reproduced results for U2PL [52], a classic
contrastive learning method in the semi-supervised seman-
tic segmentation, based on our baseline (i.e., UniMatch).
The correlation-level consistency (“Correlation”) without
rank-aware (“Rank”) means that treating each agent inde-
pendently and straightforwardly imposing correlation-level
regularization resorting to KL divergence, i.e., Lcorr in
Equation (5). (1) Indeed, while contrastive learning can
yield certain benefits for pixel-level consistency regular-
ization baseline (1st row vs. 2nd row), it is still inferior
to correlation-level consistency regularization (2nd row vs.
3rd & 4th rows). (2) By comparing the results of the 3rd

and 1st rows, a naive consideration of correlation-level con-
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EM Image Ground Truth

Figure 4. Visualization of the
Lucchi dataset.

Method Spe. 1/32(5) 1/16(10) 1/8(20)

Sup.-only 45.7 57.4 61.8

MT [46] % 71.8 72.4 75.4

CCT [38] % 84.7 85.4 85.8

CPS [9] % 84.5 84.6 85.8

DualRel [34] ! 85.6 86.3 87.2

Ours % 86.9 87.5 88.1

Table 9. Quant. results of differ-
ent SSL methods on Lucchi.

sistency reveals a significant performance improvement for
pixel-level consistency regularization baseline. This obser-
vation indicates that the abundant correlations provide ad-
ditional information gain for consistency regularization. (3)
As 3rd vs. 4th row shows, harnessing the relationships be-
tween agents through the construction of the agent-ranking
probability distribution can yield more effective supervision
signals, manifesting in further performance improvements.
Effectiveness of Orthogonal Selection Strategy. In Ta-
ble 5, we explore various strategies for agent selection, in-
cluding “ALL” (considering all pixels in the feature map
as agents), “Random” (randomly pick N pixels in the fea-
ture map as agents), “Top-N” (select top N pixels condi-
tioned on the cumulative self-correlation matrix along the
pixels dimension), and our proposed “Orthogonal”. (1) Se-
lecting all pixels as agents is not a desirable approach, as it
inevitably introduces considerable noise among these pix-
els. This noise can adversely affect the quality of supervi-
sion signals, resulting in sub-optimal performance. (2) The
strategy of “Orthogonal” achieves the best results, which is
in line with our design purpose, that is, that representative
agents can enjoy synergy with subsequent correlation-level
consistency. We visualize the agent-pixel activation maps
for those agents selected by “Orthogonal”, as shown in Fig-
ure 5. It can be observed that the different agents activate
different parts of the image, and resonate favorably with di-
verse semantic cues from the original pixels. These care-
fully selected agents retain as much critical information as
possible in the original image, facilitating the subsequent
construction of correlation consistency.
Effectiveness of Rank-aware Correlation Consistency.
To investigate the effectiveness of rank-aware correlation
consistency, we compare different modeling strategies for
correlation consistency in Table 6. Among them, L2,
CE, and KL belong to agent-independent correlation con-
sistency, overlooking the inherent relationships between
agents and resulting in sub-optimal performance. The pro-
posed rank-aware correlation consistency achieve the best
results, indicating that modeling the relationships between
agents contributes to more effective supervision signals.
Hyperparameter Evaluations. (1) As shown in Table 7,
it can be observed that the performance is optimal with
N = 128. This result aligns with intuition, as too few
agents can lead to information loss from the original im-

Image & Ground-truth Agent Activation Maps

Figure 5. Visualization of the agent activation maps from our or-
thogonal selection for better illustration. The yellow cross denotes
the position of agents in the original image.

age while too many can introduce noise into the training.
Therefore, finding a balance for N is crucial. (2) λ controls
the relative importance of the rank-aware correlation con-
sistency loss, our model achieves much better performance
when λ = 0.1 as shown in Table 8.
Scalability for Other Scenarios. We extend our experi-
mental evaluations on mitochondria segmentation [26, 27,
31, 39, 43] dataset Lucchi [29] to assess the scalability of
our method. Figure 4 illustrates the images and ground truth
of the Lucchi dataset, highlighting a common challenge in
electron microscope images where instances are notably
small and scattered. It underscores the need for more ro-
bust supervision during training within a semi-supervised
framework. As depicted in Table 9, RankMatch exhibits su-
perior performance compared to other competitive methods.
Notably, our approach surpasses the specialized (“spe.”)
method DualRel [34] in the domain of electron microscopy
images, underscoring the capability of our method to pro-
vide more rich and effective supervision.

5. Conclusion
In this paper, we offer a fresh perspective on inter-pixel cor-
relations to construct more safe and effective supervision
signals. To this end, We develop a coherent RankMatch
network, including the construction of representative agents
to model inter-pixel correlation beyond regular individual
pixel-wise consistency, and further unlock the potential of
agents by modeling inter-agent relationships in pursuit of
rank-aware correlation consistency. Extensive experimental
results on challenging benchmarks show the effectiveness.
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