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Figure 1. We release the FlyLight Instance Segmentation Benchmark (FISBe) dataset, a 3d multi-color light microscopy dataset of neu-
ronal morphologies in the brain of the fruit fly Drosophila melanogaster, together with high-quality pixel-wise instance segmentations of
individual neurons. To the best of our knowledge, FISBe constitutes the first publicly available real-world benchmark dataset for instance
segmentation of wide-spanning, thin filamentous and tightly interweaving objects. Top row: Exemplary FISBe images (3d) visualized in
2d via maximum intensity projection (MIP). Bottom row: Corresponding 2d projections of ground truth instance segmentation masks (3d).

Abstract

Instance segmentation of neurons in volumetric light
microscopy images of nervous systems enables ground-
breaking research in neuroscience by facilitating joint func-
tional and morphological analyses of neural circuits at cel-
lular resolution. Yet said multi-neuron light microscopy
data exhibits extremely challenging properties for the task
of instance segmentation: Individual neurons have long-
ranging, thin filamentous and widely branching morpholo-
gies, multiple neurons are tightly inter-weaved, and par-
tial volume effects, uneven illumination and noise inher-
ent to light microscopy severely impede local disentan-
gling as well as long-range tracing of individual neurons.
These properties reflect a current key challenge in ma-

chine learning research, namely to effectively capture long-
range dependencies in the data. While respective method-
ological research is buzzing, to date methods are typically
benchmarked on synthetic datasets. To address this gap,
we release the FlyLight Instance Segmentation Benchmark
(FISBe) dataset, the first publicly available multi-neuron
light microscopy dataset with pixel-wise annotations. In
addition, we define a set of instance segmentation metrics
for benchmarking that we designed to be meaningful with
regard to downstream analyses. Lastly, we provide three
baselines to kick off a competition that we envision to both
advance the field of machine learning regarding method-
ology for capturing long-range data dependencies, and fa-
cilitate scientific discovery in basic neuroscience. Project
page: https://kainmueller-lab.github.io/fisbe
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Except for this watermark, it is identical to the accepted version;
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1. Introduction
Most existing instance segmentation benchmarks in com-
puter vision are collections of natural images [9, 35, 59].
These are often suitably addressed with proposal-based
methods like Mask R-CNN [22, 24], as the assumption that
shapes of objects are well approximated by bounding boxes
mostly holds. However, this key assumption is violated in
a range of highly relevant application domains, including
neuroscience [18, 57], the domain the FISBe dataset we
contribute in this work stems from. Here, objects can span
large parts of an image and have complex (e.g., tree-like)
and intertwined shapes. Consequently, multiple instances
may have very similar, very large bounding boxes.

Benchmarks from the neuroscientific domain, namely
on neuron instance segmentation in electron microscopy
(EM) data [1], have greatly facilitated the development of
instance segmentation methodology that is applicable in
the face of complex, wide-ranging object shapes. Beyond
sophisticated object shapes, said benchmarks also call for
methodology that applies to very large images, way beyond
what current GPU memory can hold [18, 55]. On these
benchmarks, proposal-free methods based on CNN back-
bones [7, 10, 19, 31, 32, 58] constitute the current state of
the art, and mostly also lend themselves to arbitrarily large
images thanks to tile-and-stitch inference.

However, an object category that generally renders im-
age segmentation very challenging is not represented in the
above-mentioned benchmarks, namely objects that exhibit
very thin (down to single-pixel width), filamentous struc-
tures. Benchmarks have been established for semantic seg-
mentation of very thin filamentous structures in a range of
real-world applications, including neuron segmentation in
light microscopy (LM) data [3, 40, 45], blood vessel seg-
mentation in various medical imaging modalities [37, 50],
and road extraction from satellite imagery [2, 14]. However,
respective instance segmentation benchmarks are currently
lacking despite the high relevance of the task, e.g., in ba-
sic neuroscience [42]. The closest related publicly available
dataset that exhibits thin and complex object shapes is [57].
Yet it lacks tightly inter-weaved objects by design, and fur-
thermore does not come with pixel-wise ground truth seg-
mentations nor recommended metrics for benchmarking.

Consequently, there is at present a lack of methodol-
ogy applicable for instance segmentation of wide-ranging
thin filamentous intertwined shapes: Only very few deep-
learning approaches are potentially suitable, among which
Flood Filling Networks [26] and PatchPerPix [39]. Most
proposal-free instance segmentation methods do not ap-
pear suitable: Three-label models [4] degenerate in the face
of very thin instances because their interior equals their
boundary; models predicting pixel affinities [16, 54] be-
come inappropriate if they rarely encounter foreground in
their fixed pixel neighborhoods (as compared to the dense-

foreground EM data they were designed for); metric learn-
ing models [7, 10] lack the capacity to capture long-range
connectivity beyond their receptive fields. Likewise, meth-
ods proposed specifically for cell instance segmentation do
not appear suitable: Cellpose [51] assumes locally (i.e.,
within receptive field) visible cues towards some seman-
tically meaningful center point which does not hold true
for our dataset; Stardist [56] employs star-convex polygon-
s/polyhedrons as proposals, which do not provide viable
approximations of neurons. As for non-learnt, application-
specific methods for neuron separation, some approaches
rely on user-defined [47] or pre-detected anchor points, in
particular on cell body detection [34, 46, 60]. This renders
these methods not directly applicable to our data, where cell
bodies may lie outside of the imaged volume (namely in the
ventral nerve cord). Other non-learnt application-specific
approaches are based on color clustering [13, 52], which is
technically applicable, yet the underlying assumption that
each neuron has a unique color is often violated on our data.

A promising recent alternative are query-based meth-
ods [6, 8, 29], which operate without explicit prior assump-
tions on object sizes or shapes. However, e.g., SAM [29] is
not directly applicable as it has not yet been extended to full
3d and it is unclear if and how tile-and-stitch prediction, as
would be necessary given the size of individual FISBe im-
ages, could be achieved in a seamless manner. We deem
respective potential extensions of SAM a very interesting
research topic for which, albeit out of scope, FISBe can
serve as benchmark. Further recent trends towards explicit
modelling of long-range data dependencies appear promis-
ing [23, 30, 44], yet so far these models have only been
benchmarked on synthetic data [28, 36], sequence data [53],
and image classification [11], and thus, their potential for
improving instance segmentation of long, complex, inter-
twined objects in real-world tasks has not been assessed.

Our work addresses the gap that, to date, solely syn-
thetic data is available to facilitate methods development
towards capturing long-range data dependencies. To this
end, we herewith release the FISBe dataset, a 3d multicolor
light microscopy dataset of wide-ranging and tightly inter-
weaving neuronal morphologies in the brain of the fruit fly
Drosophila melanogaster, together with high quality expert
instance segmentations of individual neurons. The dataset
comprises 101 large, expert-labeled 3d images, of which 30
are completely- and 71 partly labeled, with a total of ∼600
pixel-wise neuron instance masks. Exemplary images and
instance masks are shown in Fig. 1. The novelty of our
data entails a gap in evaluation metrics: Metrics commonly
employed for benchmarking instance segmentation method-
ology do not appropriately account for the long, very thin
and filamentous object shapes; e.g., mean average precision
(mAP) with pixel-level IoU for localization is not appropri-
ate for thin structures [38, 48]. Thus standard metrics may
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not provide meaningful quantification of segmentation per-
formance. To this end, we identify a set of informative eval-
uation metrics, and contribute a novel aggregate score that
we recommend for method benchmarking. Given our met-
rics, we evaluate three baseline methods, namely the two
learnt methods that are, to our knowledge, technically able
to handle the intricacies of our data to date [26, 39], as well
as one non-learnt application-specific method that is techni-
cally applicable [13]. In summary, we contribute:
• The FISBe dataset, to our knowledge the first public

benchmark dataset for instance segmentation of real-
world, wide-ranging, thin filamentous and tightly inter-
weaving objects.

• A set of metrics and a novel ranking score for respective
meaningful method benchmarking.

• An evaluation of three baseline methods in terms of the
above metrics and score.

Concerning the size of our dataset, on the one hand, lat-
est 2d natural image datasets are orders of magnitude big-
ger than ours [29] and thus pave the way for particularly
data-hungry methods development. Such size is, however,
far beyond reach for 3d data, let alone for data from the
life sciences where expert knowledge is required for anno-
tation, and acquiring pixel-wise ground truth for image data
alike ours has been deemed difficult or infeasible in related
work [13, 17]. On the other hand, numerous benchmark
datasets similarly sized as FISBe have proven to greatly
boost methods development in the machine learning com-
munity, and have likewise boosted respective application-
specific scientific discovery [18, 27, 55]. We thus fore-
see our work to be of impact both in advancing the field
of machine learning regarding methodology for capturing
long-range data dependencies, and in streamlining cell-
level analyses of brain function towards advances in ba-
sic neuroscience. We release our data through zenodo
(https://zenodo.org/doi/10.5281/zenodo.10875063) and our
project page https://kainmueller-lab.github.io/fisbe.

2. Dataset
The FISBe dataset consists of 101 3d multicolor LM im-
ages of the central nervous system of the fruit fly Drosophila
melanogaster. The images originate from a large pre-exist-
ing resource of LM acquisitions [42]. Similar data has al-
ready contributed to breakthrough neuroscientific findings,
e.g., towards a mechanistic understanding of memory for-
mation and -retrieval in Drosophila on a cellular level [12].
Our work aims at facilitating such findings at scale. For a
more elaborate introduction to the biological background of
our data, we refer the interested reader to Suppl. Sec. A.4.
In the following, we describe the imaging resource FISBe
stems from in Sec. 2.1, the selection and annotation process
for our dataset in Sec. 2.2, and recommended data splits and
evaluation for benchmarking in Sec. 2.3.

(a) (b) (c) (d)

Figure 2. Exemplary challenging cases for disentangling neurons
in FISBe images (top row), and respective expert annotations (bot-
tom row). (a) Long overlap of two neurons running in parallel,
(b) two almost completely overlapping neurons in different color
(only one could successfully be annotated), (c) two inter-weaved
neurons of same color that could not be separated (clearly identi-
fied by two somata), and (d) dim neuron in noisy background.

2.1. Image Data Acquisition and Characteristics

Our dataset originates from the FlyLight project [42], where
confocal microscopy images of the nervous systems of
∼74,000 flies were acquired with a technique called Mul-
tiColor FlpOut (MCFO) [43]. This image collection was
previously released1. We selected images from the ”40x
Gen1” subset where images have an isotropic resolution
of 0.44µm, an average size of ∼400×700×700 pixels,
and three color channels. Fig. 1 (top row) shows exem-
plary MCFO images. Note that visualizations of image
data shown in this paper are maximum intensity projections
along the z axis, if not noted otherwise. For exemplary or-
thographic views see Suppl. Fig. 9. For more information
on the dataset see our datasheet [20] in Suppl. Sec. A.1.

MCFO images capture the very thin, tree-like morphol-
ogy of individual neurons as well as the intertwining of mul-
tiple neurons. The number of neurons expressed in indi-
vidual images varies from extremely dense (>50) to very
sparse (1-2). The FlyLight project has sorted images into
five categories according to expression density, where 18%
of images express up to 10 neurons (cat. 1 and 2) and 55%
express around 20 neurons (cat. 3, cf. Suppl. Fig. 1 in [42]).

MCFO imagery has sparse, unbalanced foreground sig-
nal, low signal-to-noise ratio, and exhibits artifacts like bro-
ken structures and intensity shifts. Intensity varies strongly,
per image, per neuron and within neurons. Thus neurons
may appear in very different quality, ranging continuously
from clearly visible neurons to very dim neurons that are
partly indistinguishable from noise. The MCFO technique
causes individual neurons to exhibit random colors, though
color diversity per image is often not sufficient to allow
for distinguishing all neurons by color. Multiple neurons
in very close proximity may appear as overlapping due to
partial volume effects2. Neurons in MCFO images are par-

1Download (CC BY 4.0 license): https://gen1mcfo.janelia.org
2Multiple instances occupy the same 3d pixel (distinct from occlusion)
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ticularly hard to distinguish if neurons of same or similar
color form dense clusters or overlap (see Fig. 2).

2.2. Image Selection and Labeling Process

Labeling 3d data is generally cumbersome as objects often
need to be viewed with different angles, scales and color
settings. As for the FlyLight data, limited resolution inher-
ent in confocal microscopy makes isolating individual sim-
ilarly colored, close-by neurons particularly difficult. Fur-
thermore, in some cases poor signal-to-noise ratio makes it
difficult to identify the complete wide-spanning extent of
neurons. In both cases, expert anatomical knowledge of
fruit fly neurons is often crucial for successful annotation.

To form FISBe, expert annotators chose 101 samples
from the FlyLight data for which they determined by eye
that manual annotation is feasible. Compared to the full
FlyLight resource, this introduces a bias in our dataset to-
wards sparser expression densities: Of our 101 images,
one image is of density cat. 1, 72 are of cat. 2, and 28
of cat. 3. Two expert annotators manually segmented and
proof-read each other to label as many neurons as possi-
ble in these 101 images using the interactive rendering tool
VVD Viewer[49]. Annotators were able to segment a total
of 590 neurons. Labeling a single neuron took 30-60 min on
average, yet for a difficult neuron it could take up to 4 hours.
Not every neuron in every sample could be annotated suc-
cessfully, thus yielding completely- as well as partly labeled
images. A third annotator performed a final visual inspec-
tion of all labeled neurons and revised the categorization
into completely- and partly labeled images.

Our completely labeled dataset comprises 30 MCFO im-
ages and a total of 139 labeled neurons; see Fig. 1 (1st and
2nd example) and Suppl. Fig. 10. Our partly labeled dataset
comprises 71 MCFO images and a total of 451 labeled neu-
rons; see Fig. 1 (3rd and 4th example) and Suppl. Fig. 12.
These images exhibit unlabeled neuronal morphologies be-
cause expert annotators were either unable to disentangle
multiple neurons of the same color in a dense cluster, or
unable to annotate very dim neurons that are partly indistin-
guishable from noisy background. Note, 61 images contain
labeled neurons that overlap due to partial volume effects.

Complementing our new annotated data, the large trove
of previously released non-annotated images in the FlyLight
resource may serve for self-supervised pre-training.

2.3. Benchmarking Setup

We split the completely labeled data into train, validation
and test sets with 18, 5 and 7 samples respectively as defined
in Suppl. Table 5. We split the partly labeled data into train,
validation and test sets with 43, 12 and 16 samples respec-
tively as defined in Suppl. Table 6. We recommend evalua-
tion on the combined data (i.e., the union of completely and
partly labeled data) as the main benchmarking scenario. To

assess training stability, we recommend to report summary
statistics over three training runs in each evaluated scenario.

3. Evaluation Metrics

Our dataset constitutes the first benchmark dataset for in-
stance segmentation of thin filamentous structures. Con-
sequently, we need to assess which evaluation metrics are
suitable for benchmarking. The main requirements for a
suitable metric are: (r1) To account for thin filamentous
structures, (r2) to be able to handle overlapping instances
(both in ground truth and predicted instances), and (r3) to
be meaningful with respect to downstream tasks.

Some existing benchmarks for semantic segmentation of
filamentous structures have employed topology-based met-
rics, which assess the similarity between graph represen-
tations of ground truth- and predicted objects [2, 21]. We
deem these not suitable for our data, as obtaining topolog-
ically correct (tree) graph representations of neurons is in-
feasible due to the limited resolution of light microscopy.

Instead, we follow the Metrics Reloaded [38] recom-
mendation for thin filamentous instance segmentation and
apply an instance-level F1 score as one of our main evalua-
tion metrics. Moreover, we propose to complement the F1
score with a custom metric that we design towards satisfy-
ing r3, namely a centerline recall with one-to-many match-
ing, which we refer to as average ground truth coverage.
We combine both metrics to derive an aggregate benchmark
score. Finally, we define a set of easily interpretable er-
ror measures that may provide additional insight to meth-
ods developers and practitioners. E.g., we extend existing
work [5, 41] by defining false split (FS) and false merge
(FM) error counts for overlapping instances. We define our
selected metrics in Sec. 3.1, ensuring that all apply not only
to completely- but also to partly labeled data, and discuss
properties and suitability in Sec. 3.2. Suppl. Table 2 sum-
marizes all metrics with their localization and matching.

3.1. Metrics Definitions

Instance segmentation can be phrased as a pixel labeling
problem, where pixels with same label form instances. Note
that in FISBe, one pixel can be assigned multiple labels due
to overlapping instances. Segmentation quality is gener-
ally assessed via evaluation metrics that capture how well
predicted instances overlay with given ground truth (gt) in-
stances. We denote a set of gt instances G = {gk}k∈LG

and a set of predicted instances P = {pl}l∈LP
where LG

and LP represent the sets of labels identifying gt and pre-
dicted instances, and |G| and |P | denote the total number
of instances of the respective set. With subscript i the set
is limited to a single image, e.g., Gi, otherwise it refers to
the set over all images I . Gt- and prediction sets exclude
background (bg) as instance label if not stated otherwise.
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Average F1 score avF1. Following [38], a metric consists
of three steps: localization, matching and computation. The
localization step employs some function to compute how
well each pair of predicted and gt instances are co-localized.
The matching step selects subset of these pairs, resulting in
a match of predicted to gt instances. The computation step
computes the value of the metric based on the quality of the
previously computed subset of matched instances.

It has been shown that pixel-level IoU or F1 are not
suitable for thin structures as small variations on bound-
aries can have a large effect [15, 38]. Thus we employ
clDice [48], a variation of the Dice score that operates
on object centerlines, for the localization step. Following
[48], we use medial surface axial thinning algorithm [33]
to skeletonize volumetric instance masks and denote it with
function skeletonize(·). Given ground truth and prediction
we compute clDice as follows:

clPrecision(p, g) =
|skeletonize(p) ∩ g|
|skeletonize(p)|

∀p ∈ Pi,∀g ∈ Gi ∪ {bg}
(1)

clRecall(g, p) =
|skeletonize(g) ∩ p|
|skeletonize(g)|

∀g ∈ Gi,∀p ∈ Pi ∪ {bg}
(2)

clDice(g, p) = 2 ∗ clPrecision(p, g) ∗ clRecall(g, p)
clPrecision(p, g) + clRecall(g, p)

∀g ∈ Gi,∀p ∈ Pi

(3)

clDice is only computed for foreground pairs as we do not
skeletonize the background, but we, e.g., include it for cl-
Precision to detect predictions mainly located in the gt back-
ground.

For the matching step we follow the greedy strategy rec-
ommended in [38]. To this end we compute clDice for all
pairs of predicted and gt instances {clDice(p, g) | ∀i ∈ I :
∀p ∈ Pi,∀g ∈ Gi}. We iterate through all scores in de-
scending order and match the corresponding (p, g)-pair if
neither has been assigned before. Similarly to [41], we de-
note p ⋐ g, if the two instances have been matched. In the
computation step, we derive true positives (TP), false posi-
tives (FP) and false negatives (FN) for all clDice thresholds
th in the range [0.1,0.9] with step size 0.1:
• TP: all predicted instances that are assigned to a gt in-

stance with clDice > th:

TP = |{p ∈ P | ∃g : p ⋐ g ∧ clDice(p, g) > th}|

• FP: all unassigned predicted instances FP = |P | − TP

• FN: all unassigned gt instances FN = |G| − TP

Based on these values we compute the F1 score F1 =
2TP

2TP+FP+FN for each threshold. Note that TP, FP, FN are
thus computed across all images. The final avF1 score is
the average of all F1 scores.

Average ground truth coverage C. We compute clPre-
cision scores for all pairs of predicted and gt instances as
localization criterion. We match each prediction to the gt
instance with the highest clPrecision score (one-to-many
matching). Then we average clRecall for all gt instances
and the union of their matched predictions (to avoid double-
counting of pixels with overlapping predictions):

C = 1/|G|
∑
g∈G

clRecall(g,
⋃

∀p∈P :p⋐g

p) (4)

Aggregate benchmark score S. We propose to combine
the average F1 score avF1 and the average ground truth
coverage C to form a primary benchmark ranking score S.
We average both measures to obtain the final ranking score:
S = 0.5avF1 + 0.5C. Note that we do not multiply them,
as a linear increase in segmentation quality should lead to
linear increase in the score function [15].
False splits FS and false merges FM . False split errors
occur if one gt instance is covered by multiple predicted
instances. False merge errors occur if one predicted in-
stance covers more than one gt instance. We propose to
use a greedy many-to-many matching algorithm that natu-
rally handles overlapping instances and based on which we
can compute FM and FS directly in a unified way. For the
matching, we iteratively assign predicted and gt instances
with the highest clRecall value while keeping track of al-
ready matched pixels (see Algorithm 1). Remaining clRe-
call values are constantly updated to only include free pix-
els, which are available for further matching. By doing so,
we avoid that predicted instances in overlapping gt regions
are assigned multiple times; or that mostly overlapping pre-
dicted instances are assigned to the same gt instance (see
Suppl. Fig. 5). Note that we monitor centerline pixels for
gt instances and complete pixelwise masks for predicted in-
stances due to the definition of clRecall.

We then count for each gt instance the additional num-
ber of assigned predicted instances apart from one correctly
matched instance to compute false splits (with th = 0.05)

FS =
∑
g∈G

max((
∑

p∈P :p⋐g

1)− 1, 0), (5)

and analogously for false merges (with th = 0.1)

FM =
∑
p∈P

max((
∑

g∈G:g⋐p

1)− 1, 0). (6)

True positives clDice. We report average centerline Dice
for uniquely matched instances clDiceTP to provide a mea-
sure of how well true positives are reconstructed. We re-use
the matching computed for avF1, employ a threshold of 0.5
for the definition of TP and define

clDiceTP =
1

|TP0.5|
∑

(p,g):p∈TP0.5∧p⋐g

clDice(p, g). (7)

22253



Algorithm 1: Greedy Many-to-many Matching
input : G: set of gt instances gk,

P : set of predicted instances pl,
th: clRecall threshold

output: M : set of matched (gk, pl)-instances

initialize M ← ∅
initialize Gfree ← {skeletonize(gk) | ∀gk ∈ G}
initialize Pfree ← copy(P )
clR← sort({clRecall(skeletonize(gk), pl) |

∀gk ∈ G,∀pl ∈ P}, ↓)
while top(clR) > th do

gk, pl ← pop(clR)
M += {(gk, pl)}
update gfreek ← gfreek \ pl
update pfreel ← pfreel \ gk
forall (gm, pn) ∈ clR do

if gm = gk then
update clR(gm, pn) =

|gfreem∩pn|
|skeletonize(gm)|

if pn = pl then
update clR(gm, pn) =

|skeletonize(gm)∩pfreen |
|skeletonize(gm)|

sort(clR, ↓)

Evaluating partly labeled samples. In partly labeled sam-
ples only a subset of neurons is annotated. For unlabeled
pixels we do not know if there is background or other neu-
ronal structures and for labeled neurons if they partly over-
lap with a non-annotated one. This has no influence on
average ground truth coverage as well as false split and
false merge counts, although the reported measures only re-
flect parts of the whole volume. However, for the F1 score
the false positive count cannot be computed. Therefore,
we only count predicted instances that are not one-to-one
matched based on clDice, but that primarily lie within a gt
instance and not the background:

FPpartly = |{p ∈ P | ∄g : p ⋐ g∧ (8)
argmax
g∈G∪{bg}

clPrecision(p, g) ̸= bg}|

We use this error count as an approximation of false pos-
itives and adapt the formula to F1 = 2TP

2TP+FPpartly+FN . All
other calculation steps remain unchanged. Note that thus
the F1 scores of completely and partly labeled image sets
cannot be compared directly. To evaluate the full dataset,
we average the results for the completely and partly labeled
set (for normalized measures, counting measures such as
FS, FM and TP are summed up).
Evaluating challenging cases. Main challenges are dim
and overlapping neurons (cf. Fig. 2). To evaluate how well
such subsets of neurons are segmented, we report gt cover-

age C and the relative number of TPs (tp =
TPS,0.5

|GS | , with
greedy one-to-one matching and clDice > 0.5) for the re-
spective subsets (Gdim/Govlp). Dim neuron instances of val-
idation and test sets are listed within the dataset.

3.2. Discussion

We satisfy requirement (r1) by using clPrecision, clRecall
and clDice in all of our measures. They are defined in such
a way that they handle overlaps in both predicted and gt
instances, thus satisfying requirement (r2).

The avF1 score considers all error types equally. How-
ever, FP and FS errors are more likely to occur in MCFO
segmentations due to low signal-to-noise ratio and broken
structures. They are often induced by only a limited num-
ber of incorrect pixels, whereas FN errors are limited by the
number of neurons and require that all or large parts of neu-
rons are missing. This can lead to disproportionately low
scores that do not reflect how we would visually rate seg-
mentation quality (see Fig. 3 (a)+(b)).

To mitigate this, we complement the avF1 score by the
average gt coverage C, resulting in an improved balancing
of the different types of errors. C provides an intuitive way
for measuring how comprehensively gt instances are seg-
mented by the model. C strongly penalizes FN and FM
errors, an important property for downstream tasks. Con-
sider the edge case of a perfect foreground segmentation.
If FM are not penalized, assigning the same label to each
connected component would lead to a perfect score, de-
spite merges occurring at every overlap and point of contact.
Thus, as desired, if a model achieves to split a previously oc-
curring FM correctly, this will lead to a large improvement
as an additional gt instance will get matched (see Fig. 3 (c)).

However, C does not incorporate FP and FS errors. Con-
sider the same edge case as before, but now we assign a
separate instance label to each foreground pixel. This, as
a consequence of the one-to-many matching still leads to
a perfect score for C. But the avF1 score will be exceed-
ingly low. Similarly if the gt instances are indeed segmented
perfectly, but the outside noise is segmented as well (see
Fig 3 (d)). Note that this highlights why C should not be
used as a standalone metric. FP and FS errors are accounted
for by the avF1 score, and C penalizes FN and FM errors.
Thus C and avF1 nicely complement each other. For addi-
tional edge cases and the corresponding quantitative evalu-
ation please see Suppl. Fig. 6.

Concerning (r3) there are two highly relevant down-
stream tasks we took into account: 1. Morphological anal-
ysis of neurons, and 2. the task of searching for a given
neuronal morphology within all MCFO images. For the
first task neurons of interest need to be reconstructed in
their entirety. In this regard, FN and only partly anno-
tated neurons are critical, as their manual curation is very
time-consuming. FP, FM and FS are less relevant as, up
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Figure 3. Visualization of segmentation examples to assess suitable evaluation metrics: (a) Depending on the split position, avF1 can vary
significantly at identical gt coverage and error count. (b) Using the avF1 score alone would favor lower coverage over more false split
errors. This might be disadvantageous in downstream analysis tasks. In (c) resolving the merge leads to a large improvement in the overall
score. In (d) both cases achieve a perfect score wrt. the gt coverage C. By penalizing FP and FS errors in the F1 score the limitations of
these predictions are reflected in the overall score. For more edge cases and the full quantitative numbers please see Suppl. Fig. 6.

to a point, they can relatively easily be corrected with a
few clicks. This importance of completeness is strongly re-
flected in C. For the second task, the above considerations
still hold, except that FP are more problematic. This is ac-
counted for by the F1 score, which, as the number of FP
can often be much higher than the number of TP and FN
(see Table 1), heavily penalizes such cases.

Overall, our benchmark score S is in accordance with all
our requirements. However, as a single benchmark score
most likely cannot do justice to every possible use case, we
report additional metrics that can be resorted to for alter-
native downstream tasks as well as for considerations on
method improvements. The additional metrics all satisfy r1
and r2. Finally, our proposed many-to-many matching algo-
rithm is very generic, despite adhering to our quite specific
requirements. There is no special treatment of overlapping
regions which strongly facilitates the matching. The algo-
rithm can be applied to other object shapes by replacing
clRecall with other overlap-based metrics like IoU or IoR.

4. Baselines
To showcase the FISBe dataset together with our selection
of metrics, we provide evaluation results for three baseline
methods, namely PatchPerPix [39], Flood Filling Network
(FFN) [25, 26] and a non-learnt application-specific color
clustering from Duan et al. [13, 52]. For information on all
models, including training and validation details, see Suppl.
Sec. A.3. Quantitative results for the full dataset are shown
in Table 1, for completely and partly sets in Suppl. Table 3
and 4. Qualitative results are shown in Fig. 4, Suppl. Fig. 7
and 8. The results show that all three baseline methods yield
large fragments for clearly visible and easily separable neu-
rons. There are, however, many segmentation errors as re-
flected by the low avF1 scores (maximum value of 0.34±0.01).
PatchPerPix achieves best results for all metrics, except for
false merges. Inspecting PatchPerPix results visually shows
that many touching neurons are falsely merged even with
different color. FFNs and Duan et al. perform similar, al-

though Duan et al. has the highest number of false splits
and lowest number of false merges. Thus it separates best
touching neurons.

As the training of PatchPerPix is not directly applicable
to the partly labeled data we only report results for mod-
els trained on the completely labeled data. FFNs, on the
other hand, operate in a one-versus-all fashion and can thus
by design train on partly labeled data without any modifi-
cations. Training FFN on the full dataset shows increases
in all metrics, especially on the test set. PatchPerPix intrin-
sically handles overlapping instances but it can only bridge
small overlaps up to the used patch size. FFN does not sup-
port overlaps out of the box but could, with some modifica-
tions for efficient inference, be extended to this end. None
of the learnt methods models long-range data dependen-
cies. In summary, all three baseline methods do yield some
true positive neuron reconstructions, but extensive further
method development is necessary to be able to achieve high
quality instance segmentation on this dataset.

5. Conclusion
With this work we release the FISBe dataset, which is, to
the best of our knowledge, the first real-world benchmark
dataset for instance segmentation of wide-ranging thin fila-
mentous intertwined objects. In addition to the data we con-
tribute a set of metrics for meaningful method benchmark-
ing and three baselines. A limitation of FISBe is its bias
towards sparser samples from the FlyLight MCFO image
resource it stems from. This entails that in general, bench-
marking on FISBe does not serve to gauge method perfor-
mance on denser samples. A possible avenue to mitigate
this issue is to define proxy evaluation metrics on denser
samples with the help of domain-specific downstream tasks
for which higher-level annotations exist (see Sec. 3.2 for
examples of such tasks). Main limitations of our base-
line methods are that they handle no or only small over-
laps and are computationally very demanding. In future
work, we are excited to see recently proposed methods for
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Table 1. Quantitative results on the full FISBe validation and test sets (i.e., completely and partly labeled data combined; for results on the
respective subsets see Suppl. Table 3). We compare PatchPerPix (ppp, [39]), Flood Filling Networks (FFN, [26]) trained on the completely
labeled and the full training dataset (+partly) and Duan et al.’s color clustering [13]. We report mean and standard deviation (±) over three
independent runs (except for Duan et al.’s as it is non-learnt). For all scores except FS and FM higher values are better.

Split Method S avF1 C clDiceTP FS FM Cdim Covlp tp tpdim tpovlp

Val

ppp 0.38±0.02 0.41±0.02 0.35±0.01 0.75±0.02 6.0±0.8 24±1.6 0.12±0.01 0.38±0.04 0.46±0.01 0.16±0.04 0.39±0.03

FFN 0.25±0.01 0.27±0.01 0.23±0.01 0.79±0.01 7.0±2.9 12±2.0 0.03±0.01 0.30±0.01 0.32±0.01 0.04±0.01 0.37±0.02

FFN+partly 0.27±0.01 0.29±0.01 0.24±0.01 0.79±0.01 7.7±2.6 14±0.8 0.02±0.01 0.33±0.02 0.34±0.03 0.03±0.00 0.38±0.04

Duan et al. 0.24 0.26 0.22 0.70 14 13 0.02 0.28 0.37 0.03 0.42

Test

ppp 0.35±0.00 0.34±0.01 0.35±0.01 0.80±0.00 19 ±2.9 52±3.4 0.16±0.03 0.27±0.04 0.36±0.01 0.19±0.04 0.19±0.03

FFN 0.25±0.03 0.22±0.04 0.29±0.02 0.80±0.01 17 ±1.7 39±5.3 0.03±0.01 0.26±0.03 0.32±0.03 0.00±0.00 0.24±0.05

FFN+partly 0.27±0.01 0.24±0.02 0.31±0.00 0.80±0.01 18 ±3.7 36±3.6 0.04±0.01 0.28±0.01 0.36±0.01 0.03±0.00 0.28±0.01

Duan et al. 0.30 0.27 0.33 0.77 45 29 0.03 0.36 0.37 0.03 0.34

Test F10.1 F10.2 F10.3 F10.4 F10.5 F10.6 F10.7 F10.8 F10.9

ppp 0.50±0.01 0.48±0.01 0.44±0.01 0.41±0.02 0.35±0.02 0.29±0.02 0.26±0.01 0.19±0.02 0.12±0.01

FFN 0.34±0.05 0.31±0.04 0.28±0.04 0.25±0.05 0.22±0.04 0.20±0.04 0.17±0.03 0.12±0.01 0.07±0.01

FFN+partly 0.36±0.02 0.32±0.02 0.30±0.02 0.27±0.03 0.25±0.03 0.21±0.03 0.18±0.02 0.15±0.02 0.09±0.01

Duan et al. 0.43 0.38 0.35 0.33 0.31 0.29 0.20 0.12 0.06

(a) MCFO (b) gt (c) ppp (d) FFN (e) Duan et al.

VT011145-20171222 63 I2

R14A02-20180905 65 A6

Figure 4. Qualitative results for our three baseline methods: PatchPerPix (ppp), Flood Filling Networks (FFN) and Duan et al.’s color
clustering. In the top row all three methods yield few correctly segmented neurons (the two green neurons), but ppp and FFN merge the
blue and the red one, and Duan et al.’s splits the blue neuron while nicely segmenting the red one. In the bottom row ppp merges many
neurons of different color; FFN segments three neurons, but has low coverage; and Duan et al.’s also merges different colored neurons.

long-range data dependencies, such as structured state space
models [23, 44] and continuous CNNs [30], applied to this
real-world dataset. In addition, the huge set of already avail-
able non-annotated images should lend itself perfectly for
self-supervised pretraining. We believe that the new chal-
lenging FISBe dataset is a great resource to the computer
vision community as it might reveal blind spots of current
methods. Thus, we hope that it will lead to new methods

development for capturing long range data dependencies,
while at the same time advancing cell-level analyses in ba-
sic neuroscience.
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