
Denoising Point Clouds in Latent Space via Graph Convolution and Invertible
Neural Network

Aihua Mao1†∗, Biao Yan1†, Zijing Ma1, Ying He2
1School of Computer Science and Engineering, South China University of Technology

2School of Computer Science and Engineering, Nanyang Technological University
ahmao@scut.edu.cn,{202221044459,202130441399}@mail.scut.edu.cn,

yhe@ntu.edu.sg

Abstract

Point clouds frequently contain noise and outliers, pre-
senting obstacles for downstream applications. In this
work, we introduce a novel denoising method for point
clouds. By leveraging the latent space, we explicitly un-
cover noise components, allowing for the extraction of a
clean latent code. This, in turn, facilitates the restoration
of clean points via inverse transformation. A key compo-
nent in our network is a new multi-level graph convolution
network for capturing rich geometric structural features at
various scales from local to global. These features are then
integrated into the invertible neural network which bijec-
tively maps the latent space, to guide the noise disentangle-
ment process. Additionally, we employ an invertible mono-
tone operator to model the transformation process, effec-
tively enhancing the representation of integrated geomet-
ric features. This enhancement allows our network to pre-
cisely differentiate between noise factors and the intrinsic
clean points in the latent code by projecting them onto sepa-
rate channels. Both qualitative and quantitative evaluations
demonstrate that our method outperforms state-of-the-art
methods at various noise levels. The source code is avail-
able at https://github.com/yanbiao1/PD-LTS.

1. Introduction
Point clouds are a popular data format in 3D vision tasks
due to their adaptability and efficiency. They are extensively
employed across a range of fields, including autonomous
driving, robotics, topographical mapping, and the develop-
ment of 3D urban models. These point clouds are generally
captured using LiDAR or structural light systems. However,
the data collected often includes noise and anomalies that
can impede subsequent processes such as 3D reconstruction

∗Corresponding author. †Equal contribution.

 

Encoder

 

 

Encoder

Invertible neural network

3D Euclidean space

��

� = � − ��

� = �� + ��

latent space

noisy point � clean point

clean section

noise section
bijection

�� ��

�� �

Decoder

Figure 1. Top: Traditional denoising approaches often utilize
an encoder-decoder architecture, focusing on regressing geomet-
ric features to predict 3D displacements dn. Bottom: Our method
employs an invertible neural network, integrating geometric fea-
tures to achieve noise disentanglement in the latent space.

and rendering. As a result, denoising is a critical problem
in the management and utilization of 3D point cloud data.

Traditional point cloud denoising methods [2, 3, 10, 12,
18, 19, 27, 55] typically rely on normal estimation or ge-
ometric prior information and are often unreliable in real-
world scenarios. A common issue with these methods is
their tendency to over-smooth surfaces, resulting in a loss
of geometric details.

In response to these limitations, there has been a shift
towards data-driven approaches. Pioneering deep learning
methods for point cloud analysis, such as PointNet [41],
PointNet++ [42], and DGCNN [45], have demonstrated
their ability to capture rich shape structures. Leveraging
these foundational techniques, a variety of deep learning-
based methods have been developed [9, 32, 33, 35, 39, 43,

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5768



52], offering more effective solutions for point cloud de-
noising.

From the perspective of denoising space, we categorize
deep learning methods for point cloud denoising into two
types: 1) Denoising in 3D Euclidean space [9, 33, 39,
43, 52]. These methods reposition noise points to clean
locations in 3D space. To achieve this, they regress high-
dimensional features, which are rich in geometric infor-
mation, to 3D displacement. However, such regression
may suppress the feature expression and often leads to is-
sues such as patch shrinkage or surface collapse [43]. 2)
Denoising in high-dimensional feature space [32, 35].
DMRDenoise[32] resamples clean points on an underlying
2-manifold surface, but this can lead to the loss of fine ge-
ometric details that occurs during the resampling process.
PD-flow [35] employs normalizing flow [23] to establish
a bijective mapping between distributions, but it faces chal-
lenges due to the insufficient local feature extraction and the
need for dimension partitioning in its affine coupling layer.

This paper presents a novel point cloud denoising
method that operates within the high-dimensional la-
tent space, representing a departure from traditional
displacement-based approaches. Our method is under-
pinned by an invertible neural network. Inspired by [1],
we employ invertible monotone operators from functional
analysis to model our invertible neural network. This ap-
proach, enforcing Lipschitz constraints [5], facilitates a bi-
jective mapping for encoding process, while preserving a
flexible and expressive architectural design. To augment
the capabilities of our invertible neural network, particu-
larly in terms of broadening its receptive fields and enhanc-
ing point cloud shape perception, we design a multi-level
graph convolution (MLGC) module. This module utilizes
EdgeConv [45] to capture local shape structures effectively.
By densely connecting the multi-level features from each
EdgeConv layer, we facilitate the progressive accumulation
of contextual semantic information. The resulting enriched
feature set is then integrated into the invertible neural net-
work.

Our approach introduces a prior latent space where noise
and intrinsic clean points are distinctly separated into differ-
ent dimensions. We leverage the integrated MLGC features
within the invertible neural network to parameterize the bi-
jection mappings between the Euclidean space and the prior
latent space. This strategy effectively uncovers the noise-
convolved distribution of noisy point clouds. Upon isolating
the noise in the latent space, we mask the noise-associated
dimensions, leading to the generation of clean latent codes.
Inversely transforming these codes, we obtain a noise-free
point cloud.

It is worth noting that our method is fundamentally dif-
ferent from displacement-based methods, which typically
depend on feature regression. By utilizing the geometric

features from MLGC, our approach enables a more expres-
sive representation within the high-dimensional latent space
offered by the invertible neural network (see Fig. 1). Addi-
tionally, our denoising strategy focuses on the explicit ex-
traction of noise within the latent space, rather than direct
manipulation of points in the Euclidean space. This focus
on latent space processing not only enhances the effective-
ness of denoising but also preserves the structural integrity
of the original point cloud data.

We make the following contributions in the paper:
• We propose a point cloud denoising algorithm, based on

a prior latent space where noise components are disen-
tangled. By modeling bijection mappings, we indirectly
denoise point cloud of Euclidean space by masking the
uncovered noise in the prior latent space.

• For bijection mappings, we introduce invertible mono-
tone operator to model a powerful and lightweight invert-
ible neural network, which has an unconstrained and ex-
pressive architecture by enforcing a Lipschitz constraint.

• To improve the capture and representation of point cloud
shape structure, we design a multi-level graph convolu-
tion module by employing EdgeConv and dense connec-
tions, and integrate these features to invertible neural net-
work for further expression in high-dimenstional feature
space.

2. Related Work
Traditional methods. The bilateral filtering-based meth-
ods [10, 53] aggregate neighbor points and normal infor-
mation to design specialized weighted functions, and com-
bining them with normal to estimate displacement. Previ-
ous work [19, 29, 55] leverage the parameters calculated
from local normals and coordinates to iteratively update the
normals to guide points movement. The graph-based meth-
ods characterize the underlying geometric structure of point
clouds using the features of adjacency graphs. Some re-
searchers [15, 21] constructed k-nn graph between points
and estimating a tangent plane to locally approximate the
underlying manifold, while others [12, 20, 51] constructed
graph between patches and employ the Graph Laplacian
Regularizer (GLR). Among the optimization technique,
Moving Least Squares(MLS)-based methods [3, 16, 26, 37]
estimate the underlying surface by computing explicit pa-
rameters like n-order polynomial [6]. Similarly, Locally
Optimal Projection(LOP)-based methods estimate the un-
derlying surface by producing point sets. Recent works
[31, 47] separately proposed estimating MLS and LOP with
anisotropic weights by asymmetric directional neighbor-
hood to avoid common over-smooth problem. The sparse-
based methods focus on sparse non-smooth surface feature
and reconstruct sparse surface normals by l1 regularization
[25, 36] or dictionary learning [11]. The non-local-based
methods [46, 54] consider the relationship between non-

5769



local patches and combine similar patches to form a patch
matrix, then employ low rank recovery algorithm to de-
noise. In general, these methods mentioned above are not
driven by data, which can result in insufficient assumptions
or a demands for geometric attributes.

Deep learning based methods. Pointcleannet [43] first
leveraged PointNet[41] architecture combined with residual
connections to predict displacement, and move noise points
iteratively to eliminate residual noise. Similarly, Pointfil-
ter [52] employes PointNet [41] to capture patch structure,
and it introduced normals in the loss function to guide the
displacement prediction. EC-Net [49] proposes an edge-
aware joint loss function to encourage good edge percep-
tion for point cloud consolidation. Pistilli et al. [39] pro-
poses GPDNet to design a special graph convolution neural
network which predict adaptive weights to aggregate local
edge features. Luo et al. [33] proposed ScoreDenoise to
model the distribution of noise-clean convolution distribu-
tion, and regarded the underlying clean surface as the area
with the highest probability density, then score matching
technique was used to learn the gradient-log of convolution
distribution to perform gradient ascent for denoising. DM-
RDenoise [32] proposed resampling based method and at-
tempted to reconstruct local underlying surface for the sam-
pling of clean points. This resampling method, however,
struggled with fine local shape preservation. Mao et al.
proposed PD-flow [35] to model the distribution of noisy
point cloud using normalizing flow [23], and applied con-
sistency loss in latent space to filter noise component and
obtain clean latent code. However, it is difficult to grasp
shape structure for denoising with just a single normaliz-
ing flow. Recently, Edirimuni et al. [9] proposed Itera-
tivePFN, which utilize dynamic graph convolution [45] to
design stacked denoising modules, and simulated the iter-
ative filtering during training process to encourage faster
convergence. These works inspire us to further express geo-
metric features from graph convolution in high-dimensional
latent space for point cloud denoising.

Normalizing flow for point cloud analysis. Normal-
izing flow was initially proposed for image generation and
density estimation tasks [13, 14, 23]. Owning to the in-
vertible transformation and distribution learning ablility, it
is increasingly applied to point cloud downstream tasks in
recent years. For point cloud generation, Pointflow [48]
first utilizes continuous flow [7, 17] to model the distribu-
tion of point clouds by mapping them to latent space with
Gaussian distribution, and generates point clouds via the in-
verse transforamtion. Klokov et al. [24] proposes DPF-Net
to model discrete flow for point cloud generation, which
has better inference efficiency compared to Pointflow [48].
Further, Go-with-the-flow [40] unsupervises learns to split a
point cloud into several parts, and separately learns the dis-
tribution of them using discrete flow. Soft-flow [22] bridges

the gap between 3D Gaussian distribution and the under-
lying 2D manifold distribution of point clouds by adding
noise. On other tasks, PU-flow [34] and PD-flow [35] both
utilize Glow [23] to model invertible neural network for the
upsampling and denoising tasks. In recent years, Behrmann
ta al. [5] proposed invertible residual neural network based
on Lipschitz constraint function and Banach fixed point the-
orem, which is a new family of normalizing flow. Further,
based on the Lipschitz network and invertible theory, many
research works [1, 8, 30, 38] improved network architec-
ture and propose new invertible expressions to achieve bet-
ter transformation ability. Inspired by these works, we in-
troduce the invertible monotone operator from [1, 4] as the
theoretical fundamentals of our invertible transformation to
bijectively connect a prior latent space.

3. Method

3.1. Motivation

As mentioned in Sec. 1, we category deep learning denois-
ing methods into two types. The first type is denoising in
3D Euclidean space by directly moving points, also known
as displacement estimation methods, whose general process
is shown in Fig. 1 (top). They regress geometric features to
3D displacement di for noisy point x̃i, and the denoising
objective is x̄i = x̃i − di. This non-trivial process lim-
its the feature expressiveness, because empirically grasping
elusive shape structures always requires high-dimensional
feature space. Inspired by the second type which denoising
in high-dimensional feature space, we aim to leverage la-
tent space to uncover noise component and extract clean la-
tent code. To intuitively describe this process, we analogize
the denoising problem as the scenario of projecting outlier
points onto a plane(see Fig. 2). Looking at a noisy point
cloud in 3D Euclidean space can be analogized as the 2D
vertical view of the plane, where the positional relation-
ship between the points and the plane is unclear, since noisy
components are hidden in 3D coordinates in the form of ad-
dition: x̃i = xi + ϵ. Consequently, we could change the vi-
sual angle to obtain explicit positional relationship from the
front view of 3D. This process can be analogized as finding
a representation of point clouds in high-dimensional latent
space, where the noise components are explicitly disentan-
gled and uncovered. As shown in bottom-right of Fig. 2,
the noise component and intrinsic clean points are disentan-
gled into different channels of latent code: z̃i = [zc, zn],
then we can set noise channels zn = 0 to obtain the clean
latent code. Through forming a bijection mapping, setting
zn = 0 in the latent space could exactly reflect a bijective
change: x̄i = x̃i − di in the coordinate space. As a re-
sult, our method’s training objective is to match the latent
space where noise can be uncovered. To this end, we first
model an invertible neural network based on the theory of

5770



� = � + �

Vertical view of 2D Front view of 3D

� = [��, ��]

Euclidean space of 3D Latent space 

uncover

uncover
analog

Figure 2. Visual analog of uncovering noise components in the
latent space.

invertible monotone operator, then we design a multi-level
graph convolution(MLGC) module to extract shape struc-
tural features and integrate them into the invertible neural
network to guide the noise disentanglement process. The
overall network architecture is shown in Fig. 3.

3.2. Invertible Neural Network

In the field of partial differential equations and functional
analysis, the monotone operator has a rich function space
and invertible properties [1, 4]. Inspired by this, we intro-
duce an invertible neural network based on monotone oper-
ator [1] to model bijection mappings.

3.2.1 Invertible Transformation

Let G : Rn → Rn be a Lipschitz-continuous function
with Lipschitz constant L < 1. The forward transfor-
mation based on G is defined as the following function
F : Rn → Rn

F (x) =

(
Id +G

2

)−1

(x)− x, (1)

where Id denotes the identity function. According to the
theory of invertible monotone operators [1, 4], F is mono-
tone ⇔ G is 1-Lipschitz(L < 1), and strictly monotone
continuous function F : Rn → Rn is invertible. Thus,
for Eq. (1), we have the inverse formulation F−1(x):

F−1(x) =

(
Id−G

2

)−1

(x)− x (2)

We refer readers to [1] for the proof and more details about
the invertible transformation. Further, we note that accord-
ing to the Banach fixed point theorem [5], (Id + G) has an
unique inverse, to calculate the result of the inverse function

y = (Id + G)−1(x) in Eq. (1), we iterate y = x − G(y) a
certain number of steps to converge to y, which satisfies the
accuracy requirement, and the same goes for Eq. (2).

3.2.2 Modeling Invertible Neural Network

To implement the 1-Lipschitz function G in Eq. (1) with
neural network blocks, we compose linear mappings with
1-Lipschitz activation function. For a simple case: let
gθ(x) = ψ(Wx + b), where ψ is 1-Lipschitz activation
function, we have:

Lip(gθ) < 1, if ∥W∥2 < 1 (3)

where ∥ · ∥2 denotes the spectral norm. As a result,
we can perform spectral regularization on W to enforce
∥W∥2 < 1. Then, we compose several blocks of gθ sat-
isfying Lip(gθ) < 1 to model the 1-Lipschitz function G in
Eq. (1), which has an unconstrained and expressive archi-
tecture, as it does not require dimension partitioning com-
pared to INN based on affine coupling layers [23, 35], this
enables our INN to be effectively combined with multi-level
graph convolution network, to implement invertible encod-
ing process for denoising.

3.3. Multi-level Graph Convolution

DGCNN [45] proposes a dynamic graph convolution frame-
work to capture rich geometric properties of point clouds.
It dynamically constructs directed graph between points
and extract edge features by EdgeConv, which recover the
involved topology and reflects the relationships between
neighboring points. Therefore, we introduce the frame-
work of DGCNN for geometric feature extraction, and
add dense connections [28] between each EdgeConv lay-
ers to capture contextual semantic information. To be
specific, we initially construct k-nearest neighbor (k-NN)
graph G = (V, E) based on the 3D Euclidean distance be-
tween points, where V = {1, ..., n} and E ∈ V × V are
the vertices and edges respectively, then we fix the graph
in each subsequent EdgeConv layers. Given a point cloud
X = {xi ∈ R3}Ni=1, the initial feature vector is pro-
duced as: h

(0)
i =

∑
j:(i,j)∈E MLP(xi∥xi − xj), where

i is a vertex on the graph, (i, j) denotes an edge and
∥ represents concatenation, and then in each subsequent
layer l, we generate new features by EdgeConv: f

(l)
i =∑

j:(i,j)∈E MLP(h
(l−1)
i ∥h(l−1)

i − h
(l−1)
j ), which captures

local and global geometric structure from h
(l−1)
i − h

(l−1)
j

and h
(l−1)
i respectively. To implement dense connection,

starting from 1st EdgeConv layer, we use the output of all
previous layers as input of each layer, and use its own out-
put as the input of all subsequent layers. As a result, with
f
(l)
i of i-th vertex through l-th EdgeConv layer, the input

5771



Figure 3. Our network architecture. The top region illustrates the multi-level graph convolution (MLGC) module. The bottom region
shows the invertible neural network, which absorbs augmented points and geometry features from MLGC to obtain a disentangled latent
code. The right region represents the process of noise factor disentanglement.

h
(l)
i for (l+1)-th layer can be described as:

h
(l)
i = [f

(l)
i , f

(l−1)
i , ..., f

(0)
i ] (4)

where [.] denotes concatenation. We perform dense connec-
tions in two stages separately, which constructs our hierar-
chical multi-level graph convolution(MLGC) network. The
architecture of one stage is shown in Fig. 4.

3.4. Invertible Encoding Process

The objective of encoding process is to obtain the latent rep-
resentation z̃ = [zc, zn] of noisy point cloud, where noise
and clean part are separated into zc and zn respectively. To
achieve this, our encoding process needs to meet two re-
quirements: 1) The encoding process is invertible, which
allows to recover the original clean point cloud from the
clean latent representation zc without any additional de-
coder learning. 2) Effectively capturing local shape struc-
ture, which is essential to accurately predict and isolate
clean representation.

We derive it from Eq. (1) that the neural network of
F (x) cannot pool the neighboring features to provide lo-
cal area receptive field, which leads to the loss of lo-
cal shape perception. Thus, we integrate features of the
MLCG network to invertible neural network(INN) based
on Eq. (1). To implement this, we first hierarchically con-
struct the invertible network. According to Eq. (1), the
function family of single-block forward transformation is
F := {f : f =

(
Id+G

2

)−1 − Id, Lip(G) < 1}, where
Id denotes the identity. Further, the function family of l-th
forward layer with j-block can be defined by composition
Fθl := {f : f = f1◦· · ·◦fj , f1, · · ·, fj ∈ F}. Finally,
the entire invertible transformation is the composition of
several forward layers. Therefore, with the densely con-

nected EdgeConv features H(l) ∈ RN×C from Eq. (4), we
first perform dimension adaption and also multi-level fea-
tures fusion through: C(l) = MLP(H(l)), then we inte-
grate C(l) before each Fθl transformation through addition
X

(l)
c = X(l) + C(l), where the enhanced transformation of

l-th forward layer can be denoted as: X(l+1) = Fθl(X
(l)
c ).

Owning to the unconstrained and expressive architecture
of INN, it can further enhance the representation capabil-
ities of MLGC features while maintain invertibility, which
makes INN and MLGC networks complement each other
subtly, and effectively encode and obtain disentangled la-
tent representation, as shown in Fig. 3.

3.5. Dimension Augmentation

According to Eq. (1), a single forward transformation F
must output the results with the same dimension with the
input data. Thus, if we directly feed raw 3D points to F ,
the feature dimension between each forward block will be
consistent with 3D points, which constrain the transforma-
tion capability. Therefore, to maintain high-dimensional
feature space throughout the encoding process, we aug-
ment the dimension of each points before input. Given a
point xi, we first extract its augmented features by hai =
f(xi) +

∑
xj∈N(xi)

g(xj∥xj − xi), where N(xi) refers to
the n nearest neighbors of xi, f and g are parameterized by
MLP. Then we concatenate them to obtain the input for 1st
invertible transformation layer:

X(0) = {x(0)i = [xi,h
a
i ]}Ni=1 (5)

where xi ∈ R3, hai ∈ RDa and x
(0)
i ∈ R(3+Da). We

use augmented X(0) as the input of the first layer of in-
vertible encoding process, which maintains (3 + Da) di-
mension between each forward block, and creates high-

5772



Figure 4. One stage of multi-level graph convolution (MLGC). Within a stage, the outputs of a graph convolution layer are concatenated
with its inputs, forming the input for the subsequent layer.

dimensional spaces for further MLGC features expression
and noise components uncovering.

3.6. Training Objective

Reconstruction loss. We employ the Earth Mover’s Dis-
tance(EMD) to allocate clean points for supervising each
denoised points, which is calculated as:

EMD(X̂,X) = min
Φ:X̂→X

∑
x̂∈X̂

∥x̂− Φ(x̂)∥ (6)

where Φ is a bijection mapping between the denoised point
cloud X̂ and ground truth X , which is consistent with the
bijective property of our invertible neural network. We
found that the displacement based methods [9, 33], typ-
ically allocate the nearest points in ground truth for each
noisy points to calculate the objective displacement in loss
function. However, this could lead to a considerable por-
tion of clean points being missed during supervision, while
other clean points may supervise multiple denoised points,
which have a significant impact on the uniformity. Instead,
EMD addresses this drawback well by maintaining the bi-
jective supervision. We will further discuss this issue in the
experiment.

Moreover, we do not employ the distribution learning
loss log px(X) based on the prior of Gaussian distribution
pz(Z), which means that we do not need to calculate the
Jacobian matrix of the invertible transformations. Specif-
ically, our prior is the latent space where noise compo-
nents are disentangled and located in specific noise chan-
nels. From this perspective, the process of reconstructing
points originated from clean section zc via EMD is actually
the process of mapping the prior latent space.

4. Experiments

4.1. Setup

Dataset. We train and test our framework on PUNet [50],
which is same with the SOTA works of IterativePFN [9],
PD-flow [35], ScoreDenoise [33]. The point clouds for

training dataset are sampled from the initial 40 meshs, in-
cluding resolutions of 10K, 30K and 50K, then we follow
IterativePFN [9] to add Gaussian noise with standard devia-
tion ranging from 0.05 to 0.2 of the bounding sphere radius.
For the testing dataset, there are 20 meshes and the point
clouds are sampled with the resolutions of 10K and 50K.
Then, Gaussian noise with standard deviation including 0.1,
0.2, 0.25 were added to these point clouds for testing. Be-
fore training, we normalize each point cloud into the unit
sphere and sample patches with size of 1K by employing
FPS and k-NN neighbor algorithm. During the testing pro-
cess, we employ the patch stitching method proposed by
IterativePFN [9] which preserves points closer to the center
of patches to restore point cloud from overlapping denoised
patches. Furthermore, for the purpose of evaluating the gen-
eralization ability, we introduce the Paris-rue-Madame [44]
dataset to visually test the denoising results of unseen real
world point clouds obtained by laser scanners.

Implementation. Our framework is trained and tested
on NVIDIA RTX3090 GPUs using PyTorch 1.11.0 with
CUDA 11.3. We trained two versions of our framework: 1)
Light-version: a single denoising module with 12 invertible
transformations and EdgeConv layers, with the augmented
dimension Da = 48 and 679K parameters. 2) Heavy-
version: 3 denoising modules which are stacked to perform
the iterative denoising process internally. Each module con-
tains 10 invertible transformations and EdgeConv layers,
with the augmented dimension Da = 32 and 1.4M pa-
rameters. For the training of heavy-version, we generate
2 intermediate states between noisy point cloud and ground
truth for supervision during the training process. The de-
tails of implementation could be found in [9]. We train both
versions of our framework for 40 epochs, with the Adam
optimizer and a learning rate of 2× 10−3.

4.2. Quantitative Results

We evaluate our method on Chamfer distance(CD) and
Point-to-mesh(P2M) distance metrics, as presented in
Tab. 1. Both versions of our framework show significant
advantage on CD and the state-of-the-art results on P2M.

5773



Method
10K points 50K points

1% noise 2% noise 2.5% noise 1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M CD P2M CD P2M CD P2M

Noisy 36.9 16.03 79.39 47.72 105.02 70.03 18.69 12.82 50.48 41.36 72.49 62.03
PCN [43] 36.86 15.99 79.26 47.59 104.86 69.87 11.03 6.46 19.78 13.7 32.03 24.86

GPDNet [39] 23.1 7.14 42.84 18.55 58.37 30.66 10.49 6.35 32.88 25.03 50.85 41.34
DMRDenoise [32] 47.12 21.96 50.85 25.23 52.77 26.69 12.05 7.62 14.43 9.7 16.96 11.9

PD-flow [35] 21.26 6.74 32.46 13.24 36.27 17.02 6.51 4.16 12.7 9.21 18.74 14.26
Score [33] 25.22 7.54 36.83 13.8 42.32 19.04 7.16 4.0 12.89 8.33 14.45 9.58

Pointfilter [52] 24.61 7.3 35.34 11.55 40.99 15.05 7.58 4.32 9.07 5.07 10.99 6.29
IterativePFN [9] 20.56 5.01 30.43 8.45 33.52 10.45 6.05 3.02 8.03 4.36 10.15 5.88

Ours(light) 18.25 4.96 25.67 8.24 28.49 10.34 4.96 3.06 7.06 4.47 9.18 5.92
Ours(heavy) 17.81 4.65 24.41 7.58 26.99 9.67 4.70 2.95 6.46 4.25 8.63 5.81

Table 1. Denoising results of different methods on PUNet [50]. CD and P2M distances are multiplied by 105.

Figure 5. Visual results of point-wise P2M distance for 10K resolution shapes with 2% Gaussian noise on the bounding sphere radius.

Specifically, PCN [43] and DMRDenoise [32] are good at
denoising on dense point clouds and high noise scale situ-
ations respectively. While PD-flow [35] and GPDNet [39]
has good performance at low noise scale situations, which
is also found in ScoreDenoise [33] with the gradient as-
cend denoising process. All these methods have a bias to-
wards specific noise scales or densities. IterativePFN [9]
and PointFilter [52] can reach excellent P2M especially un-
der high noise scale and dense conditions, but our results
still outperform them well, since they focus to project noisy
points to the underlying clean surface by allocating the near-
est points in ground truth for supervising, which misses lots
of clean points and reduces uniformity. To demonstrate this,
we further compare the uniformity metric of our heavy-
version network with SOTA methods in Tab. 2, which shows

our method have a significant advantage in terms of unifor-
mity. Moreover, we provide quantitative comparison with
traditional methods in supplementary.

4.3. Qualitative Results

Fig. 5 shows the qualitative results of SOTA works and our
method on PUNet with 10K points and %2 Gaussian noise,
where the color depth of each point depends on the value
of P2M. We can observe from the color distribution that our
method in heavy-version generates the cleanest point clouds
in all methods from the noisy input shown in the first col-
umn. Furthermore, when looking at the details, we see that
our denoised points are uniformly distributed on the mesh
surface. While the denoised points in other methods fre-
quently gather together, following with lots of hollow areas,

5774



Score PD-flow IterativePFN OursNoisy

Figure 6. Visual results of our denoiser on the real-world dataset Paris-rue-Madame [44].

which influences uniformity. Fig. 6 shows the denoised re-
sults on a scenes in the RueMadame database. Our method
in heavy-version not only effectively restores objects such
as window sills and cars, but also eliminates the linear traces
caused by laser scanning.

Noise Methods Uniformity for different p
0.4% 0.6% 0.8% 1.0% 1.2%

1%

Score [33] 1.128 1.448 1.795 2.168 2.579
PD-flow [35] 0.346 0.474 0.597 0.745 0.925

IterativePFN [9] 0.583 0.711 0.815 0.954 1.154
Ours 0.129 0.193 0.271 0.384 0.444

2%

Score [33] 1.951 2.401 2.886 3.422 4.008
PD-flow [35] 0.879 1.147 1.467 1.789 2.154

IterativePFN [9] 1.042 1.161 1.331 1.531 1.800
Ours 0.214 0.417 0.466 0.545 0.594

2.5%

Score [33] 2.153 2.615 3.113 3.652 4.202
PD-flow [35] 1.099 1.392 1.715 2.061 2.474

IterativePFN [9] 1.016 1.025 1.163 1.332 1.580
Ours 0.208 0.311 0.585 0.719 0.738

Table 2. Uniformity Comparison of different methods on 10K
points under various Gaussian noise scales. It is estimated in the
local area of different radii p, and all results are multiplied by 10.

Ablation
10K points

1% noise 2% noise 2.5% noise
CD P2M CD P2M CD P2M

w/o MLGC 25.93 10.36 38.85 16.45 50.11 24.56
w/o stage-2 18.42 5.12 26.12 8.60 29.47 11.03
1-inv-layer 23.01 7.95 34.74 13.56 43.66 20.04
6-inv-layers 18.35 4.94 25.94 8.27 29.36 10.76
8dim-Aug 18.59 5.13 26.32 8.63 29.78 11.09

64dim-Aug 18.25 4.96 25.64 8.22 28.61 10.49
Ours(light) 18.25 4.96 25.67 8.24 28.49 10.34

Table 3. Ablation study on the PUNet dataset of 10K points. CD
and P2M distances are multiplied by 105.

4.4. Ablation Study

In order to demonstrate the effectiveness of each modules,
we conduct ablation study on our light version framework
shown in Tab. 3 with the following terms: (1) MLGC net-
work. The results without the entire MLGC network be-
comes very poor, which demonstrates the extreme impor-
tance of its local shape information for noise disentangle-
ment, and the adverse effect of missing stage-2 of MLGC
also demonstrates the positive impact of the higher-level
geometric features from stage-2. (2) Invertible neural net-
work. We shorten our invertible transformations to 1 layer
and 6 layers, respectively. We can find from the results that
without the high-level latent space provided by sufficiently
deep invertible transformations, it is difficult to disentangle
noise components solely based on graph convolutional fea-
tures. (3) Augmented dimension Da. Compared with our
light-version framework with Da = 48, the feature space
of Da = 8 between each forward layers is not wide enough
for geometric feature expression and noise disentanglement,
while higher dimension like Da = 64 makes minimum
improvement, and its generalization performance on 2.5%
noise even deteriorates. In summary, both MLGC network
and the invertible neural network are indispensable. Fur-
ther ablation study including noise channel zn of latent code
ẑ = [zc, zn] can be found in supplementary.

5. Conclusion
In this paper, we indirectly denoise point clouds by uncov-
ering noise in latent space. To model the encoding process,
we propose a novel invertible encoding framework which
integrates the features of multi-level graph convolution to
the invertible neural network. This encoding process forms
a bijective mapping between point cloud and latent space
while capturing rich geometric structure. In latent space,
noise components are disentangled and located in specific
channels. We could simply mask noise channels and ob-
tain clean points from the subsequent clean latent code via
inverse transformation. Experimental results demonstrate
that our method outperforms state-of-the-art methods.

5775



References
[1] Byeongkeun Ahn, Chiyoon Kim, Youngjoon Hong, and

Hyunwoo J Kim. Invertible monotone operators for normal-
izing flows. Advances in Neural Information Processing Sys-
tems, 35:16836–16848, 2022. 2, 3, 4

[2] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar
Fleishman, David Levin, and Claudio T Silva. Point set sur-
faces. In Proceedings Visualization, 2001. VIS’01., pages
21–29. IEEE, 2001. 1

[3] Marc Alexa, Johannes Behr, Daniel Cohen-Or, Shachar
Fleishman, David Levin, and Claudio T. Silva. Computing
and rendering point set surfaces. IEEE Transactions on visu-
alization and computer graphics, 9(1):3–15, 2003. 1, 2

[4] HH Bauschke and PL Combettes. Convex analysis and
monotone operator theory in hilbert spaces, 2011. CMS
books in mathematics). DOI, 10:978–1. 3, 4

[5] Jens Behrmann, Will Grathwohl, Ricky TQ Chen, David Du-
venaud, and Jörn-Henrik Jacobsen. Invertible residual net-
works. In International conference on machine learning,
pages 573–582. PMLR, 2019. 2, 3, 4

[6] Frédéric Cazals and Marc Pouget. Estimating differential
quantities using polynomial fitting of osculating jets. Com-
puter Aided Geometric Design, 22(2):121–146, 2005. 2

[7] Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and
David K Duvenaud. Neural ordinary differential equa-
tions. Advances in neural information processing systems,
31, 2018. 3

[8] Ricky TQ Chen, Jens Behrmann, David K Duvenaud, and
Jörn-Henrik Jacobsen. Residual flows for invertible genera-
tive modeling. Advances in Neural Information Processing
Systems, 32, 2019. 3

[9] Dasith de Silva Edirimuni, Xuequan Lu, Zhiwen Shao, Gang
Li, Antonio Robles-Kelly, and Ying He. Iterativepfn: True it-
erative point cloud filtering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 13530–13539, 2023. 1, 2, 3, 6, 7, 8

[10] Julie Digne and Carlo De Franchis. The bilateral filter for
point clouds. Image Processing On Line, 7:278–287, 2017.
1, 2

[11] Julie Digne, Sébastien Valette, and Raphaëlle Chaine. Sparse
geometric representation through local shape probing. IEEE
transactions on visualization and computer graphics, 24(7):
2238–2250, 2017. 2

[12] Chinthaka Dinesh, Gene Cheung, and Ivan V Bajić. Point
cloud denoising via feature graph laplacian regularization.
IEEE Transactions on Image Processing, 29:4143–4158,
2020. 1, 2

[13] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014. 3

[14] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 3

[15] Chaojing Duan, Siheng Chen, and Jelena Kovačević.
Weighted multi-projection: 3d point cloud denoising with
estimated tangent planes. arXiv preprint arXiv:1807.00253,
2018. 2

[16] Shachar Fleishman, Daniel Cohen-Or, and Cláudio T Silva.
Robust moving least-squares fitting with sharp features.
ACM transactions on graphics (TOG), 24(3):544–552, 2005.
2

[17] Will Grathwohl, Ricky TQ Chen, Jesse Bettencourt, Ilya
Sutskever, and David Duvenaud. Ffjord: Free-form con-
tinuous dynamics for scalable reversible generative models.
arXiv preprint arXiv:1810.01367, 2018. 3

[18] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, and Wei Jiang.
Guided 3d point cloud filtering. Multimedia Tools and Ap-
plications, 77:17397–17411, 2018. 1

[19] Xian-Feng Han, Jesse S Jin, Ming-Jie Wang, and Wei Jiang.
Iterative guidance normal filter for point cloud. Multimedia
Tools and Applications, 77:16887–16902, 2018. 1, 2

[20] Wei Hu, Xiang Gao, Gene Cheung, and Zongming Guo.
Feature graph learning for 3d point cloud denoising. IEEE
Transactions on Signal Processing, 68:2841–2856, 2020. 2

[21] Muhammad Abeer Irfan and Enrico Magli. Exploiting color
for graph-based 3d point cloud denoising. Journal of Vi-
sual Communication and Image Representation, 75:103027,
2021. 2

[22] Hyeongju Kim, Hyeonseung Lee, Woo Hyun Kang,
Joun Yeop Lee, and Nam Soo Kim. Softflow: Probabilis-
tic framework for normalizing flow on manifolds. Advances
in Neural Information Processing Systems, 33:16388–16397,
2020. 3

[23] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018. 2, 3, 4

[24] Roman Klokov, Edmond Boyer, and Jakob Verbeek. Discrete
point flow networks for efficient point cloud generation. In
European Conference on Computer Vision, pages 694–710.
Springer, 2020. 3

[25] Esmeide Leal, German Sanchez-Torres, and John W Branch.
Sparse regularization-based approach for point cloud denois-
ing and sharp features enhancement. Sensors, 20(11):3206,
2020. 2

[26] David Levin. The approximation power of moving least-
squares. Mathematics of computation, 67(224):1517–1531,
1998. 2

[27] Yaron Lipman, Daniel Cohen-Or, David Levin, and Hillel
Tal-Ezer. Parameterization-free projection for geometry re-
construction. ACM Transactions on Graphics (TOG), 26(3):
22–es, 2007. 1

[28] Yongcheng Liu, Bin Fan, Gaofeng Meng, Jiwen Lu, Shiming
Xiang, and Chunhong Pan. Densepoint: Learning densely
contextual representation for efficient point cloud process-
ing. In Proceedings of the IEEE/CVF international confer-
ence on computer vision, pages 5239–5248, 2019. 4

[29] Zheng Liu, Xiaowen Xiao, Saishang Zhong, Weina Wang,
Yanlei Li, Ling Zhang, and Zhong Xie. A feature-preserving
framework for point cloud denoising. Computer-Aided De-
sign, 127:102857, 2020. 2

[30] Cheng Lu, Jianfei Chen, Chongxuan Li, Qiuhao Wang,
and Jun Zhu. Implicit normalizing flows. arXiv preprint
arXiv:2103.09527, 2021. 3

5776



[31] Xuequan Lu, Shihao Wu, Honghua Chen, Sai-Kit Yeung,
Wenzhi Chen, and Matthias Zwicker. Gpf: Gmm-inspired
feature-preserving point set filtering. IEEE transactions
on visualization and computer graphics, 24(8):2315–2326,
2017. 2

[32] Shitong Luo and Wei Hu. Differentiable manifold recon-
struction for point cloud denoising. In Proceedings of the
28th ACM international conference on multimedia, pages
1330–1338, 2020. 1, 2, 3, 7

[33] Shitong Luo and Wei Hu. Score-based point cloud denoising.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 4583–4592, 2021. 1, 2, 3, 6, 7, 8

[34] Aihua Mao, Zihui Du, Junhui Hou, Yaqi Duan, Yong-jin Liu,
and Ying He. Pu-flow: A point cloud upsampling network
with normalizing flows. IEEE Transactions on Visualization
and Computer Graphics, 2022. 3

[35] Aihua Mao, Zihui Du, Yu-Hui Wen, Jun Xuan, and Yong-
Jin Liu. Pd-flow: A point cloud denoising framework with
normalizing flows. In European Conference on Computer
Vision, pages 398–415. Springer, 2022. 1, 2, 3, 4, 6, 7, 8

[36] Enrico Mattei and Alexey Castrodad. Point cloud denoising
via moving rpca. In Computer Graphics Forum, pages 123–
137. Wiley Online Library, 2017. 2

[37] A Cengiz Öztireli, Gael Guennebaud, and Markus Gross.
Feature preserving point set surfaces based on non-linear
kernel regression. In Computer graphics forum, pages 493–
501. Wiley Online Library, 2009. 2

[38] Yura Perugachi-Diaz, Jakub Tomczak, and Sandjai Bhulai.
Invertible densenets with concatenated lipswish. Advances
in Neural Information Processing Systems, 34:17246–17257,
2021. 3

[39] Francesca Pistilli, Giulia Fracastoro, Diego Valsesia, and En-
rico Magli. Learning graph-convolutional representations for
point cloud denoising. In European conference on computer
vision, pages 103–118. Springer, 2020. 1, 2, 3, 7

[40] Janis Postels, Mengya Liu, Riccardo Spezialetti, Luc
Van Gool, and Federico Tombari. Go with the flows: Mix-
tures of normalizing flows for point cloud generation and re-
construction. In 2021 International Conference on 3D Vision
(3DV), pages 1249–1258. IEEE, 2021. 3

[41] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 652–660,
2017. 1, 3

[42] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information
processing systems, 30, 2017. 1

[43] Marie-Julie Rakotosaona, Vittorio La Barbera, Paul Guer-
rero, Niloy J Mitra, and Maks Ovsjanikov. Pointcleannet:
Learning to denoise and remove outliers from dense point
clouds. In Computer graphics forum, pages 185–203. Wiley
Online Library, 2020. 1, 2, 3, 7

[44] Andrés Serna, Beatriz Marcotegui, François Goulette, and
Jean-Emmanuel Deschaud. Paris-rue-madame database: a
3d mobile laser scanner dataset for benchmarking urban de-

tection, segmentation and classification methods. In 4th in-
ternational conference on pattern recognition, applications
and methods ICPRAM 2014, 2014. 6, 8

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics (tog), 38(5):1–12, 2019. 1, 2, 3, 4

[46] Mingqiang Wei, Jin Huang, Xingyu Xie, Ligang Liu, Jun
Wang, and Jing Qin. Mesh denoising guided by patch normal
co-filtering via kernel low-rank recovery. IEEE transactions
on visualization and computer graphics, 25(10):2910–2926,
2018. 2

[47] Zhongwei Xu and Alessandro Foi. Anisotropic denoising of
3d point clouds by aggregation of multiple surface-adaptive
estimates. IEEE transactions on visualization and computer
graphics, 27(6):2851–2868, 2019. 2

[48] Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 4541–4550, 2019. 3

[49] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Ec-net: an edge-aware point set consoli-
dation network. In Proceedings of the European conference
on computer vision (ECCV), pages 386–402, 2018. 3

[50] Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and
Pheng-Ann Heng. Pu-net: Point cloud upsampling network.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2790–2799, 2018. 6, 7

[51] Jin Zeng, Gene Cheung, Michael Ng, Jiahao Pang, and
Cheng Yang. 3d point cloud denoising using graph laplacian
regularization of a low dimensional manifold model. IEEE
Transactions on Image Processing, 29:3474–3489, 2019. 2

[52] Dongbo Zhang, Xuequan Lu, Hong Qin, and Ying He. Point-
filter: Point cloud filtering via encoder-decoder modeling.
IEEE Transactions on Visualization and Computer Graph-
ics, 27(3):2015–2027, 2020. 2, 3, 7

[53] Feng Zhang, Chao Zhang, Huamin Yang, and Lin Zhao.
Point cloud denoising with principal component analysis and
a novel bilateral filter. Traitement du signal, 36(5), 2019. 2

[54] Qian Zheng, Andrei Sharf, Guowei Wan, Yangyan Li,
Niloy J Mitra, Daniel Cohen-Or, and Baoquan Chen. Non-
local scan consolidation for 3d urban scenes. ACM Trans.
Graph., 29(4):94–1, 2010. 2

[55] Yinglong Zheng, Guiqing Li, Xuemiao Xu, Shihao Wu, and
Yongwei Nie. Rolling normal filtering for point clouds.
Computer Aided Geometric Design, 62:16–28, 2018. 1, 2

5777


