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Abstract

Successfully addressing a wide variety of tasks is a core
ability of autonomous agents, requiring flexibly adapting
the underlying decision-making strategies and, as we ar-
gue in this work, also adapting the perception modules.
An analogical argument would be the human visual system,
which uses top-down signals to focus attention determined
by the current task. Similarly, we adapt pre-trained large
vision models conditioned on specific downstream tasks in
the context of multi-task policy learning. We introduce task-
conditioned adapters that do not require finetuning any pre-
trained weights, combined with a single policy trained with
behavior cloning and capable of addressing multiple tasks.
We condition the visual adapters on task embeddings, which
can be selected at inference if the task is known, or alterna-
tively inferred from a set of example demonstrations. To
this end, we propose a new optimization-based estimator.
We evaluate the method on a wide variety of tasks from the
CortexBench benchmark and show that, compared to ex-
isting work, it can be addressed with a single policy. In
particular, we demonstrate that adapting visual features is
a key design choice and that the method generalizes to un-
seen tasks given a few demonstrations.

1. Introduction
Vision is one of the most important modalities for agents
interacting with the world and is almost indispensable for
dexterous manipulation or locomotion, as no other sensor
can provide information as rich and versatile. The inher-
ent flexibility of the sensor comes with a high price, the
high dimensionality of the information, and the complex-
ity of the processes necessary to extract useful information.
Humans and other biological agents are capable of adapt-
ing their perception systems to the task at hand. There is
indeed evidence for bottom-up and top-down processes in
human vision, with the latter guiding attention to regions
determined by the requirements of the task [3, 6].
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Figure 1. Task-conditioned adaptation: A single policy can be
trained to address multiple heterogenous tasks including manipu-
lation, legged motion etc., and few-shot learning is possible to ad-
dress tasks given as demonstrations but unseen during training. A
key element is the task-conditioned adaptation of visual features.

There is a growing need for a similar versatility in artifi-
cial systems, and general neural networks have been trained
from large-scale data in different domains such as natu-
ral language processing (NLP), computer vision (CV), and,
more recently, robotics. A single general vision model cou-
pled with a neural policy would be an appealing choice if
it could allow an easy generalization to new domains or
tasks. The wide adoption of attention mechanisms in sev-
eral domains has made it easier for trained models to adapt
their behavior to the requirements of different tasks without
changing parameters, and it has been shown that attention
plays a crucial role in specialization on a specific instance
in language models [34] and vision and language models
[15]. However, even powerful generally pre-trained models
can benefit from parameter adaptations to specific tasks, ei-
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Figure 2. Considered tasks: We train the method on a set T k of known tasks and evaluate it either on the same set, with the task known
( Known task setting), or in a Few-shot setting, where a new unseen task from a set Tu is inferred from a few demonstrations.

ther through fine-tuning [12] or by adding additional trained
adapter layers to a frozen model [4].

In robotics, prior work on the generalization capabili-
ties of agents has focused on large-scale end-to-end train-
ing [29] or, targeting vision specifically, on pre-trained vi-
sual models required to generalize to various different poli-
cies [19–21]. In this work, we argue and will show that
a single policy can be trained for a large number of dif-
ferent tasks including manipulation, locomotion, and that
the adaptation of visual features is highly beneficial, beyond
the inherent adaptation capabilities of attention-based mod-
els. In particular, different tasks require diverse types of
invariances and symmetries. While in principle it should
be possible to learn to disentangle a sufficiently wide set of
factors of variation in a captured representation such that
it optimally performs on a wide variety of tasks, we will
show that this is not the case for the arguably dominant pre-
training method, masked auto-encoding (MAE) [9].

We propose task-conditioned adaptation, which allows
leveraging the high-quality representations of generally pre-
trained large vision models, while keeping the required flex-
ibility to address a wide variety of tasks, and also new
(unseen) tasks. We introduce a set of task-conditioned vi-
sual adapters that can be inserted inside a pre-trained visual
Transformer [33]-based backbone. The task is character-
ized by an embedding space, which is learned from super-
vision during training. We show that this embedding space
captures regularities of tasks and demonstrate this with few-
shot capabilities: the single policy and (adapted) visual rep-
resentations can address new unseen tasks, whose embed-
ding is estimated from a few demonstrations (cf. Figure 1).

The contributions of this work can be summarized as fol-
lows: (i) task-conditioned visual adapters to flexibly mod-
ulate visual features to a specific task; (ii) a single multi-
task policy solving tasks with different embodiments and
environments; (iii) a task embedding optimization proce-
dure based on a few demonstrations of a new task (unseen at
training time) to adapt the model in a few-shot manner with-

out any weight fine-tuning; (iv) quantitative and qualitative
results assessing the gain brought by the different novelties.

2. Related Work

Pre-trained visual representations for robotics — Back-
bone models pre-trained on large and diverse data have
shown great promises in NLP [2, 14, 18, 24], CV [5, 9, 22,
26], and more recently, robotics [16, 19–21, 23, 27, 35, 36].
Parisi et al. [23] study visual pre-training methods for visuo-
motor control, showing the quality of self-supervised repre-
sentations. Nair et al. [21] introduce R3M, a general vi-
sion model pre-trained on egocentric video data to capture
temporal dynamics and semantic features, improving down-
stream manipulation performance. Radosavovic et al. [27]
employ the well-known MAE framework [9] to pre-train
a single vision encoder applied to robots in the real world.
Ma et al. [19] pre-train a visual model with a self-supervised
value function objective on egocentric human videos to im-
prove control policies. Finally, recent work [16, 35, 36] has
shown the great promise of pre-trained models, either CLIP-
based [16] or self-supervised [35, 36], in visual navigation.

The most related work is [20] which studies the impact of
pre-trained vision models on a diversity of tasks gathered in
a benchmark named Cortexbench. They introduce a Vision
Transformer (ViT) [7] backbone, VC-1, pre-trained from a
set of out-of-domain datasets with a focus on egocentric vi-
sual frames. We believe that visual features should be task-
dependent and study how the VC-1 model can be adapted
to improve the performance of a single multi-task policy on
a subset of Cortexbench tasks, which is also different from
previous work focusing on single-task policies.

Transformer adapters — Transferring Trans-
former [33]-based pre-trained models to new tasks or
domains is an important topic. Methods involving adapter
modules were introduced in NLP [10, 11, 25] to allow
a fast and parameter-efficient transfer. Recent works
employ the same methods in robotics [17, 31]. Sharma
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(c) Inference for the settings: Known task and Few-shot .

Figure 3. Method overview: (a) the adapted policy is trained
with behavior cloning from expert demonstrations and given a vi-
sual encoder pre-trained with MAE. The model is conditioned on a
task embedding learned from ground-truth 1-in-K task identifiers.
(b) In the Few-shot case, a task embedding is estimated by opti-
mization, maximizing the likelihood of a given demonstration of
an unknown task. (c) Inference uses a task embedding given in the
Known task case, or estimated in the Few-shot case.

et al. [31] insert visual adapters in a Vision Transformer
(ViT) [7] pre-trained model. They introduce different types
of adapter blocks (”bottom”, ”middle”, ”top”) located at
diverse places in the visual model and show that combining
them improves performance. Liang et al. [17] also show the

positive impact of inserting task-specific adapters, trained
with imitation learning, in a pre-trained Transformer-based
model to adapt to robotics tasks.

While prior work learns a specific set of adapters for each
task, we argue that tasks share similarities and explore these
regularities with a single set of task-conditioned adapters.

Multi-task robotics policies — Having a single policy
performing a wide range of tasks is a long-standing problem
in robotics. With Deep Learning-based solutions becoming
more popular, some prior work focuses on training multi-
task neural agents. Approaches like BC-Z [13], RT-1 [1],
RT-2 [38] or Gato [30] study the scaling abilities of neu-
ral models to large-scale datasets. Trained generalist agents
show strong performance on a wide set of tasks, and can
generalize to some extent to novel tasks.

In contrast, our work leverages pre-trained vision models
but does not assume access to a large set of robotics data.
Instead, we focus on how to adapt visual features with rea-
sonable computation requirements and train a single multi-
task policy from only a few expert demonstrations. We also
show promising few-shot adaptation to new unknown tasks
without requiring very diverse training data. Somewhat re-
lated to our work is also TD-MPC2 [8], which introduces
a model-based RL algorithm to learn general world mod-
els and studies task embeddings to condition a multi-task
policy. However, the latter does not act from vision while
we specifically study how to modulate visual features con-
ditioned by a task embedding.

3. Task-conditioned adaptation
All tasks considered in this work are sequential decision-
making problems, where at each discrete timestep t an
agent receives the last 3 visual frames as an observation
vt ∈ R3×h×w×3, where h andw are the height and width of
images, and a proprioception input pt ∈ Rda , and predicts
a continuous action ât ∈ Rda , where da is the dimension of
the action space, which depends on the task at hand. We are
provided with a training dataset of expert demonstrations to
train a single policy, and for inference we study two differ-
ent setups: Known task , where we a priori know the task to
be executed, and Few-shot , where the trained policy must
be adapted to a new unseen task without fine-tuning only
given a small set of demonstrations.

Known tasks — Following [20], we consider K=12
robotics tasks from 3 benchmarks, Adroit [28], Deepmind
control suite [32] and MetaWorld [37]. The set of all known
tasks is denoted as T k = {tki }[i=1..K], where tki is a 1-in-K
vector encoding a known task, and is illustrated in Figure 2.

Unknown tasks — The ability of our method to adapt to
new skills is evaluated on a set of U=15 tasks from Meta-
World [37], for which we artificially generate demonstra-
tions with a process described in section 4. The set of all
unknown tasks is denoted as Tu = {tui }[i=1..U ], where tui
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Figure 4. Known task — Qualitative results: Three successful policy rollouts on known tasks from the test set. The multi-task approach
performs well on a variety of diverse tasks while being trained on a limited set of demonstrations.

is a 1-in-U vector encoding an unknown task, and is illus-
trated in Figure 2. Most importantly, T k ∩ Tu = ∅.

3.1. Base agent architecture

Following a large body of work in end-to-end training for
robotics, the agent directly maps pixels to actions and de-
composes into a visual encoder and a policy.

Visual encoder without adapters — following [20],
the visual encoder, denoted as ϕ, is a ViT model [7] pre-
trained with masked auto-encoding (MAE). We keep pre-
trained weights from VC-1 in [20], which are publicly avail-
able. However, we change the way the representation is col-
lected from the pre-trained model. Unlike [20], the repre-
sentation is not taken as the embedding of the ’CLS’ token,
which we consider to be undertrained by the MAE pretext
task. Instead, we train a fully-connected layer ψ to aggre-
gate all the token representations of the last layer of the ViT
except the ’CLS’ token. The visual observation vt associ-
ated with timestep t is thus encoded as

rt = ψ
[
ϕ(vt; θϕ); θψ

]
, (1)

where θϕ and θψ are weights parametrizing ϕ and ψ respec-
tively. rt ∈ R3×dr as it contains the dr-dim encoding of
each of the 3 last visual frames processed as a data batch,
where dr is the output dimension of ψ.

As this will be relevant later, we recall here that a ViT
ϕ is composed of a sequence of Nl self-attention blocks,
where ϕl is the layer at index l. If we denote the internal
hidden representation predicted at layer l as slt, and omit
the weights of ϕl for simplicity, we have,

slt = ϕl(s
l−1
t ), (2)

where s0t=vt.
Single-task policy — following [20], the policy π is

implemented as an MLP predicting actions from the input
which is a concatenation of the current frame, two frame
differences and the proprioception input pt,

ât = π
([

rt,1−rt,0, rt,2−rt,1, rt,2,pt

]
; θπ

)
, (3)

where [ ] is the concatenation operator and θπ are weights
parametrizing π.

3.2. Adaptation

Our key contributions are visual adapter modules along with
a multi-task policy, which are all conditioned on the task
at hand. This is done with a specific task embedding for
each task, taken from an embedding space of dimension de,
which is aimed to have sufficient regularities to enable few-
show generalization to unseen tasks. Importantly, the dif-
ferent adapters and the multi-task policy are conditioned on
the same task embedding, leading to a common and shared
embedding space. For the known task setting, where the
ground-truth label of the task is available, the task embed-
ding is projected from a 1-in-K vector with a linear func-
tion g trained jointly with the adapters and the policy with
the downstream loss (imitation learning). In the Few-shot
setting, at test time a new unknown task is described with
a few demonstrations, and a task embedding is estimated
through optimization, as will be detailed in subsection 3.4.
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Table 1. Known task — Impact of visual adapters: Validation and test performance on known tasks of different baselines highlighting
the gain brought by adapters. Both middle and top adapters bring a boost in performance, and conditioning them on the learned task
embedding increases performance. Our multi-task policy outperforms single-task policies with VC-1 non-adapted features. MT π: multi-
task policy – NC: Non-conditioned – C: Conditioned – Task emb.: whether to input at evaluation time, either the learned task embedding
and chosen from ground-truth (L), a random vector as the task embedding (Rd), or a randomly picked task embedding among the set of
K=12 embeddings (RdP) – Benchmarks avg: average performance across the 3 considered benchmarks (Adroit, DMC, MetaWorld) –
Tasks avg: average performance across all 12 known tasks. Performance is reported as mean ± std over 3 training runs (seeds).

MT Adapters Task Multi-task performance
π Mid. Top emb. Adroit DMC MetaWorld Benchmarks avg Tasks avg

Val Test Val Test Val Test Val Test Val Test

(a) [20] − − − N/A 44.0 ± 1.1 38.3 ± 2.5 49.6 ± 0.5 48.0 ± 0.3 53.5 ± 2.1 47.8 ± 2.0 49.1 ± 0.5 44.7 ± 0.3 50.3 ± 0.9 46.3 ± 0.4

(b) ✓ − − L 36.3 ± 1.7 33.0 ± 4.0 55.3 ± 1.4 54.1 ± 0.3 41.7 ± 1.6 34.7 ± 0.9 44.4 ± 1.0 40.6 ± 1.8 46.5 ± 1.1 42.5 ± 1.2

(c) ✓ NC − L 40.2 ± 1.2 37.3 ± 2.8 54.0 ± 1.5 54.8 ± 1.9 45.8 ± 4.5 36.3 ± 2.5 46.7 ± 1.6 42.8 ± 1.9 48.3 ± 1.9 44.2 ± 1.8

(d) ✓ C − L 42.0 ± 2.5 43.8 ± 2.2 59.1 ± 1.3 58.8 ± 0.3 48.6 ± 4.8 40.8 ± 3.0 49.9 ± 2.1 47.8 ± 1.4 51.9 ± 2.1 48.8 ± 1.3

(e) ✓ C NC L 44.3 ± 1.2 43.2 ± 1.5 60.5 ± 0.5 60.3 ± 2.5 58.6 ± 1.6 48.4 ± 1.9 54.5 ± 0.7 50.6 ± 0.8 57.0 ± 0.7 52.5 ± 1.1

(f) ✓ C C L 42.0 ± 0.8 42.3 ± 1.0 59.9 ± 0.9 60.0 ± 0.5 65.3 ± 1.0 54.5 ± 3.3 55.8 ± 0.1 52.3 ± 1.0 59.2 ± 0.1 54.8 ± 1.2

(g) ✓ C C Rd 4.2 ± 4.0 1.3 ± 0.9 10.3 ± 0.7 8.5 ± 1.1 1.3 ± 0.9 0.1 ± 0.1 5.3 ± 0.8 3.3 ± 0.2 5.5 ± 0.1 3.8 ± 0.4

(h) ✓ C C RdP 0.7 ± 0.9 3.2 ± 2.5 5.7 ± 1.2 9.5 ± 6.1 0.9 ± 0.6 0.3 ± 0.4 2.4 ± 0.5 4.3 ± 2.2 2.9 ± 0.4 4.6 ± 2.5

Figure 3 outlines the architecture, its details will be given in
the supplementary material.

Conditioned on a task embedding we denote as e, the
proposed adaptations are based on “middle” and “top”
adapters following [10, 31].

Middle adapters — we add one trainable adapter after
each ViT block to modulate its output. We introduce a set
of middle adapters A = {αl}[l=1..Nl], where αl is a 2-layer
MLP. In the modified visual encoder ϕm, each adapter mod-
ulates the output of the corresponding self-attention block
and is conditioned on the task embedding e. Its output is
combined with the one of the self-attention layer through a
residual connection. If we denote the internal hidden rep-
resentation predicted at layer l as sm,lt , and omit references
to the weights of ϕl and αl as in eq. (2) for simplicity, the
associated forward pass of a given layer becomes,

sm,lt = ϕml (s
m,(l−1)
t ) (4)

= ϕl(s
m,(l−1)
t ) + αl(ϕl(s

m,(l−1)
t ), e). (5)

Top adapter — A top adapter τ , also conditioned on the
task at hand, is added after the ViT model, to transform the
output of the aggregation layer ψ to be fed to the multi-task
policy (presented below). τ has the same architecture as a
single middle adapter αi. The prediction of rmt , equivalent
to rt in the non-adapted case, can be written as,

rmt = τ
[
ψ
[
ϕm(vt, e; θϕ, θA); θψ

]
, e; θτ

]
, (6)

where θA and θτ are the weights parametrizing the middle
adapters (each middle adapter has a different set of weights)
and the top adapter respectively.

Multi-task policy — We keep the architecture of the
single-task policy in eq. (3), as in [20]. However, instead
of re-training a policy for each downstream task of interest,
we train a single multi-task policy πm, whose action space
is the union of the action spaces of the different tasks. Dur-
ing training we apply a masking procedure on the output,
considering only the actions possible for the task at hand.

Let’s denote r̃mt as the input to the policy derived from
the adapted representation rmt and the proprioception input
pt as done in eq. (3). The conditioning on the task is done
by concatenating r̃mt with the task embedding e, giving

ât = πm ([̃rmt , e] , θπm) , (7)

where θπm are weights parametrizing πm.

3.3. Training

We train the model by keeping the weights of the pre-trained
vision-encoder model θϕ frozen, only the weights of the
adapter modules (θA, θτ ), aggregation layer (θψ), embed-
ding layer (θg) and multi-task policy (θπm ) are trained, cf.
Figure 3a. Lets’ denote by Θ={θA, θτ , θψ, θg, θπm} the
set of optimized weights. We train with imitation learning,
more specifically Behavior Cloning (BC): for each known
task tki , we have access to a set ofNi expert trajectories that
are composed of Ti discrete steps, including expert actions.
The optimization problem is given as

Θ̂ = argmin
Θ

K∑
i=1

Ni∑
n=1

Ti∑
t=1

L(âi,nt ,ai,nt ), (8)

where âi,nt and ai,nt are the predicted and ground-truth ac-
tions for a given step in a trajectory, and L is the Mean
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Adroit Deepmind Control MetaWorld

Figure 5. Known task — Per-task performance of policies in Table 1: single-task policies (row (a)), our approach without any adapter
(row (b)) and with conditioned middle and top adapters (row (f)). The adapters lead to a performance gain on most tasks, and our multi-task
solution is competitive with single-task policies. Colored bars and error bars respectively show mean and std over 3 training runs (seeds).

Squared Error loss.

3.4. Few-shot adaption to new tasks

For the Few-shot setting, the task embedding e is un-
known at inference and needs to be estimated from a set
of Nd example demonstrations D={dn}[n=1..Nd] where
dn={(vn∗t ,pn∗t ,an∗t )}[t=1..Td] is composed of observa-
tions and actions, with Td being the length of each demon-
stration. We exploit the conditioning property of the policy
itself to estimate the embedding ê as the one which obtains
the highest probability of the demonstration actions, when
the policy is applied to the demonstration inputs, i.e.

ê = argmin
e

Nd∑
n=1

Td∑
t=1

L(πm ([̃rmn∗t , e] , θπm) ,an∗t ), (9)

where r̃mn∗ is the representation extracted from the demon-
stration input (vn∗t ,pn∗t ), and which itself depends on e
(not made explicit in the notation). The minimization is car-
ried out with SGD from an embedding initialized to zero.

4. Experiments
Training — all variants involving adapters and/or a multi-
task policy (rows (b)-(f) in Table 1) were trained for 50
epochs with behavior cloning, cf. §3.3, following training
hyper-parameters in [20]. Between 20 and 95 expert tra-
jectories are available depending on the task. We used the
datasets of trajectories from [20].

Evaluation — to better handle possible overfit on
hyper-parameter selection, our evaluation setup is slightly
different from [20] as we perform 100 validation rollouts to
select the best checkpoint of each model, and then test the
chosen model on 100 test rollouts. For our multi-task pol-
icy, the best checkpoint is the one with the highest average

validation performance across all tasks. Single-task policies
are validated only on the task they were trained on, giving
them an advantage, and for this reason, they are reported
as “soft upper bounds”. We report the average performance
and standard deviation among 3 trained models (3 random
seeds) for each variant as mean ± std (Table 1).

In total, we conduct evaluations of our method on 27 dif-
ferent tasks, 12 known and 15 unknown, with varying en-
vironments, embodiments, and required sub-skills. This al-
lows to evaluate the adaptation and generalization abilities
of the multi-task policy.

Evaluation metrics — Following [20], we consider a
rollout success (1 if the task was completed properly, 0 oth-
erwise) for tasks in the Adroit and MetaWorld benchmarks,
and report the normalized return for DMC. Episodes have a
maximum length of 1000 steps and each step reward is com-
prised between 0 and 100 in DMC, normalization is there-
fore done by dividing the agent’s return by 10. For all tasks,
performance is averaged across rollouts.

Known task — Impact of visual adapters — Ta-
ble 1 presents a detailed comparison of different methods
on the known task setting. The baseline in row (a) follows
the setup in [20] to train single-task policies (one per task)
from non-conditioned VC-1 features. For this variant, we
use the representation of the ’CLS’ token as the vector fed
to the policy as done in [20], while all other baselines use
our proposed token aggregation layer.

Row (b) is our multi-task policy without any adapter.
As expected there is a performance drop compared to the
specialized policies in row (a), as the problem to solve has
become more difficult. Adding adapters and conditioning
them on the task embedding, shown in rows (c)-(f), brings
a boost in performance, both for middle and top adapters.
In particular, conditioning adds a further boost compared to
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Figure 6. Few-shot — Per-task performance: After optimizing the task embedding for each task from 5 demonstrations, our method
can adapt to many of them (without finetuning). Colored bars and error bars respectively show mean and std over 3 training runs (seeds).

non-conditioned adapters, with all choices enabled, row (f),
obtaining the best average performance.

Rows (g) and (h) are ablation experiments evaluating the
impact of choosing random task embeddings, row (g), or of
taking a random choice between the 12 learned embeddings,
row (h). In both cases, the performance collapses.

A particularly important conclusion that can be drawn
from the experiments outlined in Table 1 is that the pro-
posed multi-task approach (row (f)) outperforms the single-
task policies without adapters (row (a)). This shows that
a multi-task policy can perform well on a series of tasks
while being trained on a limited set of demonstrations. Fig-
ure 4 presents 3 successful test rollouts of our multi-task
approach on diverse known tasks.

Figure 5 visualizes the per-task test performance on
known tasks of single-task policies (row (a) in Table 1), our
approach without any adapter (row (b) in Table 1) and with
conditioned middle and top adapters (row (f) in Table 1).
The proposed adapters lead to a performance gain on most
tasks compared with the solution without adapters, and the
multi-task solution is competitive with single-task policies,
even outperforming them on half the tasks.

Known task — Additional ablation studies — are
presented in the supplementary material (Sections B and C).
Section B shows that conditioning the policy when using
task-conditioned adapters is not necessary, that our aggrega-
tion layer works better than using the ’CLS’ token as input
to the policy and further highlights the impact of both mid-
dle and top adapters. Section C shows that our adapters im-
prove visual embeddings extracted by two state-of-the-art
pre-trained backbones, i.e. PVR [23] and MVP [27], con-
firming the conclusions drawn from experiments on VC-1.

Known task — Visualizing the influence of task-
conditioned adaptation — Figures 2 and 3 in the sup-

plementary material visualize the attention map of the last
VC-1 layer. They show that adding adapters focuses atten-
tion on objects of interest and task-conditioning improves
attention, mainly towards goals.

Few-shot — adaptation to new tasks without finetun-
ing model weights is an important ability of any general
policy, which we evaluate with the following experiments:
for each task within a set of unknown tasks (cf. Figure 2),
we collect only 5 demonstrations used to optimize a task
embedding specific to this task with the method detailed in
section §3.4. We then evaluate the method conditioned on
the optimized embedding on 100 test rollouts.

To generate the set Tu of unknown tasks, we select tasks
from the MetaWorld dataset that do not belong to Cor-
texBench, and are thus not part of the set of training known
tasks T k. We collect demonstrations using single-task poli-
cies from TD-MPC2 [8] that were specifically trained on
each task of MetaWorld independently. To ensure high-
quality demonstrations, we only consider tasks where TD-
MPC2 policies reach a success rate higher than 95%. Fur-
thermore, to be compatible with the setup in CortexBench
authors, in particular, to keep the same camera locations, we
filter out the tasks where the goal is not always visible in the
camera FOV. This leads to a set of 15 unknown tasks that
are quite different from the tasks in the training set T k as
they involve different objects (handle press, faucet, plate,
door, window, etc.) and types of manipulation (sliding an
object, lowering a press, opening a window, etc.). Each col-
lected demonstration is a sequence of visual frames, propri-
oception inputs, and expert actions. The optimization of the
task embedding is performed independently for each task
(cf. §3.4). We use the AdamW optimizer and a learning
rate of 1e−1 during the task embedding search.

Figure 6 presents the per-task performance in this set-
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(a) Successful rollouts

(b) Failed rollouts

Figure 7. Few-shot — Qualitative results: (a) The policy tackles new tasks involving objects and/or manipulation requirements unseen
during training. (b) In the first row (button-press-wall task), it performs the task correctly until the end where it fails to properly push the
button fully. In the second row (push-back task), it properly moves the cube but fails to bring it to the goal position (green dot).

ting. Despite the large variations between the new tasks in
Tu and the ones in the training set (T k), the multi-task pol-
icy can adapt to many of them, without requiring any weight
finetuning. Interestingly, the method performs particularly
well on the Drawer Close task, which could be related to
the presence of the time-inversed Drawer Open task in the
training set. This provides some evidence that the method
can exploit regularities between tasks, which seem to be
captured by the task embedding space, making it possible
to generalize to unseen variations. Figure 7 (a) shows quali-
tative examples of successful rollouts on the new tasks. The
policy manipulates new objects (faucet, plate, window) and
performs new moves (rotating the faucet or sliding the plate)
not seen during training.

Finally, Figure 7 (b) shows failure cases on unknown
tasks. As seen on the first row, the policy avoids the wall,
reaches the button, and starts pushing it, but fails to push it
fully. This particular behavior was also observed on other
rollouts, explaining the 0% success on this button-push-wall
task while mastering a part of the required sub-skills. On the
second row, the policy is able to move the cube but fails to
bring it to the goal location (green dot). This gives some
indication of the difficulty of the few-shot generalization
case: exploiting regularities in the task space requires that

tasks be performed more than just approximately, as often
the success metric is sparse, and rollouts only count to the
metric when they are executed fully and correctly.

5. Conclusion

Perception and action are closely tied together, and stud-
ies of human cognition have shown that a priori knowledge
about a downstream task guides the visual system. We fol-
low this direction in the context of artificial agents by intro-
ducing task-conditioned adapters that modulate the visual
features of a pre-trained neural backbone. Such adapters,
conditioned on a learned task embedding, improve the per-
formance of a multi-task policy across benchmarks and em-
bodiments. Even more interesting is the use of task embed-
dings to adapt in a few-shot manner, i.e. from a small set
of demonstrations, to new tasks unseen at training time. We
propose an optimization procedure to estimate a new task
embedding and achieve generalization to unseen tasks, in-
volving new objects and manipulation sub-skills, providing
evidence for regularities in the learned embedding space.
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