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Figure 1. Architectures and performance comparisons of AdaRevD and other methods. (a) multi-stage architecture [4, 42]; (b) one-stage
architecture [5, 36, 43]; (c) architecture of our method; (d) comparison of different continue-training strategies; (e) PSNR vs. training
memory cost on GoPro dataset. Our method pushes the limit of image deblurring by exploring the insufficient decoding capability.

Abstract

Despite the recent progress in enhancing the efficacy
of image deblurring, the limited decoding capability con-
strains the upper limit of State-Of-The-Art (SOTA) methods.
This paper proposes a pioneering work, Adaptive Patch Ex-
iting Reversible Decoder (AdaRevD), to explore their in-
sufficient decoding capability. By inheriting the weights
of the well-trained encoder, we refactor a reversible de-
coder which scales up the single-decoder training to multi-
decoder training while remaining GPU memory-friendly.
Meanwhile, we show that our reversible structure gradually
disentangles high-level degradation degree and low-level
blur pattern (residual of the blur image and its sharp coun-
terpart) from compact degradation representation. Besides,
due to the spatially-variant motion blur kernels, different
blur patches have various deblurring difficulties. We further
introduce a classifier to learn the degradation degree of im-
age patches, enabling them to exit at different sub-decoders
for speedup. Experiments show that our AdaRevD pushes
the limit of image deblurring, e.g., achieving 34.60 dB in
PSNR on GoPro dataset.

*Corresponding author: Y. Wang (ywang@cee.ecnu.edu.cn)

1. Introduction
As a sub-task of image restoration, image deblurring aims
at removing degraded blur artifacts to recover clean images.
Generally, two types of backbone networks, i.e., multi-stage
and one-stage architectures, consisting of multiple encoders
and decoders, have been proposed for the image deblur-
ring task. Encoders are used to learn a compact degrada-
tion representation from a blur image and decoders decode
the degradation representation to blur patterns1. The com-
pact degradation representation can be treated as a mid-
level feature, equipped with high-level degradation degree2

information and low-level blur pattern. See Fig. 8 and
Sec. 4.3.1 for detailed analysis.

Multi-stage architectures [4, 25, 42] (see Fig. 1 (a)) de-
compose the feature extraction process into multiple sub-
networks. Recent research explorations for image restora-
tion [5, 36, 43] have shown the ability of one-stage archi-
tecture (see Fig. 1 (b)). Instead of focusing on the over-
all design of the model, more attention is paid to the core
components design of the one-stage architecture, such as

1The residual of the blur image and its sharp counterpart is defined as
blur pattern in this paper.

2The degradation degree, i.e., the difficulty of restoring an image or a
patch, is decided by the PSNR of blur image and its sharp counterpart.
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Figure 2. The ranked PSNR curve of the image patches from Go-
Pro [25] train set and the visualization of the patches with various
degradation degrees (e.g. hard, moderate and simple).

Res-Block [12] and Transformer-Block [34]. In fact, sev-
eral one-stage architectures have delicately designed heavy-
weight encoders. MSDI-Net [20] introduces an extra degra-
dation representation encoder to enhance the image deblur-
ring performance. In UFPNet [10], the kernel prior module
is pre-trained to estimate the spatially variant blur kernel
information, which is then integrated into the encoder. Al-
though the encoder is delicately designed to learn robust
degradation representation, the size of the whole network is
limited to what the GPU can accommodate. Thus, these net-
works have to design lightweight decoders to decode blur
patterns from the degradation representation. Insufficient
decoding capability constrains the model’s upper limit.

The performance of existing image deblurring networks
reaches saturation when training is completed, signifying
the performance pinnacle of the current network. Even
with more training iterations, the performance remains un-
changed, or even leads to a decrease in performance, as
shown in Fig. 1 (d). But, constrained by the lightweight
decoders, the deblurring results may not be optimal. This
makes us wonder: Is it possible to inherit the weights of
the well-trained encoder and refactor the decoder with high
capacity, enabling us to map the learned degradation repre-
sentation to the blur pattern more effectively and push the
limits of image deblurring?

A straightforward solution is to refactor the original de-
coder with a heavyweight decoder, and retrain the network
by only updating the decoder. Since the capability of the de-
coder is constrained by the GPU memory, a memory-saving
learning paradigm is important, especially for large models.
Besides, for a typical decoder, layers close to the encoder
contain more high-level degradation information, while fea-
tures close to the output are decoded blur patterns, indicat-
ing the pixel-level residual between blur and sharp images.
Learning a direct mapping from a compact degradation rep-
resentation to the pixel-level blur pattern like previous de-

39.23dB +0.16dB +0.03dB +0dB

34.63dB +0.23dB +0.15dB +0.04dB25.91dB 30.80dB

Figure 3. Visual comparison of the outputs from different sub-
decoders. The first column is the difference between blur image
and the first sub-decoder’s output. The rest of the columns are the
residual between the current sub-decoder and the former one.

coders may suffer from inferior performances during test-
ing, since information unrelated to the target details may
be gradually decoded and accumulated during the layer-by-
layer propagation due to the UNet architecture.

To solve the problems and push the limit of image de-
blurring model, we propose an Adaptive Patch Exiting
Reversible Decoder (AdaRevD), as shown in Fig. 1(c).
Concretely, our decoder is composed of K sub-decoders,
trained in a reversible manner [3], each of which takes the
degradation representation as input and generates a sharp
prediction. A sub-decoder consists of multi-level features,
from high-level semantics to low-level blur patterns. This
design enables a large model capacity while consuming
only limited GPU memory. It progressively separates low-
level and high-level information by disentangling features.
It is the first attempt to train a memory-friendly decoder in
a backward feature propagation manner without loss of in-
formation in the field of high-resolution image deblurring.

Additionally, as shown in Fig. 2 and Fig. 3, given the
varying degrees of blur in image patches3, the difficulty
of restoring each patch varies. With gradually stacking
more sub-decoders, the restoration performances of dif-
ferent patches may reach bottlenecks. Due to the obsta-
cles brought by the deblurring network’s multi-scale fea-
ture property, no prior work attempts to design an exiting
strategy for image deblurring. Thanks to our sub-decoder
structures, we design an adaptive patch exiting strategy ef-
fortlessly. We employ a classifier to predict the degradation
degree of each blur patch, allowing a patch to exit at a spe-
cific sub-decoder to achieve speedup.

The main contributions can be summarized as follows:

• We propose a first work to push the limit of State-Of-The-
Art (SOTA) image deblurring networks by exploring their
insufficient decoding capability.

• We propose a reversible deblurring decoder with a sub-
stantial capacity while remaining GPU memory-friendly.

3To include sufficient content information for deblurring, we use a rea-
sonably large patch size (384×384) to our model. Image patch also can be
understood as sub-image.
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Meanwhile, it gradually disentangles high-level degrada-
tion degree and low-level task-related features, learning
blur patterns while maintaining the overall semantics.

• We propose a simple classifier to get the degradation de-
gree of the input image, enabling the patches to exit at
various decoders for speedup.

• Extensive experiments show that our proposed AdaRevD
can push the limit of image deblurring. It achieves SOTA
results on image deblurring task, e.g., 34.60 dB in PSNR
for GoPro dataset. The PSNR (dB) vs. GPU-memory (G)
compared with others is shown in Fig. 1 (e).

2. Related Works
2.1. Deblurring Methods

Recently, many methods [5, 7, 10, 15, 18, 21, 24, 25, 31,
33, 37, 42–44] apply end-to-end trained deep neural net-
work for image deblurring. In order to achieve better per-
formance, most improvements are made around the model
structure or the specific component. For the structure,
many studies such as DeepDeblur [25], DMPHN [44] and
MPRNet [42] prefer to use multi-stage architecture, which
learns degradation pattern progressively. The diffusion-
based work [37] trains a stochastic sampler that refines
the output of a deterministic predictor. Per contra, the
design of specific block with UNet shows its capacity of
deblurring. NAFNet [5] applies LayerNorm (LN) [1] to
stabilize the training process with a high initial learning
rate. Uformer [36] and Stripformer [32] apply Local Self-
Attention (SA) to capture long-range dependencies with
low complexity. Restormer [43] models global context
by Global Channel SA. DeepRFT [24] proposes Res-FFT-
ReLU-Block for frequency selection. MRLPFNet [9] con-
structs Residual Low-Pass Filter Module based on Deep-
RFT [24] and Restormer [43]. However, few methods con-
sider the varying levels of image degradation.

2.2. Reversible Architectures

In the process of gradient backpropagation, a lot of re-
sources are used to store intermediate features. As the net-
works become deeper and wider for SOTA performance,
GPU memory has been a bottleneck limiting the further
development of the model. To solve this bottleneck, Re-
versible Residual Block (RevBlock) [11] lets each block’s
activations be reestablished from the following ones. i-
RevNet [13] builds a fully inverted network by providing
an explicit inverse. Rev-ViT [23] extends reversible CNN
block to reversible Transformer block, which promotes sav-
ing GPU memory and allows training ViT model with
higher batch size. RevBiFPN [6] builds a fully reversible
bidirectional feature pyramid network by BiFPN [30].
RevCol [3] proposes a reversible column-based foundation
model design paradigm. In accordance with this paradigm,

our AdaRevD is the inaugural endeavor to incorporate re-
versible columns as sub-decoders for image deblurring.
This approach maintains a consistent consumption of GPU
memory during training, akin to a single sub-decoder. Fur-
thermore, the utilization of multiple sub-decoders facilitates
the exit of the network’s forward propagation through the
pertinent sub-decoder.

2.3. Adaptive Inference

Since the kernels are always spatially-variant for the blur
image, different patches receive various degrees of degra-
dation. Facing the deployment of neural networks under
different conditions, many methods [2, 14, 16, 22, 35, 38–
41] are proposed to permit instant and adaptive accuracy-
efficiency trade-offs at runtime. Slimmable networks [41]
enable a single network executable at different widths
which can instantly adjust the width in runtime. For im-
age super-resolution, different image regions usually have
various restoration difficulties [35]. AdaDSR [22] intro-
duces a lightweight adapter module to predict the network
depth map, which facilitates efficient adaptive inference
with sparse convolution. ClassSR [16] classifies the repair
difficulty of patches into three types: easy, medium, and
difficult. Different types are restored by various networks.
APE-SR [35] exits early in the intermediate ResBlocks by
using a simple regressor to estimate the incremental predic-
tion. Unlike the image super-resolution models which ap-
ply a sequence of ResBlocks [12] without down-sample and
up-sample as the main body, deblurring models always tend
to use UNet [28] model. However, The structure of UNet
model is not conducive to exit in different stages. Thus,
it is difficult to apply these adaptive patterns to deblurring
model directly. In AdaRevD, we construct a multi-decoder
architecture with a degradation degree classifier, enabling
the possibility to exit in different sub-decoders.

3. Method
3.1. Main Backbone

Recently, deep learning based deblurring methods always
employ a network composed of four parts: head, encoder,
decoder and tail, which directly map a blur image to its
paired sharp image. This architectural design has gained
mainstream prominence in recent years [5]. The head part
usually applies a 3× 3 convolutional layer, whose parame-
ters are denoted as Θhead to extract shallow features h from
blur image B:

h = H(B,Θhead). (1)
Then, the encoder, parameterized by Θenc, takes h as the
input and generates N hidden features e1, e2, ..., eN :

e1, e2, ..., eN = E(h,Θenc). (2)

After that, the decoder, parameterized by Θdec, decodes the
hidden features as the blur pattern feature d1:
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Figure 4. Architecture of AdaRevD. AdaRevD consists of three parts: a pre-trained encoder, several sub-decoders and a classifier. To push
the limit of image deblurring networks, and map the learned degradation representation to the blur pattern more effectively, the pre-trained
encoder is fixed during training. Each sub-decoder is composed of four Level modules, including a Fuseblock and a FourierBlock. SCA
means Simple Channel Attention proposed in NAFNet [5]. The classifier predicts the degradation degree of each image patch, which
allows the network to exit in the appropriate sub-decoder.

d1 = D(e1, e2, ..., eN ,Θdec). (3)

At last, the tail part, parameterized by Θtail, takes the
degradation feature to obtain the blur pattern t with a 3× 3
convolutional layer and obtain the restored sharp image Ŝ:

t = T (d1,Θtail) (4)

Ŝ = B+ t. (5)

In our AdaRevD, we construct a multi-decoder structure.
The intermediate feature from Level i of jth sub-decoder is
denoted as dj

i . Thus, Eq. 3 is rewritten as:

d1
1, ...,d

1
N−1 = D1(e1, ..., eN ,Θ1

dec), (6)

dk
1 , ...,d

k
N−1 = D1(dk−1

1 , ...,dk−1
N−1, eN ,Θk

dec). (7)

Finally, the restored sharp image from jth decoder is:

Ŝj = B+ T j(dj
1,Θ

j
tail). (8)

The overview of AdaRevD is shown in Fig. 4. Different
from RevCol [3] , which separates the encoder into multi-
ple reversible sub-encoders, AdaRevD builds a reversible
model which contains multiple reversible sub-decoders.
For practical speedup, we design an adaptive patch-exiting
method on top of the reversible structures to determine
whether to early exit in various sub-decoders by a classifier.

There are two training phases in AdaRevD: decoder
training and classifier training. In decoder training,
AdaRevD optimizes the decoder based on the well trained
encoder from UFPNet [10] and keeps the encoder frozen
during training for lower memory consumption. In the clas-
sifier training phase, only the classifier will be optimized.

Thanks to the reversible architecture, AdaRevD can en-
hance the size of a single-stage model, thereby equipping
it with a larger capacity, all while maintaining low memory
requirements. Thanks to our adaptive classifier, AdaRevD
enables the patch to exit at the optimal layer. For sub-
decoders, we propose a FourierBlock for large-scale sens-
ing capability purposes. From Level-1 to Level-4, the num-
ber of blocks are [1, 1, 1, 1] (each sub-decoder).

3.2. Reversible Decoder

Forward and Inverse Structure RevCol [3] builds a re-
versible column architecture composed of multiple sub-
networks (columns) in the encoder for classification-related
tasks. But, image deblurring models [5, 10] are usually de-
signed with very heavy encoders. Thus, fewer benefits can
be gained from reversible architectures. Instead, we pro-
pose reversible decoders which take reversible columns as
sub-decoders to save the GPU memory consumption during
training. It is worth noting that the reversible decoder facil-
itates the utilization of early exit when representations are
presented in a hierarchical multi-scale manner. Formally,
the forward and inverse computations are:

Forward: dj
i =

{
Lj

i (d
j
i+1,d

j−1
i−1 ) + αdj−1

i i > 1

Lj
i (d

j
i+1) + αdj−1

i i = 1
(9)

Inverse: dj−1
i =

{
α−1(dj

i − Lj
i (d

j
i+1,d

j−1
i−1 )) i > 1

α−1(dj
i − Lj

i (d
j
i+1)) i = 1

(10)

where Lj
i is the ith Level module of jth decoder , dj

i is the
output feature of the ith Level in the jth decoder, α is the
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Figure 5. The increment for degraded patches belonging to each
degradation degree class in different sub-decoders. The patches
are generated from GoPro [25] train set. d(i)-d(i − 1) means the
average increment PSNR for the patches in the ith sub-decoder.

learnable scaling parameter.

Level Module The Level modules in reversible decoders
are composed of two blocks: FuseBlock and FourierBlock.
Because reversible architecture can help us save the train-
ing memory, heavier modules can be used to replace
the NAFBlock [5] for further improvement of deblurring.
In AdaRevD, we apply a Fuseblock to fuse the feature
maps from the current and previous sub-decoder and a
FourierBlock [24] to decode better blur pattern.

3.3. Adaptive Classifier

In order to establish a multi-exit deblur model, we design
a multi-decoder structure which predicts sharp images in
each sub-decoder. Generally, the performance of the model
usually increases when the model goes deeper. However,
the blur kernels are always spatially-variant, which means
the recoverability of image patches varies. Fig. 3 and Fig. 5
indicate that the incremental capacity of each sub-decoder
varies with different degraded patches. There is no need to
cost overmany sub-decoders for the patches whose PSNRs
are already high, e.g., higher than 40 dB. For GoPro [25]
dataset, we group the patches to 6 degradation degrees (c̃)
via the PSNR between the blur patch and the sharp patch:
(≤ 20 dB, c̃ = 1), (≤ 25 dB, c̃ = 2), (≤ 30 dB, c̃ = 3), (≤
35 dB, c̃ = 4), (≤ 40 dB, c̃ = 5) and (> 40 dB, c̃ = 6).
Then, an additional classifier is introduced to predict the
degradation degree of the blur patch:

ĉ = Classifier(e4). (11)

The classifier takes e4 as the input and predicts the degrada-
tion degree classification ĉ of the input patch. As indicated
in Fig. 4, the classifier contains a DownSample layer, an

NAFBlock, a LayerNorm layer and an MLP (GAP-Linear-
GELU-Linear) block. GAP means global average pooling.

To avoid consuming computing resources on simple
patches, we define the early-exit signal Ec, indicating which
sub-decoder to exit when processing a patch belonging to
the cth class. Ec is defined as:

Ec =

{
j − 1, if ∃ Oj

c < τ,
J, otherwise, (12)

where J means the total sub-decoder number, τ is a pre-
defined threshold, and Oj

c is collected during the training
process, calculated as:

Oj
c =

1

|Ωc|
∑
P∈Ωc

PSNR(P̂j ,P)− PSNR(P̂j−1,P), (13)

where P is a sharp patch and Ωc means the set of sharp
patches whose corresponding blur patches belong to the cth
class. |Ωc| is the cardinality of Ωc. P̂j means the prediction
from the jth sub-decoder. With the incremental prediction
Oj

c and the degradation degree classification Ĉ of the input
patch, AdaRevD is able to let the patch exit in the (j − 1)th
sub-decoder when Oj

c is smaller than the threshold τ .

3.4. Loss Function

For decoder training phase, the loss is defined as:

ℓm = ℓ1 + 0.01ℓfr (14)

where ℓ1 = 1
N

∑K
j=1 ||Ŝj − S||1 and ℓfr =

1
K

∑K
j=1 ||F(Ŝj) − F(S)||1. F(·) represents 2D Fast

Fourier Transform. The loss is uniformly applied to each
sub-decoder with the same weight.

For classifier-training phase, Cross Entropy Loss is used
to measure the difference between ĉ and ground-truth degra-
dation degree classification c̃:

ℓc = CrossEntropy(c̃, ĉ) (15)

4. Experiment
4.1. Experimental Setup

Dataset We evaluate our method on the four datasets: Go-
Pro [25] / HIDE [29] / RealBlur-R / RealBlur-J [27]. GoPro
dataset is also used for the experiments in Sec. 4.3. More
details will be shown in the supplementary material.

Model Configuration We build 3 reversible decoder
models based on the trained encoder from NAFNet [5] and
UFPNet (default) [10]: RevD-S (2 sub-decoders), RevD-
B (4 sub-decoders) and RevD-L (8 sub-decoders). Because
of the various distributions of different datasets, the class
number varies. The patches from GoPro [25] and RealBlur-
J [27] are divided into 6 classes. Besides, there are 8 classes
for RealBlur-R [27]. With the degradation degree classifier,
AdaRevD-B and AdaRevD-L apply adaptive patch exiting
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Figure 6. Examples on the GoPro test dataset. The first row shows blur image, predicted images of different methods, and ground-truth
sharp image. The second row shows the residual of the blur image / predicted sharp images and the ground-truth sharp image.

Table 1. Comparison on GoPro [25], HIDE [29] and RealBlur [27]
datasets for setting A.

GoPro HIDE RealBlur-R RealBlur-J
Method PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

DeepDeblur [25] 29.08 0.914 25.73 0.874 32.51 0.841 27.87 0.827
SRN [31] 30.26 0.934 28.36 0.915 35.66 0.947 28.56 0.867
DMPHN [44] 31.20 0.940 29.09 0.924 35.70 0.948 28.42 0.860
DBGAN [45] 31.10 0.942 28.94 0.915 33.78 0.909 24.93 0.745
MT-RNN [26] 31.15 0.945 29.15 0.918 35.79 0.951 28.44 0.862
MPRNet [42] 32.66 0.959 30.96 0.939 35.99 0.952 28.70 0.873
HINet [4] 32.71 0.959 30.32 0.932 - -
MIMO-UNet+ [7] 32.45 0.957 29.99 0.930 35.54 0.947 27.63 0.837
Whang [37] 33.23 0.963 - - -
Uformer [36] 33.06 0.967 30.90 0.953 36.19 0.956 29.09 0.886
NAFNet64 [5] 33.69 0.967 31.32 0.943 35.84 0.952 27.94 0.854
Stripformer [32] 33.08 0.962 31.03 0.940 - -
Restormer [43] 32.92 0.961 31.22 0.942 36.19 0.957 28.96 0.879
DeepRFT+ [24] 33.52 0.965 31.66 0.946 36.11 0.955 28.90 0.881
FFTformer [15] 34.21 0.968 31.62 0.946 - -
UFPNet [10] 34.06 0.968 31.74 0.947 36.25 0.953 29.87 0.884
MRLPFNet [9] 34.01 0.968 31.63 0.947 - -

RevD-S(UFPNet) 34.35 0.970 32.08 0.950 36.56 0.957 30.09 0.892

RevD-B(NAFNet) 34.10 0.969 31.86 0.948 36.04 0.952 28.46 0.863
RevD-B(UFPNet) 34.51 0.971 32.27 0.952 36.58 0.957 30.12 0.893
AdaRevD-B 34.50 0.971 32.26 0.952 36.56 0.957 30.12 0.894

RevD-L(NAFNet) 34.18 0.970 31.93 0.948 36.03 0.952 28.46 0.863
RevD-L(UFPNet) 34.64 0.972 32.37 0.953 36.60 0.958 30.14 0.895
AdaRevD-L 34.60 0.972 32.35 0.953 36.53 0.957 30.12 0.894

based on various incremental predictions of different sub-
decoders from the train set. The threshold τ is configured
to 0.05 for the early-exit signal Ec. More details will be
shown in the supplementary material.

Implementation Details and Evaluation Metric We
adopt the training strategy from NAFNet [5] unless other-
wise specified. I.e., the network training hyperparameters
(and the default values) are data augmentation (horizontal
and vertical flips), optimizer Adam (β1 = 0.9, β2 = 0.9,
weight decay 1×10−3), initial learning rate (1×10−3). The
learning rate is steadily decreased to 1×10−7. RevD is
trained with patch size 256×256 and batch size 16 for 200K
iterations with ema decay 0.999. For AdaRevD, an addi-
tional classifier is trained based on the pre-trained encoder
with patch size 384×384 and batch size 16 for 10K itera-
tions. Due to the spatially-variant kernel and statistics dis-

Table 2. Comparison on RealBlur [27] for setting B.

RealBlur-R RealBlur-J Average Memory
Method PSNR SSIM PSNR SSIM PSNR SSIM (MB)

DeblurGAN-v2 [19] 36.44 0.935 29.69 0.870 33.07 0.903 -
SRN [31] 38.65 0.965 31.38 0.909 35.02 0.937 -
MPRNet [42] 39.31 0.972 31.76 0.922 35.54 0.947 6,294
MAXIM [33] 39.45 0.962 32.84 0.935 36.15 0.949 -
Stripformer [32] 39.84 0.974 32.48 0.929 36.16 0.952 3,449
DeepRFT+ [24] 40.01 0.973 32.63 0.933 36.32 0.953 3,569
FFTformer [15] 40.11 0.975 32.62 0.933 36.37 0.954 19,800
UFPNet [10] 40.61 0.974 33.35 0.934 36.98 0.954 8,164
MRLPFNet [9] 40.92 0.975 33.19 0.936 37.06 0.956 -

RevD-B 41.10 0.978 33.84 0.943 37.47 0.961 3,386
AdaRevD-B 41.09 0.978 33.84 0.943 37.47 0.961 -

RevD-L 41.22 0.979 33.99 0.944 37.61 0.962 5,087
AdaRevD-L 41.19 0.979 33.96 0.944 37.58 0.962 -

tribution shifts between training and testing [8], we utilize
a step of 352 sliding window strategy with the window size
of 384×384, and an overlap size of 32 for testing.

Performances in terms of PSNR and SSIM over all test-
ing sets are calculated using official algorithms. Besides,
GPU memory is calculated by training a single patch size
256×256 image with NVIDIA GeForce RTX 3090 GPU.

4.2. Main Results

Setting A. Our models are trained on 2,103 image pairs
from GoPro [25], and compared with other SOTA methods
through the test set of GoPro [25] , HIDE [29] and Real-
Blur [27]. As shown in Table 1, AdaRevD outperforms the
other models in both PSNR and SSIM on the GoPro and
HIDE test set. Besides, AdaRevD-B obtains robust results
on other datasets. For example, AdaRevD-B achieves 36.56
/ 30.12 dB on RealBlur-R / J test set, 0.31 / 0.25 dB higher
than UFPNet [10]. Figure 6 shows the visual comparison
on GoPro test set. Our approach extends the capabilities of
the well-trained encoder by enhancing its capacity. In com-
parison to other SOTA methods, ours effectively minimizes
a greater amount of the blur pattern.
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Figure 7. Examples on the RealBlur-J test dataset.

Setting B. Our models are trained and tested on RealBlur-
J / RealBlur-R [27] respectively. As seen in Table 2,
AdaRevD-B / L achieves 33.84 / 33.96 dB on RealBlur-
J test set, 0.49 / 0.61 dB higher than UFPNet [10]. Fig-
ure 7 shows the visual comparison on RealBlur-J test set. In
comparison with alternative approaches, our method excels
in producing cleaner image restorations. Specifically, when
applied to RealBlur-R, AdaRevD-L achieves a superior out-
come (41.19 dB) compared to UFPNet (40.61 dB).

4.3. Analysis and Discussions

4.3.1 Effect of Reversible Image Deblurring

Memory Consumption In AdaRevD, we propose to en-
hance the size of a single-stage model with the reversible
sub-decoders. As indicated in Table 3, the cost of training
memory is more friendly for reversible architecture when
the size of the model is increasing. The memory consump-
tion of a non-reversible architecture increases at a much
faster rate than that of a reversible architecture as the num-
ber of sub-decoders rises.

FourierBlock As shown in Table 4, compared with the
original NAFBlock [5], FourierConv (RFFT2d-1×1Conv-
GELU-1×1Conv-IRFFT2d) can significantly boost the
model’s performance from 34.15 dB to 34.51 dB.

Retrain on SOTA Methods Since our AdaRevD retrains
on the encoder of SOTA methods, we also train original
SOTA methods with more iterations to see what the re-
sults are. As shown in Table 5, if we allow the well-trained
model to undergo additional iterations using the same train-
ing strategy, the improvement is marginal for NAFNet [5].
We also perform experiments to investigate the impact of
freezing the encoder, and the results are reported in the Ta-
ble 5. For UFPNet [10], keeping both encoder and decoder
training for more iterations would even cause a decrease
from 34.09 dB (freezing encoder) to 33.71 dB. To con-
serve additional GPU memory, AdaRevD investigates the
construction of a multi-decoder architecture by leveraging
a frozen encoder from from other SOTA methods.

Table 3. Performance of different sub-decoders. Dec-Idx is the
sub-decoder number. Non-Rev means reversible mode is not used.

Dec-Idx 1 2 3 4 5 6 7 8

RevD-S PSNR 34.142 34.348 - - - - - -
RevD-B (dB) 34.074 34.313 34.459 34.515 - - - -
RevD-L 34.020 34.287 34.376 34.481 34.577 34.620 34.635 34.640

Reversible Memory 1,980 2,537 2,960 3,386 3,810 4,233 4,660 5,087
Non-Rev (MB) 1,980 3,260 4,548 5,834 7,111 8,398 9,676 10,960

Table 4. Ablation studies. Num-Dec is sub-decoder’s number. N*
means using a decoder with N blocks for each level.

FuseBlock FourierBlock Num-Dec Memory PSNR
NAFBlock Fourier (MB) (dB)

× ✓ × 4 1,864 34.03
✓ ✓ × 4 1,974 34.15
× ✓ ✓ 4 3,258 34.24
✓ ✓ ✓ 2* 3,124 34.15
✓ ✓ ✓ 4 3,386 34.51
✓ ✓ ✓ 4* 5,387 34.49
✓ ✓ ✓ 8 5,087 34.64

Disentanglement of Degradation Representation and
Blur Pattern We use Centered Kernel Alignment (CKA)
similarity metric [17] to measure the similarity between
learned features in RevD-L and blur pattern (residual be-
tween the blur image and its sharp counterpart), as well as
the similarity between learned features and degradation de-
gree (output feature of NAFBlock in Classifier), shown as
the 2nd ∼ 9th columns in Fig. 8(a) and Fig. 8(b). Besides,
we also compute the similarity between encoder features
and the blur pattern / degradation degree, shown in the first
columns. The encoder features (enc, e1 ∼ e5) gradually
learn mid-level degradation representation which is mixed
with the information of low-level blur pattern and high-level
degradation degree.

For features of Level 1∼Level 4 in 8 sub-decoders, we
observe two intriguing phenomenons: (1) One sub-decoder
(dec1) cannot decode the accurate blur pattern from degra-
dation representations (see the 2nd column in Fig. 8(a)).
This may be due to the reason that encoder features in an
UNet architecture inevitably bring information unrelated to
the target details to decoder features via operations such
as skip connections. Details related to the input blur im-
age itself are likely to be superimposed on the decoder fea-
tures. Thus, the target blur pattern (residual between the
blur and sharp images) cannot be decoded precisely. (2)
reversible sub-decoders enable the ability to gradually dis-
entangle low-level blur pattern and high-level degradation
degree (see the 2nd to the last column in Fig. 8). If we
observe the 2nd to the last column in Fig. 8 row-by-row,
it is obvious that more accurate low-level blur patterns are
learned from Level modules connected to the output (e.g.,
Level 1 in Fig. 8(a)), and more high-level degradation de-
gree knowledge is gathered from Level modules connected
to the encoder (e.g., Level 4 in Fig. 8(b)).
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Figure 8. CKA similarities [17] of features and blur pattern / degradation degree for different levels and decoders. The blur pattern
is obtained by subtracting the blur image from the ground-truth sharp image. The degradation degree comes from the feature after the
NAFBlock in the classifier.

Table 5. Comparison for continued training on SOTA methods.
For UFPNet, since we freeze the kernel prior model, the training
memory reduces from 8,164 MB (in Table 2) to 4,311 MB.

Model NAFNet UFPNet

Encoder trainable ✓ × ✓ ×
Memory (MB) 3,394 1,160 4,311 1,617

PSNR (dB) 33.75 33.70 33.71 34.09

Table 6. Ablation for classifier. Reg and Cls means regressor
and classifier respectively. Reg(dk−1

4 ) indicates that the regres-
sor takes dk−1

4 as input and output the incremental prediction for
the kth sub-decoder. τ is the threshold for the regressor and the
early-exit signal (Ec in Eq. 12). The numbers for E1 ∼ E6 mean
the specific sub-decoder to exit for a patch. Acc is the accuracy of
the classifier. L1 is the L1 distance between the regressor’s output
and the real increment of each sub-decoder. D-Rate means the uti-
lization rate of the sub-decoders.

τ E1 E2 E3 E4 E5 E6 Acc / L1 PSNR D-Rate

RevD-B - 4 4 4 4 4 4 - 34.515 100.0%
- 3 3 3 3 3 3 - 34.459 75.0%

Reg(dk−1
4 ) 0.05 - - - - - - 0.071 34.497 82.5%

0.10 - - - - - - 34.457 65.9%

Cls(e5) 0.05 4 4 3 2 1 1 84.43% 34.502 85.8%
0.10 4 3 2 2 1 1 34.437 62.1%

Cls(e4) 0.05 4 4 3 2 1 1 89.84% 34.501 84.3%
0.10 4 3 2 2 1 1 34.436 60.6%

4.3.2 Effect of Adaptive Patch Exiting

Patch-exiting has been proposed in super-resolution tasks,
whose modules usually learn features with the same
scale [35]. Thus, in image deblurring, no prior work has
been attempted to design a patch-exiting method. Dif-
ferent from ClassSR [16] and APE-SR [35], AdaRevD
builds an adaptive patch exiting model based on multi-
ple sub-decoders and a simple classifier. ClassSR [16]
has to train three different models to solve various types
of low-resolution patches, which raises the training bur-
den. AdaRevD employs multiple reversible sub-decoders
to address diverse blur patches, resulting in significant GPU
memory savings and providing flexibility for patch exiting.
APE-SR [35] introduces a regressor to estimate the incre-

mental prediction, while restoration models always tend to
perform better on the train set than the test set. Different
from APE-SR [35], we conduct experiments which use a
regressor to predict the increment directly, while the the re-
gressor seems not perform well on the test set. As can be
seen in Table 6, the L1 distance of the regressor is 0.071 dB,
while the improvement in the latter sub-decoders shown in
Table 3 would be smaller than 0.071 dB. In addition, the re-
gressor method has to estimate the incremental prediction in
each sub-decoder while the classifier only needs to predict
the degradation degree once. Table 6 indicates that the clas-
sifier using e4 as input achieves higher accuracy (89.84%)
than e5 (84.43%). As shown in Table 6, AdaRevD main-
tains performance with a minimal drop (0.014 dB) while
utilizing fewer computing resources (84.3%).

5. Conclusion
In this work, we propose an adaptive patch exiting architec-
ture with multiple reversible sub-decoders to push the limit
of SOTA deblurring networks (e.g. NAFNet and UFPNet).
Reversible sub-decoders help exploring the well trained
model’s insufficient decoding capability while maintain-
ing low training memory. Experiments indicate that the
reversible structure is able to decode the better blur pat-
tern from degradation representations. Since blur image
patches always have different degradation degrees due to
the spatially-variant motion blur kernel, we introduce a clas-
sifier to predict the degradation degree of the blur patch.
Therefore, AdaRevD is able to let the patches exit in the
appropriate sub-decoder by the degradation degree with al-
most no loss of performance. Extensive experiments and
visualizations on various image deblurring datasets demon-
strate the superiority of our method.

6. Acknowledgement
This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 62101191,
61975056), Shanghai Natural Science Foundation (Grant
No. 21ZR1420800), and the Science and Technol-
ogy Commission of Shanghai Municipality (Grant No.
22DZ2229004).

25688



References
[1] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton.

Layer normalization. CoRR, abs/1607.06450, 2016. 3
[2] Han Cai, Chuang Gan, Tianzhe Wang, Zhekai Zhang, and

Song Han. Once for all: Train one network and specialize it
for efficient deployment. In Proc. ICLR, 2020. 3

[3] Yuxuan Cai, Yizhuang Zhou, Qi Han, Jianjian Sun, Xiang-
wen Kong, Jun Li, and Xiangyu Zhang. Reversible column
networks. In Proc. ICLR, 2023. 2, 3, 4

[4] Liangyu Chen, Xin Lu, Jie Zhang, Xiaojie Chu, and Cheng-
peng Chen. Hinet: Half instance normalization network for
image restoration. In Proc. CVPR Workshop, 2021. 1, 6

[5] Liangyu Chen, Xiaojie Chu, Xiangyu Zhang, and Jian Sun.
Simple baselines for image restoration. In Proc. ECCV,
2022. 1, 3, 4, 5, 6, 7

[6] Vitaliy Chiley, Vithursan Thangarasa, Abhay Gupta, Anshul
Samar, Joel Hestness, and Dennis DeCoste. Revbifpn: The
fully reversible bidirectional feature pyramid network. In
Proc. MLSys, 2023. 3

[7] Sung-Jin Cho, Seo-Won Ji, Jun-Pyo Hong, Seung-Won Jung,
and Sung-Jea Ko. Rethinking coarse-to-fine approach in sin-
gle image deblurring. In Proc. ICCV, 2021. 3, 6

[8] Xiaojie Chu, Liangyu Chen, , Chengpeng Chen, and Xin Lu.
Improving image restoration by revisiting global information
aggregation. In Proc. ECCV, 2022. 6

[9] Jiangxin Dong, Jinshan Pan, Zhongbao Yang, and Jinhui
Tang. Multi-scale residual low-pass filter network for image
deblurring. In Proc. ICCV, 2023. 3, 6

[10] Zhenxuan Fang, Fangfang Wu, Weisheng Dong, Xin Li, Jin-
jian Wu, and Guangming Shi. Self-supervised non-uniform
kernel estimation with flow-based motion prior for blind im-
age deblurring. In Proc. CVPR, 2023. 2, 3, 4, 5, 6, 7

[11] Aidan N Gomez, Mengye Ren, Raquel Urtasun, and Roger B
Grosse. The reversible residual network: Backpropagation
without storing activations. In Proc. NeurIPS, 2017. 3

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proc.
CVPR, 2016. 2, 3

[13] Jörn-Henrik Jacobsen, Arnold WM Smeulders, and Edouard
Oyallon. i-revnet: Deep invertible networks. In Proc. ICLR,
2018. 3

[14] Qing Jin, Linjie Yang, and Zhenyu Liao. Adabits: Neu-
ral network quantization with adaptive bit-widths. In Proc.
CVPR, 2020. 3

[15] Lingshun Kong, Jiangxin Dong, Jianjun Ge, Mingqiang Li,
and Jinshan Pan. Efficient frequency domain-based trans-
formers for high-quality image deblurring. In Proc. CVPR,
2023. 3, 6

[16] Xiangtao Kong, Hengyuan Zhao, Yu Qiao, and Chao Dong.
Classsr: A general framework to accelerate super-resolution
networks by data characteristic. In Proc. CVPR, 2021. 3, 8

[17] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and
Geoffrey Hinton. Similarity of neural network representa-
tions revisited. In Proc. ICML, 2019. 7, 8

[18] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,
Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind motion

deblurring using conditional adversarial networks. In Proc.
CVPR, 2018. 3

[19] Orest Kupyn, Tetiana Martyniuk, Junru Wu, and Zhangyang
Wang. Deblurgan-v2: Deblurring (orders-of-magnitude)
faster and better. In Proc. ICCV, 2019. 6

[20] Dasong Li, Yi Zhang, Ka Chun Cheung, Xiaogang Wang,
Hongwei Qin, and Hongsheng Li. Learning degradation rep-
resentations for image deblurring. In Proc. ECCV, 2022. 2

[21] Jen-Chun Lin, Wen-Li Wei, Tyng-Luh Liu, C.-C. Jay Kuo,
and Hong-Yuan Mark Liao. Tell me where it is still blurry:
Adversarial blurred region mining and refining. In Proc.
ACM MM, 2019. 3

[22] Ming Liu, Zhilu Zhang, Liya Hou, Wangmeng Zuo, and Lei
Zhang. Deep adaptive inference networks for single image
super-resolution. In Proc. ECCV, 2020. 3

[23] Karttikeya Mangalam, Haoqi Fan, Yanghao Li, Chao-Yuan
Wu, Bo Xiong, Christoph Feichtenhofer, and Jitendra Malik.
Reversible vision transformers. In Proc. CVPR, 2022. 3

[24] Xintian Mao, Yiming Liu, Fengze Liu, Qingli Li, Wei Shen,
and Yan Wang. Intriguing findings of frequency selection for
image deblurring. In Proc. AAAI, 2023. 3, 5, 6, 7

[25] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep
multi-scale convolutional neural network for dynamic scene
deblurring. In Proc. CVPR, 2017. 1, 2, 3, 5, 6

[26] Dongwon Park, Dong Un Kang, Jisoo Kim, and Se Young
Chun. Multi-temporal recurrent neural networks for progres-
sive non-uniform single image deblurring with incremental
temporal training. In Proc. ECCV, 2020. 6

[27] Jaesung Rim, Haeyun Lee, Jucheol Won, and Sunghyun Cho.
Real-world blur dataset for learning and benchmarking de-
blurring algorithms. In Proc. ECCV, 2020. 5, 6, 7

[28] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net:
Convolutional networks for biomedical image segmentation.
In Proc. MICCAI, 2015. 3

[29] Ziyi Shen, Wenguan Wang, Xiankai Lu, Jianbing Shen,
Haibin Ling, Tingfa Xu, and Ling Shao. Human-aware mo-
tion deblurring. In Proc. ICCV, 2019. 5, 6

[30] Mingxing Tan, Ruoming Pang, and Quoc V Le. Efficientdet:
Scalable and efficient object detection. In Proc. CVPR, 2020.
3

[31] Xin Tao, Hongyun Gao, Xiaoyong Shen, Jue Wang, and Ji-
aya Jia. Scale-recurrent network for deep image deblurring.
In Proc. CVPR, 2018. 3, 6

[32] Fu-Jen Tsai, Yan-Tsung Peng, Yen-Yu Lin, Chung-Chi Tsai,
and Chia-Wen Lin. Stripformer: Strip transformer for fast
image deblurring. In ECCV, 2022. 3, 6, 7

[33] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxim:
Multi-axis mlp for image processing. In Proc. CVPR, 2022.
3, 6

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. 2017. 2

[35] Shizun Wang, Jiaming Liu, Kaixin Chen, Xiaoqi Li, Ming
Lu, and Yandong Guo. Adaptive patch exiting for scalable
single image super-resolution. In Proc. ECCV, 2022. 3, 8

25689



[36] Zhendong Wang, Xiaodong Cun, Jianmin Bao, and
Jianzhuang Liu. Uformer: A general u-shaped transformer
for image restoration. In Proc. CVPR, 2022. 1, 3, 6

[37] Jay Whang, Mauricio Delbracio, Hossein Talebi, Chitwan
Saharia, Alexandros G. Dimakis, and Peyman Milanfar. De-
blurring via stochastic refinement. In Proc. CVPR, 2022. 3,
6

[38] Taojiannan Yang, Sijie Zhu, Chen Chen, Shen Yan, Mi
Zhang, and Andrew Willis. Mutualnet: Adaptive convnet
via mutual learning from network width and resolution. In
Proc. ECCV, 2020. 3

[39] Jiahui Yu and Thomas Huang. Autoslim: Towards one-
shot architecture search for channel numbers. arXiv preprint
arXiv:1903.11728, 2019.

[40] Jiahui Yu and Thomas S Huang. Universally slimmable net-
works and improved training techniques. In Proc. ICCV,
2019.

[41] Jiahui Yu, Linjie Yang, Ning Xu, Jianchao Yang, and
Thomas Huang. Slimmable neural networks. In Proc. ICLR,
2018. 3

[42] Syed Waqas Zamir, Aditya Arora, Salman H. Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, Ming-Hsuan Yang, and
Ling Shao. Multi-stage progressive image restoration. In
Proc. CVPR, 2021. 1, 3, 6

[43] Syed Waqas Zamir, Aditya Arora, Salman H. Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proc. CVPR, 2022. 1, 3, 6

[44] Hongguang Zhang, Yuchao Dai, Hongdong Li, and Piotr Ko-
niusz. Deep stacked hierarchical multi-patch network for im-
age deblurring. In Proc. CVPR, 2019. 3, 6

[45] Kaihao Zhang, Wenhan Luo, Yiran Zhong, Lin Ma, Björn
Stenger, Wei Liu, and Hongdong Li. Deblurring by realistic
blurring. In Proc. CVPR, 2020. 6

25690


