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Question: 
What is below the white plastic 
storage bin?

Answer:
Two microwaves.

RGB

Depth
Question: 
Where did I leave my paper bag?

Answer:     
Near two microwaves and a 

plastic drawer.

Question: 
Where can I get some pop drinks?

Answer:     
Buy some from the vending machine 

near the corner of the laundry room
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Figure 1. Illustration of an episode history along with questions and answers from our OpenEQA benchmark, which contains
1600+ untemplated questions that test aspects of attribute recognition, spatial understanding, functional reasoning, and world knowledge.
In episodic-memory EQA (EM-EQA), agents parse a sequence of historical sensory observations, and in active EQA (A-EQA), agents
must explore real-world scanned environments to gather information to answer questions. Natural language answers are scored using our
proposed LLM-Match metric, which showed excellent agreement with human scoring.

Abstract

We present a modern formulation of Embodied Question

Answering (EQA) as the task of understanding an environ-

ment well enough to answer questions about it in natural

language. An agent can achieve such an understanding

by either drawing upon episodic memory, exemplified by

agents on smart glasses, or by actively exploring the en-

vironment, as in the case of mobile robots. We accompany

our formulation with OpenEQA – the first open-vocabulary

benchmark dataset for EQA supporting both episodic mem-

ory and active exploration use cases. OpenEQA contains

over 1600 high-quality human generated questions drawn

from over 180 real-world environments. In addition to the

dataset, we also provide an automatic LLM-powered eval-

uation protocol that has excellent correlation with human

judgement. Using this dataset and evaluation protocol,

we evaluate several state-of-the-art foundation models in-

cluding GPT-4V, and find that they significantly lag behind

human-level performance. Consequently, OpenEQA stands

out as a straightforward, measurable, and practically rele-

vant benchmark that poses a considerable challenge to cur-

rent generation of foundation models. We hope this inspires

and stimulates future research at the intersection of Embod-

ied AI, conversational agents, and world models.

1. Introduction
AI agents are starting to transcend their digital origins and
enter the physical world through devices like smartphones,
smart glasses, and robots. These technologies are typi-
cally used by individuals who are not AI experts. To ef-
fectively assist them, Embodied AI (EAI) agents must pos-
sess a natural language interface and a type of “common
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Table 1. OpenEQA vs existing benchmarks. OpenEQA has mul-
tiple modalities, real scenes, active agents, and automated scoring.

Modalities Open
Vocab

Real
Scenes

EM
(video) A(ctive) LLM

ScoringRGB Depth Camera
EQA-v1 [7] 4 4 4 6 6 6 4 6
MP3D-EQA [41] 4 4 4 6 4 6 4 6
MT-EQA [50] 4 4 4 6 6 6 4 6
IQA [13] 4 4 4 6 6 6 4 6
SQA3D [31] 4 4 4 6 4 6 6 6
ScanQA [3] 4 4 4 6 4 4 6 6
RoboVQA [38] 4 6 6 4 4 4 6 6
SEED-Bench [23] 4 6 6 6 4 4 6 6
MMBench [29] 4 6 6 4 4 6 6 4

OpenEQA (Ours) 4 4 4 4 4 4 4 4

sense” rooted in human-like perception and understanding
of the world. Recently, “foundation models” [4] trained on
massive datasets have emerged as a promising approach to
develop these capabilities. Against this backdrop, we pro-
pose that Embodied Question Answering (EQA) is both a
useful end-application as well as a means to evaluate an
agent’s understanding of the world. Simply put, EQA is
the task of understanding an environment well enough to
answer questions about it in natural language as illustrated
in Fig. 1. In this work, we present OpenEQA – the first
open-vocabulary benchmark for EQA, and use it to study
performance of various state of the art foundation mod-
els [15, 19, 26, 34, 35, 40, 47].

Specifically, we study two variants of EQA under a com-
mon umbrella: episodic memory (EM-EQA) and active ex-
ploration (A-EQA), depending on the agent platform. EM-
EQA is applicable to devices like smart glasses that can
leverage episodic memory generated by human wearers to
answer questions. This has the potential to enhance the
memory, perceptual capabilities, and general knowledge of
the user. On the other hand, A-EQA is relevant to mo-
bile robots that can autonomously explore environments to
gather information to answer questions. For example, to
answer the question: ‘Q: Do I have Cayenne pepper left at

home?’, a robot can search the home before responding, ‘A:

I found a bottle of Cayenne pepper in the pantry.’

The intersection of perception and language has long
been a fertile ground for research in AI. While the broad
problem of EQA [7, 50] and VQA [3, 5, 31] have been
studied extensively, our approach and benchmark differ sig-
nificantly along axis such as input modalities, scenes/scans
of real-world spaces, and open-vocabulary questions and
answers, as illustrated in Tab. 1. In particular, OpenEQA
is the first open-vocabulary benchmark for EQA, and sup-
ports both the episodic-memory and active settings. The
key technologies enabling this are: (1) videos and scans of
real-world environments like ScanNet [6], Gibson [43], and
HM3D [36], as well as simulators capable of rending these
scenes [11, 21, 24, 32, 39]; and crucially (2) LLMs capable
of scoring open-ended answers. This combination allows
us to source questions from human annotators by watching
episodes, and then automatically score responses of mod-

els against these annotated answers, enabling us to study
a wide range of questions and methods (see Sec. 3). The
combination of episodes from real-world environments and
open-ended questions makes OpenEQA distinct from pre-
vious EQA [7, 13], 3DQA [3, 31], and VQA [1, 22, 33, 37]
benchmarks that are either closed-vocabulary (i.e. a closed
set of answer), require only a single frame, use simple
procedurally-generated scenes, or non-interactive in nature.

1.1. Our Contributions
1. Benchmark: Our primary contribution is a modern re-

formulation of the EQA problem statement along with
a concrete evaluation benchmark (OpenEQA) that con-
tains over 1600 questions sourced from over 180 real-
world environments and scans [6, 36, 45]. The ques-
tions were meticulously crowd-sourced to be represen-
tative of real-world use cases. Each question was anno-
tated by at least three individuals, ensuring the validity of
the questions-answer pairs. EM-EQA requires answer-
ing questions by leveraging a provided episodic mem-
ory. For A-EQA, we focus on the subset of questions in
simulation of photo-realistic scanned environments. The
EAI agent is spawned at an initial location and must take
any required exploratory actions to answer the question.
The agent is rated on both the correctness of the answer
as well as efficiency of its actions, to reward agents that
perform targeted exploration specific to the question.

2. Evaluation: The open-vocabulary nature of our bench-
mark increases the complexity of evaluating answers
generated by various models. While human evaluations
have been the gold-standard in benchmarking LLMs,
they can often be prohibitively slow and/or expensive.
We thus utilize an LLM [34, 40] to score answers based
on similarity to ground truth answers generated by hu-
mans. Through a double blind study, we find that there
is a strong correlation between our LLM-Match metric
and human preferences.

3. Baselines: Additionally, we provide a set of baseline re-
sults and implementations. These include the recently
released GPT-4V [47] and Socratic use of LLMs [34, 40]
that leverage captioning models [27] or generated scene-
graph representations [15]. Through our evaluation, we
find that GPT-4V is the strongest baseline achieving a
score of 49.6%. While impressive, this significantly
lags behind human-level score of 86.8% on our bench-
mark, underscoring the difficulty and relevance of the
benchmark for our community. In particular, all the cur-
rent generation of foundation models especially strug-
gle at questions that require spatial understanding of ob-
jects and scenes, often performing no better than “blind”
LLMs, highlighting a major deficiency.
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Spatial Reasoning

Q: Can another cookie jar
fit on the cookie jar shelf?

A*: Yes

Functional Reasoning

Q: Where can I store the
house key?
A*: The lockbox on the door

World Knowledge

Q: Does this house have 
forced air heating?

A*: No

Object Localization

Q: Where is the checkers 
board?

A*: Entryway table

Object State Recognition

Q: Is the microwave
door propped open?

A*: No

Object Recognition

Q: What is left of the
kitchen pass through?

A*: A bicycle

Attribute Recognition

Q: What colors is the
kitchen backsplash?

A*: Black

Dataset Examples

Question-Answer !, #∗ Categories

Dataset Statistics

ScanNet

HM3D
557

1079

Questions by Data Source

217 252

220

240263
231

213

Object State 
Recognition

Spatial
Reasoning

Attribute
Recognition

Object
Localization

Object
Recognition

World
Knowledge

Functional
Reasoning

Questions by Category

Questions per Setting

1636 557

EM-EQA A-EQA

Episode History $

Figure 2. Example questions and dataset statistics of OpenEQA. The episode history H provides a human-like tour of a home. EQA
agents must answer diverse, human-generated questions Q from 7 EQA categories, aiming match the ground answers A⇤. Tours are col-
lected from diverse environments including home and office locations (not shown above). Additional dataset examples are in Appendix O.
Dataset statistics (right) break down the question distribution by video source (top), question category (middle), and episodic memory vs
active setting. Note that, by design, the HM3D questions are shared across the EM-EQA and A-EQA settings.

2. Benchmark and Evaluation
This section presents the EM-EQA and A-EQA problem
statements, how they are instantiated in OpenEQA, the
dataset collection process, and the evaluation metrics.

2.1. Episodic-Memory Question Answering
The episodic memory EQA (EM-EQA) task is concerned
with the setting where an agent must develop an understand-
ing of the environment from its episodic memory to answer
questions. This is particularly relevant for EAI agents em-
bedded in devices such as smart glasses, which cannot au-
tonomously explore the world and must rely on the history
of observations to assist users (e.g. ‘Q: I can’t find my keys,

where did I leave them? A: On the kitchen island.’) An in-
stance of EM-EQA is defined by the 3-tuple: (Q, H, A

⇤)
where Q refers to an open-vocabulary question, H is a his-
tory of observations (i.e. episodic memory), and A

⇤ is a
ground truth answer (e.g. as annotated by a human). The
agent’s task is to generate an answer using the episodic
memory, i.e. A = EMEQA Agent(Q, H), that is “sim-

ilar” to the ground truth answer A
⇤. A concrete function

signature that is expected for the agent is described in Al-
gorithm 1 in Appendix D.

2.2. Active Embodied Question Answering
The Active EQA (A-EQA) problem studies the setting
where an autonomous agent can answer questions by taking

exploratory, information gathering actions when necessary
(e.g. ‘Q: Do we have canned tomatoes at home? A: Yes, I

found canned tomatoes in the pantry.’). For simplicity, our
benchmark considers questions that require only navigation
actions. In principle, this can be extended to mobile manip-
ulators to allow for both navigation and manipulation ac-
tions (e.g. opening doors and cabinets) [48]. More formally,
an instance of A-EQA is specified by the 3-tuple (Q, S, A

⇤).
Similar to Section 2.1, Q and A

⇤ denote the question and
human annotated answer, respectively. S refers to the sim-
ulator initialized at the appropriate state state [39], and en-
compasses all details and assets needed to recreate the envi-
ronment. Once the agent is spawned at S, it must take any
necessary exploratory actions before producing an answer
A. Please see Algorithm 1 in Appendix D for a concrete
function signature of an A-EQA agent. Once the agent gen-
erates answer A, it is evaluated both for the correctness of
the answer as well as the efficiency of actions.

2.3. OpenEQA Dataset Collection and Validation

To establish benchmarks for EM-EQA and A-EQA, we
collect a human-generated dataset of (Q, H, A

⇤) using
videos [6] and 3D scans of real-world environments [32,
36, 39, 45]. Then, we meticulously validate each question-
answer pair to provide a high-quality benchmark for EM-
EQA and A-EQA. The dataset is designed to reflect the
types of questions that users might ask an AI assistant em-
bedded in smart glasses or a mobile robot assistant. We
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present examples and dataset statistics in Fig. 2 and com-
pare it to existing benchmarks in Tab. 1.
Data Sources. We collect episode histories H from two
sources: ScanNet [6] and HM3D [36, 45]. For ScanNet,
we utilize RGB-D data captured from human exploration in
various indoor settings, such as bedrooms and offices, and
translate these videos into episode history H . We selected
90 validation scenes and 10 test scenes from ScanNet. For
the scans in HM3D rendered through Habitat, we define a
heuristic exploration policy to mimic human behavior and
manually verify that exploration trajectories adequately ex-
plore the space, ultimately resulting in episode histories for
87 validation scenes, as detailed in Appendix B.
Question Generation. In a preliminary experiment, we
showed human annotators the history H and asked them to
generate question-answer pairs (Q, A

⇤) while playing the
role of end users. This exercise led to the identification
of seven EQA question categories that broadly encompass
the range of questions asked of AI assistants. They test an
agent’s ability to (1) recognize objects (e.g. what is on the
coffee table?), (2) recognize object attributes (e.g. colors or
shapes), (3) recognize object states (e.g. open or closed),
(4) localize objects (e.g. where are my keys?), (5) perform
spatial reasoning (e.g. I’m sitting on the couch watching
TV, in which direction should I turn to find the kitchen?),
(6) perform functional reasoning (e.g. how can I cool down
this room?), and (7) utilize outside world knowledge (e.g.
who/what is depicted in a painting?). The final OpenEQA
dataset focuses on these seven categories. Annotators were
asked to generate two questions and answers per category
after viewing H . Illustrations of the question categories are
provided in Fig. 2, and additional details on the dataset col-
lection and interface are in Appendix B.
Dataset Validation. Each question created by humans un-
derwent further examination by two independent annota-
tors. Validators watched the episode history and assessed
whether the question was unanswerable, ambiguous, or if
the answer was incorrect. Any question-answer pair with
identified issues was discarded. The interface for validation
is provided in Appendix B. The final dataset includes 1636
questions following the statistics in Fig. 2.
Dataset Splits. The validated (Q, A

⇤) pairs are used for
EM-EQA, and reused for A-EQA since we recorded S in
addition to H for simulated scenes. Specifically, A-EQA
agents are initialized at the same start state S that was used
to generate the episodic memory H for EM-EQA. The exis-
tence of a feasible trajectory H provides proof that A-EQA
questions are answerable. However, they can potentially be
answered more efficiently through targeted exploration.
Additional Object Localization Answers. Among the 7
EQA categories, object localization questions pose a unique
challenge for evaluation, because they often have multiple
correct answers with differences that go beyond rephrasing.

Human annotated answer 
A*

“Two microwaves”

Episodic Memory H

“microwave”

Generated answer A 

(Open Vocabulary)

Scoring Prompt

Prompt: …

EQA Agent

LLM Scorer

(Automatic eval)

Question Q

“What is below the white  
plastic storage bin?”

Metrics

Figure 3. Illustration of LLM-Match evaluation and workflow.

For example, the question ‘Q: Where is the toaster?’ may
have multiple correct answers such as ‘A1: to the right of

the stove’ or ‘A2: to the left of the fridge’. Thus we collect
4 additional answers from 2 additional annotators resulting
in 5 answers per object localization question that reflect a
natural distribution of answers that humans would expect
from each localization question.

2.4. LLM-Match: Evaluating Correctness of An-
swers

While the open-vocabulary nature makes EQA realistic, it
poses a challenge for evaluation due to multiplicity of cor-
rect answers. One approach to evaluation is human trials,
but it can be prohibitively slow and expensive, especially
for benchmarks. As an alternative, we use an LLM to eval-
uate the correctness of open-vocabulary answers produced
by EQA agents. Specifically, we adapt the evaluation proto-
col introduced in MMBench [29] to the EQA task. Given a
question Qi, human annotated answer A

⇤
i , and model output

Ai, the LLM is prompted to provide a score �i 2 {1, . . . 5}.
On this scale, 1 indicates an incorrect response, 5 is a cor-
rect response, and intermediate values represent levels of
similarity. We calculate an aggregate LLM-based correct-
ness metric (LLM-Match) as:

C =
1

N

NX

i

�i � 1

4
⇥ 100% . (1)

LLM-Match is illustrated in Fig. 3, detailed in app. C, and
validated against human judgement in Sec. 5.

2.5. Evaluating Efficiency for A-EQA
In A-EQA, we evaluate an agent based on two criteria:
(a) correctness of the answer based on similarity with hu-
man annotation A

⇤ as described in Eq. (1); and (b) effi-
ciency, which measures how quickly the agent answered
the question and favors agents that perform targeted explo-
ration necessary for the question.

We measure efficiency by weighting the correctness
metric �i by the normalized length of the agent’s path
li/max(pi, li), where pi is the timesteps taken by the agent
and li is the timesteps taken in a ground truth path that is
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sufficient for answering the question Qi. Formally, our ef-
ficiency metric is defined as:

E =
1

N

NX

i

(�i � 1)

4
⇥ li

max(pi, li)
⇥ 100%, (2)

which can be interpreted as modified version of SPL [2] (a
metric commonly used to measure the efficiency of naviga-
tion agents). We note that the ground-truth paths are gener-
ated by a scripted exploratory agent. This path was used to
construct the (Q, A) pairs, so it is guaranteed to contain suf-
ficient information to answer. However, we note that these
paths are not necessarily optimal, and thus E > 100% is
theoretically possible.

3. EQA Agents
This section describes the different EQA agents we study
and evaluate in this work. Our guiding principle is to ex-
plore different ways in which foundation models (specifi-
cally LLMs and VLMs) can be used for EQA without any
additional fine-tuning. Towards this goal, the family of
agents studied are: (1) blind LLMs [34, 40], (2) Socrac-
tic LLMs w/ frame captions [26], (3) Socractic LLMs w/
scene-graph representations [15], and (4) VLMs that can
directly process multiple frames (e.g. GPT-4V [47]). For
simplicity, we first describe the agents in the EM-EQA set-
ting, and subsequently discuss extensions to A-EQA. All
agents have the general signature of A = Agent(Q, H) and
contain a language model component that generates the an-
swer. The agents primarily differ in their perception capa-
bilities and how they process H . In addition to these agents,
we also study how humans perform in our benchmark.
Blind LLMs. The text-only or ‘blind’ LLM agent sim-

ply produces an answer based on the question Q without
considering any visual information about the scene, i.e.
A = LLM([!, Q]), where ! is a generic prompt that we
prepend to the question. See Appendix E for additional de-
tails. This agent provides a reference for how far we can get
purely using prior world knowledge and/or random guess-
ing (e.g. yes/no questions). For the LLM choice, we present
results with both GPT-4 [34] and LLaMA-2-70B [40].
Socratic LLMs w/ Frame Captions. This is the simplest

agent we study that leverages the perceptual information
from the episodic memory H . Let {X1, X2, . . . XK} be
K frames drawn from the episodic memory H . We first
leverage an image captioning model (e.g. LLaVA [26, 27])
to generate zi = Captioner(Xi), i = 1, . . . K. These cap-
tions provide a language description of the episodic mem-
ory to the LLM, which could allow it to answer better than a
blind agent. The final answer is computed by the agent us-
ing a generic prompt, the aforementioned frame captions,
and the question, i.e. A = LLM([!, z1, z2, . . . zK , Q]).
See Appendix E for an example of the input. In practice,

we sample K frames uniformly over time from H , with
K = 50 for EM-EQA and K = 75 for A-EQA. For the cap-
tioning model, we use LLaVA-v1.5 [26], and for the LLM
we study both GPT4 [34] and LLaMA-2-70B [40].
Socratic LLMs w/ Scene-Graph Captions. We next

study agents that leverage an object-centric scene-graph
representation of H . The motivation for such agents is that
an object-centric representation might allow for a more
fine-grained perceptual understanding of objects, and pro-
vide a textual representation that might be easier for LLMs
to reason over. Object-centric 3D world representations
involve constructing a scene graph G = SceneGraph(H)
that contains a description of the objects in the scene, their
semantic attributes such as color and 3D locations, and
their relationships. We study two methods of constructing
such a scene-graph: (1) ConceptGraph [15]; and (2)
Sparse Voxel Map (SVM). ConceptGraph (CG) generates
a textual scene-graph representation by first detecting
various objects in the scene, extracting the 3D location
of objects using camera pose and depth information,
and sematic descriptions of objects by using an image
captioning model on crops of the object extracted from the
video. We use the publicly released implementation of CG,
which uses Grounded-SAM [18, 28] with RAM [52] for
object detection and LLaVA-v1 [27] for image captioning.
SVMs are constructed similarly to CGs, but differ in the
post-processing of object detections and in the image
captioning model used. See Appendix F for details. Once
a textual scene graph G is generated, we use it for EQA as
A = LLM([!, G, Q]).
Multi-Frame VLMs. The most generic agent for EQA is

one that can directly process the entire episodic memory to
answer questions, i.e. A = MultiFrameVLM([!, Q, H]).
The recently released GPT-4V model [47] is capable of pro-
cessing up to 50 frames (through the API) in addition to tex-
tual queries. We thus extract 50 frames uniformly spaced
from H and provide it to GPT-4V in addition to prompts
for generating the answer. See Appendix E for details on
implementations and prompts.
Human Agent. Finally, we also run a study with human

participants to establish human-level performance metrics
on our benchmark. We collect answers from a set of hu-
man annotators by providing each annotator with a video
of the episode history H and asking them to answer all of
the questions Q for that scene. We enrolled two indepen-
dent participants for this benchmarking exercise and found
strong agreement in responses.
Agents for A-EQA. So far, we have described agents that
can answer questions Q given an episode history H . How-
ever, in the case of A-EQA, no explicit H is provided,
and agent must generate its own observations through ex-
ploration. In this work, we provide the simplest baseline
for A-EQA that explores environments in a task or ques-
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Figure 4. EQA Agents (Left) Socratic LLMs w/ Image Captions generates captions for frames from episodic memory and provides it
as context to an LLM to generate answer. (Middle) Socratic LLMs w/ Scene-Graph Captions leverage an object-centric scene-graph
representation of episodic memory, which includes captions of object-centric crops and their 3D locations. (Right) Multi-Frame VLM
directly processes visual frames from episodic memory to answer the question.

tion agnostic manner. Specifically, we use frontier explo-
ration [46] and use the agent’s observations as the episodic
memory H to answer questions about the scene. This effec-
tively allows us to re-use all the aforementioned agents, just
with a different and self-generated episodic memory. We
note that the efficiency score of such an agent is expected to
be poor, and we leave open the challenge of more efficient
A-EQA agents to future work.
Force-A-Guess when Agents Abstain. To recall, all EQA
agents we study involve an LLM component and differ pri-
marily in how the episode history is used. In our exper-
iments, we observed that such agents can often be overly
conservative and abstain from answering, especially when
a model thinks it lacks sufficient context. In our evaluation
metric, we do not make a special provision for abstaining,
and consider abstaining an incorrect answer. Thus, we force
the agent to take a guess to give it at least an informed ran-
dom chance, instead of immediately counting it as a failure.

Despite our best efforts, we were not able to force non-
blind agents to guess through prompt engineering. How-
ever, blind LLMs are able to guess purely based on prior
knowledge, and seldom abstain. Thus, for non-blind agents
we first check if the agent abstained. If it did, we use the
answer generated by the corresponding blind LLM. Full de-
tails of this protocol are in Appendix G and an analysis of
the effects of this procedure are in Appendix H. All results
in the main paper use this force-a-guess protocol.

4. Experimental Results on OpenEQA
We present evaluation results of agents described in Sec. 3.
Table 2 reports the overall LLM-Match scores (C) (see
Eq. 1) of the baselines evaluated on the EM-EQA and A-
EQA benchmarks, where EM-EQA results are separately

Table 2. LLM-Match and efficiency scores on OpenEQA. EM-
EQA results are broken down by data source (ScanNet, HM3D,
and ALL). A-EQA results include both LLM-Match scores (Eq. 1)
and agent efficiency (Eq. 2). ⇤GPT-4V scores are calculated on a
subset of 500 OpenEQA questions due to API limitations.

EM-EQA A-EQA

# method ScanNet
Eq. (1)

HM3D
Eq. (1)

ALL
Eq. (1)

HM3D
Eq. (1)

HM3D
Eq. (2)

Blind LLMs
1 GPT-4 32.5±1.2 35.5±1.7 33.5±1.0 35.5±1.7 -
2 LLaMA-2 27.9±1.2 29.0±1.7 28.3±1.0 29.0±1.7 -

Socratic LLMs w/ Frame Captions
3 GPT-4 w/ LLaVA-1.5 45.4±1.3 40.0±1.8 43.6±1.1 38.1±1.8 7.0±0.4

4 LLaMA-2 w/ LLaVA-1.5 39.6±1.3 31.1±1.8 36.8±1.1 30.9±1.8 5.9±0.4

Socratic LLMs w/ Scene-Graph Captions
5 GPT-4 w/ CG 37.8±1.3 34.0±1.7 36.5±1.0 34.4±1.8 6.5±0.4

6 LLaMA-2 w/ CG 31.0±1.2 24.2±1.6 28.7±1.0 23.9±1.6 4.3±0.3

7 GPT-4 w/ SVM 40.9±1.3 35.0±1.8 38.9±1.0 34.2±1.8 6.4±0.4

8 LLaMA-2 w/ SVM 36.0±1.3 30.9±1.8 34.3±1.0 29.9±1.7 5.5±0.4

Multi-Frame VLMs
9 GPT-4V⇤ 51.3±2.5 46.6±3.1 49.6±2.0 41.8±3.2 7.5±0.6

Human Agent 87.7±0.7 85.1±1.1 86.8±0.6 85.1±1.1 -

reported on each of the data sources (i.e., ScanNet and
HM3D). It also presents the efficiency score on A-EQA, as
described in Eq. 2, along with bootstrapped standard errors.
Based on the results, we first share some observations and
remarks, and discuss specific observations in Sec. 5.

1. Humans achieve excellent performance on the bench-
mark (>85%), which confirms the validity of the bench-
mark and correctness of evaluation metrics.

2. Multi-frame VLMs (i.e., GPT-4V) outperform other
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agents. This suggests that a tight integration of percep-
tion and language may significantly benefit EQA.

3. We find that blind LLMs are surprisingly strong base-
lines, with GPT-4 and LLaMA-2 achieving a score of
33.5 and 28.3 respectively on EM-EQA. While this is
substantially lower than GPT-4V or human-level per-
formance, it suggests a large degree of regularity in
the world and that answers to several questions can be
“guessed” without explicit visual context of a specific
environment. We note that early works in VQA [1] also
found blind agents to be strong baselines.

4. Within each family of agents we consistently find that
agents that use GPT-4 as the LLM outperform LLaMA-
2. This suggests that larger LLMs can be a key enabling
factor for good EQA performance.

5. In the EM-EQA benchmark, we find that all agents with
access to perceptual information in the form of frame
captions or scene-graphs outperform blind LLMs (under
the force-a-guess protocol). This again underscores the
importance of perception for EQA.

6. When comparing the performance of agents in EM-EQA
and A-EQA, we generally observe lower scores in A-
EQA. In part, this is due to longer trajectories due to
the use of exhaustive exploration in our A-EQA agents,
which forces a longer history representation often with
irrelevant information for a specific question. In several
situations, this makes the performance of various agents
comparable to that of blind LLMs or even lower (e.g.
GPT-4 w/ ConceptGraphs). This underscores the chal-
lenging nature of the A-EQA benchmark and the impor-
tance of efficient exploration in interactive settings.
Figure 5 breaks down performance on EM-EQA

(human-like trajectories) by the seven question categories
described in Sec. 2.3. Among all the categories, functional
reasoning questions are the easiest for EQA agents to an-
swer, reaching an average LLM-Match score of 45.6. Addi-
tionally, EQA agents also feel comfortable when answering
object state recognition and world knowledge types of ques-
tions. These categories require the agent to have common-
sense understanding of the world, which is what the current
large models are good at. EQA agents suffered the most on
object localization and spatial understanding questions. To
our surprise, agents that use scene-graph representations are
no better than frame-captioning agents, even on spatial rea-
soning questions. This suggests that more work is needed to
incorporate understanding of space and geometry into large
models. While most models achieve nontrivial performance
on all categories, there remains a large gap between even the
best method and human-level performance.

5. Analysis and Discussions
Human Alignment and Robustness of LLM-Match.
Evaluating open-vocabulary answers is an open challenge

Object Recognition

Attribute 
Recognition

Spatial 
Understanding

Object State 
Recognition

Functional 
Reasoning

World
Knowledge

Object 
Localization

Figure 5. Category-level performance on EM-EQA. We find
that agents with access to visual information excel at localizing
and recognizing objects and attributes, and make better use of this
information to answer questions that require world knowledge.
However, on other categories performance is closer to the blind
LLM baseline (GPT-4), indicating substantial room for improve-
ment on OpenEQA. See scores for all methods in Appendix I.

in AI. While human evaluation remains the gold-standard,
it is also expensive and time consuming. An automatic eval-
uation metric is preferable for benchmarking, fast iteration,
and model selection. For this, we proposed the LLM-Match
metric in Sec. 2.4. We now test this metric along two axis:
(1) How closely aligned is the LLM-Match metric with hu-
man evaluators? (2) How sensitive is the LLM-Match met-
ric towards specific choice of prompts and the LLM?

To answer the question on human alignment, we de-
signed an experiment to measure the agreement between
LLM-Match metric and human evaluators. We uniformly
sampled a subset of 300 questions from the dataset. To
ensure coverage of the answer distributions, we sampled
responses from blind LLaMA-2, GPT-4V, and human an-
notated answers. In a double blind study, we then asked
4 human evaluators to score the 300 responses using an
evaluation prompt similar to the one used by LLM-Match.
The evaluators were provided no information about the
source of the response. We found a Spearman’s ⇢ =
0.909 between human and LLM evaluation (bootstrap
CI=(0.883,0.928), N=9999), indicating excellent agreement
with human judgement. For reference, human evaluators
correlated with each other in ⇢ 2 [0.91, 0.93]. Essentially,
LLM-Match agrees with human evaluation nearly as much
as human subjects do with one another.

To answer the question of LLM-Match robustness, we
designed an experiment to test sensitivity under small per-
turbations of the prompt (see Appendix M). Table 8 in Ap-
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pendix M shows that changing the LLM’s role from ‘AI’
to ‘Score Master’ or ‘professional evaluator’ does not sig-
nificantly change results, the scores have a tight correlation
with a Spearman’s ⇢ > 0.95. Similarly, Table 9 in Ap-
pendix M shows analogous results ⇢ > 0.95 for changing
the description of a ‘5’ from ‘perfect match’ to ‘contains
correct answer’, ‘similar to a reasonable person’, or ‘rea-
sonable professional’. Sensitivity to seed and temperature
has negligible impact as well. Finally, we vary the LLM
used for scoring and find that GPT4 has excellent agreement
with human judgement, but GPT-3.5 and LLaMA-2 have
significantly lower correlation (⇢<0.7). Thus, for now, we
recommend using GPT4 for LLM-Match.
Force-A-Guess. When studying Socractic LLMs aug-
mented with perceptual information (image or scene-graphs
captions), we found that agents often abstained from an-
swering the question (e.g. ‘Not enough information to an-

swer the question.’). As noted in Sec. 3, our LLM-Match
metric does not give preferential scoring of abstaining vis-
a-vis an incorrect answer. Thus, we defaulted to the an-
swer from the blind LLM powering an agent when it ab-
stained. In Appendix H, we provide statistics on how fre-
quently each agent abstained, and study performance with-
out defaulting to a blind LLM. In general, we find that GPT-
4-based Socratic agents abstain frequently (up to 55% of the
time), and thus, rely more heavily on the blind LLM-based
score correction that we apply in our benchmark evalua-
tions. By contrast, GPT-4V and LLaMA-2 based models
do not abstain as often (up to 12% of the time), and thus the
differences between the two variants is minimal.

6. Related Work
The intersection of perception and language [3, 9, 12, 16,
20, 23, 25, 30, 54] has long been a fertile ground for AI re-
search. Prior works studying perception and language have
proposed Visual Question Answering (VQA) benchmarks,
such as VQA-v1 [1], VQA-v2 [14], OK-VQA [33] and A-
OKVQA [37], that focus on answering questions from a sin-
gle image. Later works extended question answering tasks
to videos [22, 51, 53] and 3D scenes [3, 5, 16, 31]. These in-
clude benchmark such as VideoQA [53], SQA3D [31] and
ScanRefer [5]. While conceptually similar to our EM-EQA
setting, these prior benchmarks focused on singular and nar-
row themes such as situated reasoning, object localization,
object recognition, activity recognition, temporal window
localization, and future forecasting [5, 17, 22, 23, 31, 42,
44, 51]. Another closely related line of work is prior bench-
marks on Embodied QA [7, 8, 41, 50] and is conceptually
similar to our A-EQA setting. They focus on leveraging
RGB-D to accomplish navigation tasks in simulation [41],
in which the agent must seek out multiple target locations or
objects sampled from a closed vocabulary set [50] Our work
takes inspiration from such prior works [7] and modernizes

it to be relevant in the current era of foundation models. To
our knowledge, our benchmark is the only one that incor-
porates all elements of a real-world use case for EQA: (1)
The study of both episodic memory and active settings to
accommodate for a wide variety of embodied agents like
smartphones and mobile robots, (2) High quality real-world
datasets with broad and non-templated questions, and (3)
Embracing open-vocabulary interactions with users. In ad-
dition, our baselines use modern foundation models trained
on vast internet data, enabling world knowledge beyond the
reach of methods trained solely on simulated interactions.

LLMs have been used to scale the size of benchmarks
either with their use for question and answer generation
[23] or during evaluation time [29, 49]. Evaluation of
open-vocabulary answers remains an open problem in AI.
While the gold-standard remains human evaluations, they
are time-consuming and expensive. An automatic evalua-
tion process is desirable for benchmarking, quick iteration
of research ideas, and model selection. We setup such a
process by taking inspiration from recent works that study if
LLMs can be used as an evaluation proxy in place of human
raters [29]. Through a randomized control trial, we found a
high correlation between human ratings and GPT-4, as evi-
denced by a Spearman correlation coefficient of 0.909.

7. Conclusion
We introduce OpenEQA, the first realistic benchmark to
study open-vocabulary EQA in both episodic memory and
active settings. Specifically, OpenEQA includes challeng-
ing, human-generated, open-vocabulary questions that re-
quire understanding an environment and answering ques-
tion in natural language. Our benchmark is primarily en-
abled by (1) videos and scans of real-world indoor envi-
ronments and (2) LLMs that can be used for scoring open-
ended answers in an efficient and reliable manner, as we
demonstrated through our analyses. We use OpenEQA to
benchmark various state-of-the-art foundation models and
their combinations. This includes approaches that leverage
image captions, scene-graph construction, and multi-frame
VLMs such as GPT-4V. Ultimately, we find a large gap be-
tween the best models (GPT-4V at 49.6%) and human-level
performance (at 86.8%). In particular, for questions that re-
quire spatial understanding, the aforementioned agents per-
form similarly to blind LLMs, suggesting that further im-
provement on perception and semantic grounding is neces-
sary before EQA agents are ready for real-world domains.
In an era where LLMs are smashing hard QA tasks (e.g.
SAT math exams), OpenEQA stands out as a straightfor-
ward, quantifiable, and practically relevant benchmark that
poses considerable challenge to the current generation of
foundation models. We thus believe OpenEQA is well po-
sitioned to serve as barometer for tracking future progress
in multimodal learning and scene understanding.
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