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Abstract

Deep Neural Networks (DNNs) are widely used for their
ability to effectively approximate large classes of functions.
This flexibility, however, makes the strict enforcement of con-
straints on DNNs a difficult problem. In contexts where
it is critical to limit the function space to which certain
network components belong, such as wavelets employed in
Multi-Resolution Analysis (MRA), naive constraints via addi-
tional terms in the loss function are inadequate. To address
this, we introduce a Convolutional Neural Network (CNN)
wherein the convolutional filters are strictly constrained to be
wavelets. This allows the filters to update to task-optimized
wavelets during the training procedure. Our primary contri-
bution lies in the rigorous formulation of these filters via a
constrained empirical risk minimization framework, thereby
providing an exact mechanism to enforce these structural
constraints. While our work is grounded in theory, we in-
vestigate our approach empirically through applications in
medical imaging, particularly in the task of contour predic-
tion around various organs, achieving superior performance
compared to baseline methods.

1. Introduction
Empirical risk minimization (ERM) is currently the most
prevalent framework for supervised learning. The goal is to
find a function to map inputs to associated targets for all rep-
resentative (potentially unseen) observations. To find such
a mapping, one introduces a loss function to quantify the
discrepancy between observed and predicted targets. An op-
timal map is then found by minimizing the expected loss. In
large-scale settings, such as deep learning, the resulting min-
imization problem is solved using Stochastic Gradient De-
scent (SGD) and various variants thereof, see [15, 24, 25, 40]
for instance. As deep learning applications become more
specialized, domain-specific needs become increasingly vi-
tal. These are often formulated in terms of constraints on
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Figure 1. An overview of the Constrained Empirical Risk Mini-
mization (CERM) framework: on the top left side, the full gradient
of the loss L is shown on the total space N (containing both the
constrained and unconstrained space), with ↵ are the unconstrained
parameters, and ✓ the constrained ones. The constraints can be writ-
ten in the form F (✓) = 0; the solution set F�1(0) is an embedded
submanifold M of Rp̃. The constrained parameters are updated by
following a path on M in the direction of the negative gradient on
this manifold. This constrained part of the full gradient is contained
in the tangent space T✓M of the submanifold. The color of the
manifold indicates the value of the loss function. By restricting the
relevant components of our descent trajectories to the embedded
submanifold, we always satisfy the constraints imposed by F . The
gradient and parameter updates for the unconstrained parameters
↵ are computed as usual using standard SGD for flat space (not
shown). In our wavelet scenario, the manifold thus consists of all
admissible wavelets of a certain dimension.

the permissible mappings. For instance, the constraint for
translation-equivariance led to the development and success
of convolution neural networks (CNNs) [17]. In general,
however, it is a highly non-trivial task to construct network
architectures that satisfy a set of constraints, if they exist
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at all. It is, therefore, common practice to incorporate con-
straints directly into the loss function by including additional
terms, usually referred to as “soft” constraints. This setup,
however, has the drawback that the constraints are only ap-
proximately (on average) satisfied due to the formulation
of ERM. Moreover, incorporating many different objectives
in a loss function may lead to suboptimal results for the
individual objectives. Another common strategy, used for
many types of constraints, e.g., flip invariance, is based on
data augmentation. However, not every constraint can be
achieved using data augmentation, and it also leads, at best,
to constraints being approximately satisfied. Furthermore,
if we wish to constrain neural networks to specific func-
tion classes, such as wavelets, an additional loss term is no
longer sufficient: a wavelet is only a wavelet whenever the
constraints are satisfied exactly.

Approaches which circumvent loss-based (soft) con-
straints have been recently proposed, see [2, 4, 28, 30, 32] for
example. Most notably, we mention the field of Geometric
Deep Learning (GDL), which focuses on incorporating con-
straints arising from symmetries of the domain directly into
the networks themselves, see [8, 9, 39] and the references
therein. In GDL, one considers very specific but powerful
types of constraints, namely that network layers are equiv-
ariant with respect to some group action. Not all constraints
arise as equivariance principles, however. A large class of
examples comes from highly specialized requirements on
the output of a neural network, e.g., that the output is a
divergence-free vector field, a contour, or perhaps a surface.
For example, in medical image segmentation, a natural re-
quirement is that the output of the segmentation network
corresponds to a continuous (closed) curve. Creating archi-
tectures for such constraints is out of the realm of GDL and,
in general, poses a challenging task; no prescribed methods
exist to do so.

To facilitate these different types of constraints, we
present a framework, called Constrained Empirical Risk
Minimization (CERM), where we directly formulate and
solve the constrained ERM problem in the space where the
constraints are satisfied. This space forms, under mild con-
ditions, a Riemannian manifold. As long as we stay on this
manifold, the constraints will be satisfied exactly up to nu-
merical precision. In particular, we explain how to perform
SGD on such Riemannian manifolds arising from a finite-
dimensional system of equations. Although we are motivated
by the ability to constrain to wavelets, the framework, in prin-
ciple, encompasses constraints of the form F (W ) = 0, with
W the network weights. Our method heavily relies on the Im-
plicit Function Theorem, which is used to construct so-called
graph-charts amenable to numerical computations. This al-
lows for efficient evaluation of the (induced) Riemannian
metric and gradients, which are vital for performing SGD on
Riemannian manifolds using only the intrinsic geometry.

As mentioned, we will present the tools and implemen-
tations of convolutional networks whose filters will form
wavelets. There are several tasks at which one expects
wavelet-based neural networks to excel. Wavelet decom-
positions naturally lend themselves to representing contin-
uous objects such as curves, images, vector fields, or other
higher-dimensional objects. Hence any task where the object
of interest can be identified with a smooth or continuous
function is well-suited for wavelet-based neural networks.
There is an abundance of such examples to be found in com-
puter vision, e.g., boundary prediction, image registration,
and so forth. Another family of exciting applications can
be found in signal analysis, e.g., in compression and de-
noising, where wavelets are long-standing tools that have
proven to be extremely efficient [26]. The main idea in
these areas is to extract information about noise, smooth-
ness, and even singularities, through analysis of the wavelet
coefficients. Subsequently, by modifying a subset of the
coefficients, e.g., through thresholding, the signal can be
cleaned up or denoised. More recently, wavelets have also
received increasing attention in the context of neural net-
works. The applications are broad; some references include
[22, 33, 41], ranging from efficient normalizing flows, noise-
robust training, scale-equivariant models, and many more.
The wavelet layers we create in this work are included in our
code, which we will make available publicly*.

Related work An earlier attempt at incorporating con-
straints is described in [11]. However, this method is only
able to deal with linear constraints, which is hence incom-
patible with the wavelet constraints we will derive. Other
works include [20, 21, 27], which are related to the method
of Lagrange multipliers and have their optimization and
training dynamics largely determined by variants of New-
ton’s method. We discuss the differences between our SGD-
compatible method and that of Lagrange multipliers in more
detail in the supplementary material 6.2. A comprehensive
overview of all constrained optimization methods, however,
is out of the scope of this paper, and we therefore focus
our attention to techniques based on SGD on Riemannian
manifolds.

Performing SGD on Riemannian manifolds is well-
established and has been studied extensively, see [6, 14,
34, 35, 42]. To the best of our knowledge, current methods
require an explicit description of charts on the underlying
manifold and adopt a completely extrinsic point of view.
This process involves manual computations on paper on a
per-case basis. For instance, the authors of [34, 35] present
methods for three specific cases: the space of positive defi-
nite matrices, Grassman, and Stiefel manifolds. We mention
the method in [7, Chapter 7.7] in particular, which is most
closely related to ours. This method adopts an extrinsic

*https://github.com/NKI-AI/CERM
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perspective on RSGD and effectively performs all computa-
tions in the ambient (vector) space in which M is embedded.
This extrinsic point of view leads to an algorithm for “pro-
jecting” paths in the ambient space onto descent paths on
M. This projection involves an additional nonlinear opti-
mization problem and presents highly non-trivial issues for
numerical implementation on general manifolds, as men-
tioned by the authors. In contrast, the method we present
here is entirely intrinsic to M and uses a local coordinate
system amenable to numerical computations, allowing us to
deal with a general class of manifolds. In particular, it allows
us to incorporate the constraints for the wavelet straightfor-
wardly. Most importantly, we follow a specific descent path
on M; the geodesic in the direction of the negative gradient
of the objective, a process made possible through our explicit
understanding of the Riemannian metric. Our intrinsic per-
spective ensures that all computations are performed directly
on the manifold, avoiding additional optimization problems.
In particular, the dynamics of our optimization algorithm are
solely driven by the gradient flow of the objective.

Overview The contributions of this paper are ordered
as follows. In Sec. 2, we introduce the theory of the con-
strained optimization. In Sec. 3, we apply the framework to
our topic of interest: constraining filters of a CNN to form
wavelets. We will show experiments in Sec. 4. In particular,
this section will show our novel application, where we find
data-driven wavelets for contour prediction. Specifically, we
use wavelet networks to perform contour prediction in the
medical domain, where we outperform strong baselines.
We remark that an extensive, formal, and detailed investiga-
tion of the CERM framework, MRA, comparisons with other
frameworks, and several implementation details are provided
in [16], to which we refer the reader for more details.

2. Constrained Empirical Risk Minimization

In this section, we introduce a framework for performing
ERM with constraints, which we will refer to as Constrained
Empirical Risk Minimization (CERM). We start with a brief
review of the traditional ERM setup [36, 37] introducing
the necessary terminology, notation, and assumptions. Next,
we explain how to incorporate constraints into the ERM
framework in the form of a system of equations. We provide
sufficient conditions on the system of equations to guarantee
that the solution set is a Riemannian manifold. Finally, we
provide an explanation for how the Riemannian metric and
associated geometric quantities can be numerically evalu-
ated, which enables us to perform SGD on the Riemannian
manifold of interest directly. The discussion will be high-
level; each step is explored in full mathematical detail in
Sec. 6 [16].

2.1. ERM Setup
Let X and Y be random variables whose realizations are
interpreted as input data and corresponding targets, respec-
tively. The sample spaces of X and Y are denoted by X
and Y , respectively. As a side note, self-supervised settings
also fall into this framework, in which case the target Y is
created on the fly as a function of X .

Empirical risk minimization The goal of the ERM frame-
work is to find a map G : X ! Y such that G(x) ⇡ y for
most realizations of (X,Y ). The discrepancy between pre-
dicted and observed targets is quantified using a loss function
L : Y ⇥ Y ! [0,1). Without loss of generality, we assume
that L assumes positive values only and that L decreases as
the accuracy of predictions increases. The main objective
of ERM is to find an optimal map G

⇤, which solves the
minimization problem

min
G2G

E (L(G(X), Y )) . (1)

Here G is a suitable subset of functions.
In all our applications, we assume that X and Y are

random vectors with sample spaces X = Rn and Y =
Rm. Furthermore, we assume G is a parametric set that
consists of mappings G = {G(·, ⇠) : ⇠ 2 Rp}, where G :
Rn ⇥ Rp ! Rm is a continuously differentiable map. This
includes, for example, ordinary neural networks, where the
parameters are the weights. With these assumptions in place,
the minimization problem in (1) is equivalent to minimizing
over the parameters ⇠ instead. In practice, we have access
to only a finite set of observations, which are assumed to be
i.i.d., and the objective in (1) is replaced by an arithmetic
average.

2.2. Imposing constraints
In this section, we explain how to incorporate constraints on
a subset of the parameters ⇠ directly into the ERM frame-
work. We consider constraints given in the form of a system
of equations. To be very precise, let F : Rp̃ ! Rq be a twice
continuously differentiable map, where p̃ denotes the number
of constrained parameters, and q is the number of equations.
We assume that q < p̃  p. For notational convenience, we
decompose Rp = Rp�p̃ � Rp̃, where the first and second
subspaces correspond to the unconstrained and constrained
parameters, respectively. We take ⇡p�p̃ : Rp ! Rp�p̃ and
⇡p̃ : Rp ! Rp̃ to be the projections onto the unconstrained
and constrained parameter subspace, respectively. We will
denote the unconstrained and constrained parameters by ↵
and ✓, respectively, i.e., ↵ = ⇡p�p̃(⇠) and ✓ = ⇡p̃(⇠).

Definition 2.1 (CERM). Let G : Rn ⇥ Rp ! Rm be a con-
tinuously differentiable parameterization of mappings and
F : Rp̃ ! Rq a twice continuously differentiable constraint,
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where q < p̃  p. Suppose L : Rm⇥Rm ! [0,1) is a con-
tinuously differentiable loss function. The constrained ERM
problem for (X,Y ) with respect to (G,F, L) is defined by

8
<

:
min
⇠2Rp

E (L(G(X, ⇠), Y )) ,

s.t. F (⇡p̃(⇠)) = 0.
(2)

Note the generality of the admissible mappings G in Def-
inition 2.1. Although we will focus on neural networks from
now on, the proposed framework applies to any parametric
model, e.g., logistic or polynomial regression models. Next,
we show that the CERM problem in (2) can be reformulated
as an ordinary ERM problem on a Riemannian manifold
(N , gN ), provided that the system of equations satisfies a
mild non-degeneracy condition. This result allows us to con-
sider the admissible parameters as a geometric object in its
own right, whose intrinsic geometry we use to solve (2). The
proof of this theorem can be found in Sec. 6.1 [16].

Theorem 2.2. If zero is a regular (i.e., non-singular) value
of F , then the CERM problem in (2) is equivalent to solving
an ordinary ERM problem on a Riemannian manifold N
with metric gN of dimension p � q. Here N = Rp�p̃ ⇥ M
is an embedded C

2-submanifold of Rp and M := F
�1(0).

The equivalent minimization problem is given by

min
(↵,✓)2N

E (L (G (X,↵� ◆(✓)) , Y )) , (3)

where ◆ : M ! Rp̃ is the inclusion map which embeds M
in the ambient space.

From now on, we refer to the objective in (3) as simply
the loss L.

Graph coordinates on N The main idea is to directly
minimize the loss on N using SGD, see Figure 1 for an
overview. To perform SGD on this space, however, we need
to choose a coordinate system in which we can evaluate the
gradient of the loss and subsequently follow descent trajecto-
ries on N . Now, the proof of Theorem 2.2 involves showing
that M is an embedded submanifold of the ambient space
Rp̃. This is accomplished by constructing a special coor-
dinate system, a so-called graph chart or graph coordinate
system. This chart is uniquely determined by the constraint
F and a prescribed zero ✓ 2 M. It can be numerically eval-
uated at the point ✓ by solving a linear system of equations.
In turn, this enables us to construct a chart on the manifold
in which we can evaluate the Riemannian metric and the
gradient rgN L(↵, ✓).

The crucial observation is that we can numerically
construct coordinate systems in which we can follow
paths on the manifold N in the direction of �rgN L(↵, ✓).
In particular, the system of equations determining these

Algorithm 1 Sketch of the computation of rgN L(↵, ✓)
given (↵, ✓) 2 N . See Algorithm 2 in Sec. 6.5 [16] the
detailed formal version.

1: Compute the derivative DF (✓) of the constraint F .
2: Compute chart-related derivatives.
3: Compute the metric gN using the chart-related deriva-

tives.
4: Compute the partial derivatives of the loss L with respect

to the constrained components ✓.
5: Compute the components of rgML(↵, ✓) using the

above ingredients.
6: Compute the ordinary (unconstrained) components

rgflatL(↵, ✓) by evaluating D↵L(↵, ✓).

so-called graph coordinate systems is fully determined by
the derivative DF of the constraint F and the constraint
itself. This observation enables a general implementation
of graph coordinate systems independent of the explicit
form of F . We only require an implementation of F and
DF , where the latter may be obtained using automatic
differentiation. We provide a sketch of the algorithm for
computing the gradient in Algorithm 1. For the interested
reader, we mention that a complete and detailed explanation
of all steps can be found in Sec. 6 [16]. Before moving on,
we mention the limitations of the CERM framework for
other generic constraints.

Limitations As with most applications of deep neural
networks, the available amount of computational power im-
poses limitations. Specifically, if the number of constrained
parameters is large relative to the number of constraints, the
computational demands will rise. Furthermore, setting up
well-posed constraints can be a non-trivial task, e.g., symme-
tries in the constraints may result in redundancies obstructing
the solvability of the associated systems of equations. Fi-
nally, the topology of the constrained submanifold may pose
limitations as well. For instance, while the constraints will
generically define a Riemannian manifold, it need not be
connected. In such cases, the initialization of the network
parameters will play an important role, as the gradient flow
will stay on the connected component it was initialized on.

3. Multiresolution Analysis and CERM
This section presents the application of the aforementioned
CERM framework to a non-trivial application to learn op-
timal wavelet bases for a given task. Many different types
of wavelets, such as Haar, Daubechies, Gabor, etc., are used
for a wide array of tasks. The specifics of the task demand
different characteristics of the wavelets, such as the degree
of smoothness, or the support of the wavelet. For example,
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the CDF wavelets [10] are well-known due to their usage
for both lossless and lossy compression in JPEG2000. In
this section, we consider networks that will find task-driven
wavelets, optimizing the wavelet characteristics to the task
at hand.
Here, we will explain how to set up a system of equations
(constraints) whose solution set corresponds to wavelets.
We will apply these constraints in the next section to learn
task-driven wavelets for predicting multi resolution decom-
positions of contours in the medical domain. While we only
consider one-dimensional wavelets in this work, we stress
that the framework is easily adapted to higher-dimensional
domains, to decompose images, for instance, by using tensor
products of one-dimensional bases.

3.1. Multiresolution Analysis
In this section, we briefly state what a Multiresolution Anal-
ysis (MRA) is. We closely follow the standard exposition,
found in, e.g., [29, 31], and refer the reader to Sec. 7 [16]
for a more in-depth and formal introduction. The MRA
framework allows one to study a signal � 2 L

2(R) at vari-
ous resolution levels. The origin of this framework lies in
the uncertainty principle of Fourier analysis, which states
that a signal cannot be simultaneously localized in the time
and frequency domain. MRA addresses this shortcoming by
decomposing a signal on different discrete resolution levels.
The idea is to construct a nested (exhausting) sequence of
closed subspaces Vj ⇢ L

2(R), each associated with a spe-
cific resolution level j. The subspaces Vj are spanned by
integer shifts of an appropriate dilation of a so-called scaling
map (or father wavelet) '. The level of dilation determines
the resolution level. Formally, we require that ('jk)k2Z is an
orthonormal basis for Vj , where 'jk(t) := 2

j
2'(2jt�k). In

Fig. 2a and Fig. 2c, we show an example of that Haar-MRA;
in particular, we show the father wavelet and an example of
a subspace at a certain resolution level.

Decomposing a signal To analyze a signal � at different
resolution levels, we project it onto the subspaces Vj . The
orthogonal projection of � at level j is denoted by �j . The
coefficients of �j with respect to the basis for Vj , denoted by
ajk(�), are called the approximation coefficients of �. When
a signal in Vj+1 is projected onto Vj , the lost information
is stored in the orthogonal complement Wj of Vj in Vj+1.
This subspace is referred to as the detail subspace at level
j. The decomposition of Vj+1 into Vj and Wj allows the
reconstruction of a signal at level j + 1 from any lower
level j0 provided all the details in between are known. The
corresponding decomposition and reconstruction algorithms
give rise to the Discrete Wavelet Transform (DWT) and
Mallat’s Pyramid Algorithm. In Fig. 2b and Fig. 2d, we show
examples of the mother wavelet and the detail subspace for
the Haar wavelet.

A fundamental result, known as Mallat’s Theorem, states

t
k
2j

k+1

2j

'jk(t) := 2
j
2'(2j t � k)

(a) Father wavelet

t

 jk(t) := 2
j
2 (2j t � k)

k
2j

k+1

2j

(b) Mother wavelet

t

(c) Vj

t

(d) Wj

Figure 2. Example of the Haar MRA: (a) Dilated translation
of the Haar scaling map (or father wavelet) ' = 1[0,1). The
approximation subspace Vj at level j consists of all step-functions
with step-size 2�j . (b) Dilated translation of the mother wavelet
 = 1[0, 12 ) � 1[ 12 ,1). The detail subspace Wj is spanned by
integer translations of the dilated mother wavelet  j . (c) The
approximation subspace at level j consists of all step-functions with
step-size 2�j . (d) Example of a function in the detail subspace at
level j.

that the subspaces Wj can also be spanned by dilating and
shifting a single map. More precisely, there exists a map
 2 W0, the so-called mother wavelet, such that the  jk

form an orthonormal basis for Wj , see [31]. The coefficients
of the projection of (�) onto Wj , are denoted by dj(�) :=
(djk(�))k2Z, and referred to as the detail coefficients of � at
resolution level j. We can summarize the MRA procedure
roughly as

�j =
X

k

aj0k'j0k +
X

j0lj�1

X

k

dlk lk , (4)

where ' denotes the father wavelet and  the mother wavelet.
The MRA boils down to the specification of the first approx-
imation coefficient and a number of detail coefficients.

Low and high pass filters As we mentioned before, an
MRA is completely determined by a scaling map ', which in
turn is completely characterized by a so-called low-pass filter.
We will use this observation to set up a system of constraints
characterizing a finite-dimensional family of wavelets, such
that we can use it in the CERM framework. To explain
how this works, we first make a key observation. Since
V0 ⇢ V1, there exists a unique sequence h characterizing
' in terms of the basis ('1k)k2Z for V1. The sequence h

completely characterizes the scaling function and is called
the low-pass filter or wavelet filter of the MRA. Similarly,

24102



since  2 W0 ⇢ V1, there exists a unique sequence g,
the so-called high-pass filter associated to h, characterizing
the mother wavelet. An example of an MRA is shown in
Figure 2. In practice, to define an MRA, one only needs
to specify an appropriate low-pass filter h, as for Mallat’s
mother wavelet, we have gk = (�1)k�1

h1�k. We refer
the interested reader to the supplementary information for a
detailed discussion of all these points [16].

3.2. MRA constraints
We are now ready to formulate and impose constraints on
a sequence h to ensure that it is the low-pass filter of a
scaling map '. In practice, we only consider finite sequences.
For notational convenience, we introduce the space AM (R),
which consists of one-dimensional real-valued two-sided
sequences (hk)

M�1
k=1�M of order M ; so AM (R) is 2M � 1

dimensional.

Theorem 3.1. Let M 2 N�3 be a prescribed order and
define FM : AM (R) ! RM+1 by

(FM (h))k :=

8
>>>>>>><

>>>>>>>:

X

|l|M�1

|hl|2 � 1, k = 0,

X

1�M+2klM�1

hl�2khl, 1  k  M � 1,

�
p
2 +

X

|l|M�1

hl, k = M.

If FM (h) = 0, and h satisfies a certain non-degeneracy
condition, then h is the low-pass filter of a scaling map '
generating an MRA of L2(R).

A full proof and detailed statement of the non-degeneracy
condition can be found in Sec. 7.4 in the supplementary
material. Heuristically, the first M equations encode the
orthonormality of the scaling map. The last equation encodes
the observation that the Fourier transform of the scaling map
must be nonzero. The set of regular points in F

�1
M (0) is a

real-analytic (M � 2)-dimensional submanifold of R2M�1.
Hence, we can get as many degrees of freedom as desired,
by choosing a sufficiently large order M . We now have an
end-to-end way of learning wavelets for specific tasks, a
wavelet network, by using the constraint FM along with the
CERM framework.

4. Experiments
In this section, we show some explicit examples of the
wavelet networks with respect to contour prediction. In par-
ticular, we will utilize the derived wavelet filters of Sec. 3.2
to create a network for autocontouring. This task fits well
with the setup of wavelets, as they naturally lend themselves
to representing continuous objects such as curves.

aj0
aj0dj0

dj0+1

dj1

Reconstruct (Pyramid algorithm)

aj2

1� 1 conv (nc �lters)

Figure 3. A schematic picture of our network. The encoder consists
of residual convolutional blocks depicted in blue. The first residual
convolutional block uses nf filters and is doubled after every other
residual convolutional block. Attached to the encoder are fully
connected layers to predict approximation and detail coefficients
at the lowest resolution level j0. The approximation and detail
coefficients are supplied as input to the Pyramid Algorithm (the
decoder) to predict a contour on high-resolution level. Each green
block corresponds to an inverse discrete wavelet transform. Detail
coefficients at higher levels are computed using skip-connections
(arrows in red). We only predict detail coefficients up to level j1. In
this example, we have set j1 = j0 + 2 and j2 = j0 + 3. In reality,
the decoder consists of two upsampling paths, one for each spatial
component of the curve. We have only drawn one for notational
convenience. During training, only the approximation coefficients
at the highest resolution level are supervised.

4.1. Contour Prediction using MRA
In the context of contour prediction, wavelets can be used to
represent the boundary of a region in an image using a simple
closed curve. We consider two-dimensional gray-valued im-
ages x 2 X := [0, 1]n⇥n. For each of our applications, we
assume that these images contain an organ with a boundary.
Formally speaking, this means that each image x contains
a (uniquely identifiable) simply connected region R(x), the
organ, with boundary @R(x). This boundary of the region,
@R(x), can be parameterized by a simple closed, piecewise
C

2, curve �(x). We will develop a deep learning framework
for computing such parameterizations by learning a multires-
olution decomposition of �(x) using the methods developed
in the previous sections.

4.1.1 Data

We have used public datasets from the Medical Decathlon
Challenge [3]. The selected data consists of CT scans of
the spleen of size 512 ⇥ 512 and T2-weighted MRI images
of the prostate central gland, henceforth abbreviated as just
the prostate, of size 320 ⇥ 320. The scans were cropped
to size 224 ⇥ 224 and 192 ⇥ 192, respectively. Further-
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Figure 4. Examples of predictions on the test set for the spleen and prostate, depicted in the first and second row, respectively, for the
best-performing wavelet models. The green curve corresponds to the ground truth, while the red curve is a prediction made by the wavelet
network.
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(a) Initial father and mother wavelet
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(b) Task-optimized father and mother wavelet

Figure 5. Example of wavelets of order 5 learned during training
of the spleen model: (a) The initial father (left) and mother (right)
wavelets for the second spatial component. (b) The task-optimized
father and mother wavelets after training for the second spatial
component. We observe that the task-optimized wavelets are more
simple and have “cleaned up” in a sense.

more, the images were resampled to the median sample
spacing, which resulted in (5.00 mm, 0.793 mm, 0.793 mm)
and (3.6 mm, 0.625 mm, 0.625 mm) spacings for the spleen
and prostate, respectively. We refer the reader to Sec. 8.2
[16] for a detailed description of all the preprocessing steps
and construction of ground truth curves. Examples of pre-
dictions on the test set, for both the spleen and prostate, are
shown in Figure Fig. 4.

4.1.2 Model and Training

Model objective We parameterize the boundary @R(x) by
arc length, resulting in a curve �(x). The precise details of
this parametrization are outlined in the supplementary infor-
mation. The objective is to compute the relevant approxima-
tion coefficients of �(x). To this end, let j0, j1, j2 2 N be
resolution levels, where j0  j1  j2. We will construct a
convolutional neural network

G : X ⇥ Rp !
j2Y

j=j0

R2j ⇥ R2j ⇥
j1�1Y

j=j0

R2j ⇥ R2j
,

which predicts the wavelet decomposition of �(x). Here
the subspaces R2j correspond to approximation and detail
coefficients at level j, one for each spatial component. Fur-
thermore, a subset of the parameters ⇠ 2 Rp are constrained
to be wavelet filters, one wavelet filter per spatial component,
using Theorem 3.1. The map G(·, ⇠) applied to an image x

has output

G(x, ⇠) = (aj0(x, ⇠), . . . , aj2(x, ⇠),

dj0(x, ⇠), . . . , dj1�1(x, ⇠)) .
(5)

Here aj(x, ⇠) and dj(x, ⇠) are predictions for the approxi-
mation and detail coefficients of �(x) at level j, respectively.
We only predict detail coefficients up to level j1.

Architecture The network is a hybrid analog of the U-Net.
It consists of a two-dimensional convolutional encoder, a
bottleneck of fully connected layers, and a one-dimensional
decoder. The encoder and decoder are connected through
skip-connections. The approximation and detail coefficients
at the lowest resolution level j0 are predicted in the bot-
tleneck. Afterward, the Pyramid Algorithm takes over to
compute approximation coefficients at higher resolution lev-
els (the decoder) using learnable wavelet filters. In Fig. 3,
we provide a schematic overview of the network architecture.
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Loss To measure the discrepancy between the ground
truth and the predicted curve, we define

L(G(x, ⇠), ã(�(x))) :=k[aj2 ]1 � ãj2([�(x)]1)k2+
k[aj2 ]2 � ãj2([�(x)]2)k2.

(6)

The ã thus correspond to the ground-truth approximation
coefficients, and the subscripts 1, 2 denote the spatial dimen-
sion. In other words, the loss corresponds to the component-
wise L2-error between the curves on resolution level j2 with
approximation coefficients aj2(x, ⇠) and ãj2(�(x)).

Optimization We use two different optimizers during
training: one for the encoder and MLP network (uncon-
strained), and one for the decoder (constrained wavelet net-
work). The reason for this is that the needed step sizes on the
non-trivial submanifold may significantly differ from those
on the unconstrained (flat) parameter space. For the training
of the model, we use plain SGD for the first eight epochs for
both the constrained and unconstrained parameters. During
this period, the learning rate for the unconstrained parame-
ters is linearly increased from 10�5 to 2 ·10�4. The learning
rate for the constrained parameters (wavelet filters) is lin-
early increased from 10�4 to 10�2. After the initial warmup
stage, we switch to the Adam optimizer for the unconstrained
parameters. For both the constrained and unconstrained pa-
rameters, we use learning rate schedulers and decrease the
learning rate by a factor of 0.85 if no significant improve-
ments in the validation loss are observed during the last ten
epochs. We train all models for 250 epochs using a batch
size of 32 and use the last epoch for inference. The com-
putations were performed in PYTORCH on a Geforce RTX
2080 Ti. An average training session takes about two and a
half hours for the wavelet network and a day for the nnUNet.
The inference times for the wavelet network were 12.5ms
and 14ms for the prostate and spleen, respectively, using a
batch size of 32. The inference times for the nnUNet were
17.8ms and 23.4ms for the prostate and spleen, respectively,
using a batch size of 32.

4.1.3 Results

We have evaluated the performance of both our wavelet
networks for different orders and a state-of-the-art baseline
2d-nnUNet [13] on the unseen test data, see Table 1. For
both the spleen and prostate, we observe that the best wavelet
networks outperform the baseline. We note that the task-
optimized wavelets differ significantly from the wavelets
randomly initialized at the start of training. A comparison of
an initial and task-optimized wavelet is depicted in Figure 5,
see Sec. 8.4 for more examples.

Table 1. Mean and standard deviation (in parentheses) of the dice
score on the unseen test sets. The number of parameters in our
wavelet-based networks ranged from 5M to 10M parameters, while
the nnUNet used approximately 40M and 18M parameters for the
spleen and prostate, respectively.

MODEL DICE SPLEEN DICE PROSTATE

NNUNET 0.914 (1.74 · 10�1) 0.896 (1.27 · 10�1)
ORDER 3 0.911 (7.38 · 10�2) 0.929 (4.66 · 10�2)
ORDER 4 0.911 (7.85 · 10�2) 0.935 (3.48 · 10�2)
ORDER 5 0.916 (6.94 · 10�2) 0.935 (4.11 · 10�2)
ORDER 6 0.917 (7.17 · 10�2) 0.934 (4.14 · 10�2)
ORDER 7 0.921 (6.91 · 10�2) 0.928 (4.03 · 10�2)
ORDER 8 0.919 (6.64 · 10�2) 0.934 (3.62 · 10�2)

5. Conclusions
In this paper, we have introduced the CERM framework
for creating task-driven wavelets. Although our aim is to
find such wavelets, in principle the framework lends itself
to imposing generic constraints on parametric models. The
wavelet constraints can be formulated as a finite system of
equations. Under mild smoothness and non-degeneracy con-
ditions, the networks can be made to obey the constraints
exactly throughout the entire training procedure by perform-
ing SGD on a curved space. We can then utilize these wavelet
constraints in a convolutional network, where the filters of
the network now parameterize wavelets themselves. We have
applied these wavelet networks to the prediction of bound-
aries of simply connected regions in medical images, where
they outperform strong baselines.
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