
Explaining CLIP’s performance disparities on data from blind/low vision users

Daniela Massiceti† Camilla Longden† Agnieszka Słowik† Samuel Wills⋄

Martin Grayson†

†Microsoft Research

Cecily Morrison†

⋄The World Bank

Abstract
Large multi-modal models (LMMs) hold the potential to

usher in a new era of automated visual assistance for peo-
ple who are blind or low vision (BLV). Yet, these models
have not been systematically evaluated on data captured by
BLV users. We address this by empirically assessing CLIP,
a widely-used LMM likely to underpin many assistive tech-
nologies. Testing 25 CLIP variants in a zero-shot classifica-
tion task, we find that their accuracy is 15 percentage points
lower on average for images captured by BLV users than
web-crawled images. This disparity stems from CLIP’s sen-
sitivities to 1) image content (e.g. not recognizing disability
objects as well as other objects); 2) image quality (e.g. not
being robust to lighting variation); and 3) text content (e.g.
not recognizing objects described by tactile adjectives as
well as visual ones). We delve deeper with a textual anal-
ysis of three common pre-training datasets: LAION-400M,
LAION-2B and DataComp-1B, showing that disability con-
tent is rarely mentioned. We then provide three examples
that illustrate how the performance disparities extend to
three downstream models underpinned by CLIP: OWL-ViT,
CLIPSeg and DALL-E2. We find that few-shot learning with
as few as 5 images can mitigate CLIP’s quality-of-service
disparities for BLV users in some scenarios, which we dis-
cuss alongside a set of other possible mitigations.

1. Introduction

AI-based applications hold the potential to help people
who are blind and low vision (BLV) with everyday visual
tasks [3, 5]. However, the popularity of video-calling ser-
vices like Be My Eyes [1] suggest that human assistance
is still often required due to the wide set of assistance
tasks [44] and varying quality of BLV images [8, 17]. Re-
cent advances in large multi-modal models (LMMs) [19,
49, 52] could potentially address these challenges, enabling
a new era of automated visual assistance as highlighted by
the early partnership between Open AI and Be My Eyes [2].

Despite the opportunity, little work has evaluated how
well LMMs perform on data from BLV users. Performance
disparities have been identified for other user groups [6, 36,
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Figure 1. CLIP’s zero-shot object recognition accuracy
is 15 percentage points lower in images from BLV users
(ORBIT, VizWiz-Classification) versus web-crawled images
(MSCOCO, Open Images). Average accuracy (with 95% c.i.) in
a standardized zero-shot image classification task is reported over
80-100K images per dataset for 25 CLIP variants.

45, 52, 55, 66] but the evidence for BLV users is either anec-
dotal [49] or not specific to large multi-modal models [8].
Since BLV users are likely to be one of the biggest benefi-
ciaries of LMMs, often in productivity- and safety-critical
situations, it is important to extend studies to this group.

To address this, we systematically evaluate CLIP, a
widely used LMM with 8700+ citations and 24M+ down-
loads1, on data from BLV users. CLIP’s rich embeddings
and strong zero-shot capabilities have led to it underpin-
ning a wide range of downstream tasks including image
classification [52], object detection [41, 42], semantic seg-
mentation [37], image captioning [61, 63] and video recog-
nition [35]. It has also been used to create large-scale
datasets [23, 34, 57, 58] and evaluation metrics [26, 50].
As CLIP’s pre-trained parameters are often used directly,
poor performance can have wide-ranging implications for
downstream assistive applications that use them.

We investigate CLIP’s performance on BLV data along
three dimensions: image content, image quality, and textual

1Statistics taken from Google Scholar and OpenAI’s Hugging Face
Hub (for CLIP ViT-L/14, ViT-B/32 and ViT-B/16) on 23 October 2023.
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content. Visual content considers how well CLIP can rec-
ognize BLV-specific objects, such as guide canes. Visual
quality assesses robustness to quality variations that charac-
terize BLV images, such as blur and atypical framing [17].
Textual content examines performance on tactile descriptive
words used by BLV users in contrast to visual ones, for ex-
ample “plastic” versus “yellow”. We study each dimension
in the context of a zero-shot image classification task, pro-
viding a worst-case estimate on how well CLIP will serve
downstream assistive applications if used out-of-the box.

Overall, we find that CLIP’s zero-shot classification ac-
curacy is 15 percentage points lower on BLV images com-
pared to web-crawled images across 25 CLIP variants.
These variants span architecture size (ViT-B/16 to ViT-
g/14), pre-training dataset (WIT [52], LAION [57, 58],
DataComp/CommonPool [23]) and pre-training dataset size
(80M to 3.8B). On deeper inspection, underperformance
stems from CLIP: 1) recognizing disability objects less well
than non-disability ones, with 25 percentage points lower
accuracy; 2) being sensitive to image quality, particularly
occlusion and lighting issues; and 3) recognizing objects
described by material less well than color, with discrepan-
cies of 7 percentage points. In all cases, a larger pre-training
dataset or architecture does not lead to parity.

To further understand our results, we examine the up-
stream source and downstream impact of these dispari-
ties. First, we conduct a textual analysis of the captions in
LAION-400M/2B and DataComp1B and find that disabil-
ity objects and materials are mentioned ∼17x and ∼4x less
frequently than non-disability objects and colors, respec-
tively. Second, we find performance disparities on BLV data
persist in three downstream models that use CLIP: OWL-
ViT [41] for object detection, CLIPSeg [37] for semantic
segmentation, and DALL-E2 [53] for text-to-image genera-
tion. We close by discussing a set of possible mitigations,
including few-shot model adaption and application-level so-
lutions, toward making automated visual assistance for BLV
users more equitable.

In summary, our work contributes to the literature on
how LMMs perform for users in the margins, specifically
highlighting how CLIP may underperform for BLV users if
integrated into assistive applications. Our contributions are:

• An empirical study of CLIP’s performance on BLV im-
age content, image quality and textual content.

• The first quantification of BLV content representation
in LAION-400M, LAION-2B, and DataComp-1B.

• An example-based analysis that illustrates how perfor-
mance disparities on BLV data persist in three down-
stream models that use CLIP.

2. Related Works
Large multi-modal models. LMMs now have impressive
capabilities in analyzing and synthesizing images [7, 16, 19,

30, 49, 52, 68]. Contrastive models [30, 52, 68], a promi-
nent sub-class, learn joint image and text embeddings by
training on massive web-crawled data using a contrastive
loss [15, 48]. They are unique in their architecture scale,
and in the way they are trained on web-crawled data in an
unsupervised manner. Unlike previous models, the rich em-
beddings they learn are leveraged by a wide range of down-
stream models – either directly [21, 52], or as part of a larger
system [10, 35, 37, 41–43, 46, 53, 61–63, 67].

LMMs and fairness. LMMs are known to have social bi-
ases across gender, race, age, and geographic location [6,
36, 45, 66]. CLIP, for example, has been shown to classify
people of color as non-human and males as criminal more
often than white people and females, respectively [6]. Some
works have studied these representational harm for people
with disabilities, however only in natural language [28].
Quality-of-service harms arise when an application under-
performs or fails for a particular user group [13, 18, 65] –
e.g. a facial recognition system that does not detect women
with darker skin tones [14]. These can be systematically
identified and mitigated through disaggregated reporting of
a model’s performance [9, 47]. This has not been well stud-
ied for people with disabilities generally or BLV people
specifically, with the evidence either anecdotal (e.g. GPT-
4Vision model card [49]) or not specific to LMMs [8].

3. Methodology
Our work investigates CLIP’s robustness to image and text
data from BLV users in the context of a zero-shot image
classification task. This provides a worse-case estimate of
how CLIP will perform out-of-the-box in downstream assis-
tive applications. Here we describe the experimental set-up,
CLIP variants, and datasets used in our analyses.

3.1. Episodic zero-shot image classification

An image classifier selects which object c∈C is present in
an image, where C is the set of possible object classes and
|C| is the task’s “way”. A zero-shot classifier does this with-
out seeing any training images of the classes beforehand.

Our first analysis compares CLIP’s performance on dif-
ferent datasets (rather than the more typical multiple mod-
els on a single dataset), requiring our classification task set-
up to be standardized across datasets. We take inspiration
from the episodic sampling used in meta-learning [22]: for
each dataset j annotated with Cj object classes, we sample
T fixed N -way classification tasks, where for each task we
randomly sample N classes from Cj . For each task, we ran-
domly sample M test images per class. The classification
accuracy is then computed for all T*M*N images and the
average (and 95% confidence interval) is reported. We re-
peat this for each dataset, with T , N and M held constant.
We use variations of this to compare CLIP’s performance
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between object types (Sec. 4.1) and text prompts (Sec. 4.3)
with details provided in each section, respectively.

3.2. Logistic Regression

We also aim to understand which characteristics within im-
ages and text affect CLIP’s performance. We use logistic re-
gression, a common tool for hypothesis testing, to estimate
the marginal effect of each characteristic on the model’s ac-
curacy. This approach avoids the need for careful experi-
mental set-up which controls for all factors except the vari-
able of interest. Logistic regression extends Ordinary Least
Squares (OLS) regression to the case when the output vari-
able is binary, as is our case where the model correctly iden-
tifies the ground-truth object or not. Formally, we use:

p(zi) =
1

1 + e−zi
(1)

where zi = α1 + β1Xi + α2Di + β2DiXi + ϵi. The out-
put variable is p(zi) ∈ [0, 1], the probability that the model
correctly identifies the ground-truth object in image i, with
1 for correct, and 0 otherwise. The explanatory variables
are Xi, a vector of binary variables that encode whether a
particular characteristic is present in image i, and Di is a
binary variable indicating whether the ground-truth object
is a disability object (e.g. a guide cane). The interaction
term β2DiXi measures whether the marginal effect of each
characteristic in Xi is compounded or mitigated for disabil-
ity objects relative to non-disability objects. ϵi are residuals
which are assumed homoskedastic and uncorrelated.

The coefficients α1, β1, α2, β2 are estimated through
maximum likelihood. In OLS the coefficients directly rep-
resent the marginal effect of each Xi variable on the depen-
dent variable. In contrast, here they represent the marginal
effect on the log-odds ratio, which is linear in Xi:

ln

(
p(zi)

1− p(zi)

)
= α1+β1Xi+α2Di+β2DiXi+ ϵi (2)

This makes the coefficients difficult to interpret so we in-
stead report them as ∂p/∂x, the marginal effect of each
characteristic x∈X on the model’s probability of being cor-
rect, p. We report the average of this marginal effect across
all observations in the sample. We interpret each effect
through its sign, magnitude, and significance. A negative
sign means the model is less likely to be correct when that
characteristic is present in an image – on average and hold-
ing all other characteristics constant. Its magnitude mea-
sures the extent of this impact. Its significance indicates
its reliability based on a two-sided t-test that estimates the
probability that the marginal effect is different from zero.

3.3. CLIP variants

We study 25 CLIP variants spanning architecture size, pre-
training dataset, and pre-training dataset size (see Tab. A.1

for summary). We focus on variants that use a Trans-
former [64] and Vision Transformer (ViT) [20] as the text
and vision encoders respectively as they are most widely
used. Specifically, we consider ViT-B/16, ViT-B/32, ViT-
L/14, ViT-H/14 and ViT-g/14 vision encoders with as-
sociated text encoders. For datasets, we consider Ope-
nAI’s closed-source WIT [52] and open-source LAION
(80M/400M/2B) [30, 57, 58], DataComp (S/M/L/XL) [23],
and CommonPool (S/M/L/XL) [23] with and without CLIP
Score filtering [26]. These span 80M-3.8B image-text pairs.

We use CLIP as a zero-shot classifier by embeddding a
task’s class labels using its text encoder, and each task im-
age with its vision encoder. An image’s prediction is taken
to be the class whose embedding has the highest cosine sim-
ilarity (after a softmax) with the image’s embedding.

3.4. Datasets

Our analyses are based on two large-scale datasets captured
by BLV users: ORBIT [38] and VizWiz-Classification [8].
Both datasets were collected through real-world assistive
applications: a personalizable object recognizer app for
ORBIT [44]; and a visual question-answering app for
VizWiz-Classification [12]. Both are therefore highly rep-
resentative of typical BLV user data. We contrast these with
two common web-crawled datasets – MS-COCO [33] and
Open Images [32] – which are typical of the data used to
pre-train LMMs, and widely used for benchmarking. We
consider only the test and validation sets of these datasets.
Below we provide descriptions of the BLV datasets, with
the web-crawled datasets described in the appendix.

ORBIT [38] contains 3,822 videos (2.68M frames) of
486 objects collected by 67 BLV users on their mobile
phones. For each object, users captured videos which show
the object alone, and in a realistic scene alongside other
items, which we call the Clean and Clutter datasets, respec-
tively. ORBIT Clean frames are annotated with 6 quality
issues (e.g. framing, blur) following the categories in [17].

VizWiz-Classification [8] contains 8,900 images from
the original VizWiz dataset [25], a dataset of images taken
by over 11,000 BLV users via a visual assistance mobile
app [12]. All images are annotated with 200 ImageNet ob-
ject categories and the 6 quality issues of [17] (including an
extra “other” quality issue).

4. Experimental Results
Our first finding is that CLIP’s accuracy is 15.0 percent-
age points lower on BLV datasets (ORBIT and VizWiz-
Classification) than web-crawled datasets (MS-COCO and
Open Images) (see Fig. 1). We use the standardized zero-
shot set-up (see Sec. 3.1) and average the T*N*M predic-
tions per dataset from each of the 25 CLIP variants. While
the accuracy difference is less for larger CLIP architectures
than smaller ones, no model achieves parity (see Fig. B.1).
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Table 1. CLIP underperforms on disability and exclusive
disability objects by significant margins compared to non-
disability objects. Zero-shot accuracy is averaged (with 95% c.i.)
over 27.5K images of each object type processed by each of the 25
CLIP variants. Experimental details in Sec. 4.1.1.

Object Category ORBIT Clean ORBIT Clutter

Excl. disability 36.5%± 0.1% 22.6%± 0.1%
Disability 41.8%± 0.1% 25.8%± 0.1%
Non-disability 58.9% ± 0.1% 50.9% ± 0.1%

In the best case, the gap is 6.7 percentage points (ViT-g/14,
LAION-2B) while in the worst, it is 22.8 percentage points
(ViT-B/32, DataComp-M). This preliminary result hints at
deeper issues. In the following sections, we aim to identify
potential sources of this discrepancy and why it occurs.

4.1. Robustness to image content from BLV users

To understand why accuracy is lower, we first examine BLV
image content. The BLV community uses a range of assis-
tive objects, like guide canes and Braille displays [31, 38,
44] (see Fig. 2), which are not included in popular bench-
marks [33, 54, 56]. We assess CLIP’s performance on such
“disability” objects versus more common objects.

We define disability objects as those that assist BLV peo-
ple (e.g. dog collar); exclusive disability objects as the sub-
set exclusively used by BLV people (e.g. guide cane); and
non-disability objects as those used by everyone (e.g. keys).
Three annotators categorized the ORBIT Clean and Clutter
datasets2 resulting in 55 disability, 42 exclusive disability,
and 431 non-disability objects (see App. A.3 for lists).

4.1.1 Disability objects are less well recognized than
non-disability objects

We compare zero-shot classification accuracy between dis-
ability and non-disability objects using a variant of the
episodic set-up described in Sec. 3.1. Specifically, for each
disability object we sample two N -way tasks with a “tar-
get” object and N -1 non-disability “distractor” objects. The
first task contains a disability target object and the second
task contains a non-disability target. The distractors are ran-
domly sampled from the non-disability objects, each com-
ing from a unique object cluster. We repeat T times for
each disability object, sampling a pair of tasks with a differ-
ent set of distractor objects and non-disability target object.
For each task, we randomly sample M frames of the tar-
get object, and ask CLIP to classify them from the task’s
N possible objects. We report the average accuracy of all
frames with a disability and a non-disability object as the
target, respectively (T*55*M each). We also report the av-
erage accuracy over the subset of frames that are exclusive
disability objects. We use T = 5, N = 20, M = 100.

2We do not consider VizWiz-Classification, as none of its 200 Ima-
geNet labels are disability objects.

Figure 2. Examples from the ORBIT Dataset. (top) Disability
objects: guide canes, liquid level sensor, electronic Braille device.
(middle) Quality issues typical in BLV images: underexposure,
blur, camera viewpoint, and framing. (bottom) A remote control
and a Victor Reader Stream in a clean and clutter frame.

Under this setting, we find that disability and exclusive
disability objects have accuracies of 21.1 and 25.3 percent-
age points less than non-disability objects, respectively, on
average across the ORBIT Clean dataset (see Tab. 1). The
gap widens by a further 3-4 percentage points when more
realistic scenarios are presented from ORBIT Clutter. We
find that the worst performing objects include Braille note-
takers, talking book devices and liquid level indicators.

We also investigate the role of CLIP’s pre-training
dataset size on this finding. We find that accuracy increases
with pre-training dataset size generally, but the delta be-
tween non-disability and disability objects stays roughly
constant (see Fig. B.2). This suggests that web-crawling
more data may not be enough to improve performance on
potentially long-tailed objects. We see similar trends for
increasing architecture sizes (see Fig. B.3).

4.1.2 Disability objects are under-represented in large-
scale datasets compared to non-disability objects

To better understand why more pre-training data does not
improve performance on disability objects, we analyze the
composition of three of CLIP’s large-scale pre-training
datasets for the presence of disability content – LAION-
400M [57], LAION-2B [58], and DataComp-XL [23] (also
called DataComp-1B). These datasets are used for pre-
training LMMs more broadly, with DataComp-XL achiev-
ing the highest accuracies on ORBIT.

Given the scale of the datasets, we conduct a text-based
analysis of their captions as a more computationally ten-
able approach than analyzing their images. We first extract
all noun phrases that contain a physical object3 from the

3A physical object traverses the entity → physical-entity → object →
OR(artifact, whole, part, living-thing) hypernym path in WordNet [40].
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Table 2. Disability objects occur 16-17x less frequently in the
captions of popular large-scale image-text datasets compared
to non-disability objects. The mentions of 222 disability object
synonyms and 312 non-disability synonyms were counted in noun
phrases (NPs) extracted from these datasets. Details in Sec. 4.1.2.

LAION-400M LAION-2B DataComp-1B

Captions 401,300,000 2,322,161,808 1,387,173,656
NPs 384,468,921 2,737,763,447 1,342,369,058
Unique NPs 5,984,181 22,657,632 15,071,341
Disability obj.
mentions

18,326
(0.0048%)

70,939
(0.0026%)

48,672
(0.0036%)

Non-disability
obj. mentions

425,046
(0.1106%)

1,550,043
(0.0566%)

1,126,356
(0.0839%)

Normalized
non-dis/dis ratio 16.8 15.6 16.5

captions, referred to as “visual concepts”4. We then com-
pute how prevalent ORBIT’s disability and non-disability
objects are contained in these visual concepts. We use OR-
BIT to contextualize our previous results as it is a realis-
tic representation of the types of objects important to BLV
users, however, other object lists could be used.

To do this, we first group similar objects from the OR-
BIT dataset into higher-level clusters (e.g. all guide canes).
As each cluster could be described in several ways (e.g.
“symbol canes”, “guide canes”), we assign each two rel-
evant synonyms. This was expanded to 15 synonyms
for disability objects based on initial experimentation, re-
sulting in 222 disability object synonyms, and 312 non-
disability synonyms overall. We then count how many
times each synonym appears within the visual concepts us-
ing string matching, allowing partial matches after simple
pre-processing (see App. A.5 for details).

We find that disability objects occur 16-17x less fre-
quently than non-disability objects across all three datasets
(Tab. 2). We compute this by normalizing the number of
mentions by the number of synonyms for disability and non-
disability objects, respectively, and taking their ratio. We
also see that LAION-2B has 7x the number of noun phrases
as LAION-400M, but <4x the unique noun phrases, sug-
gesting that it contains more of the same rather than new
visual concepts (see App. A.5 for further statistics).

4.1.3 A few-shot approach can sometimes reduce the
disability and non-disability accuracy gap

As CLIP is also known to be a good few-shot learner [60],
we investigate whether providing several examples of
an object can equalize performance between disabil-
ity and non-disability content. We integrate a Pro-
toNets approach [59] with the “distractor” set-up described
in Sec. 4.1.1, using embeddings directly from CLIP’s vision
encoder5. Specifically for each disability object, we sample
pairs of N -way tasks in the same way, except now we addi-

4We release these publicly at [REMOVED FOR REVIEW]
5We note that this few-shot set-up does not use CLIP’s text encoder.

Table 3. A few-shot method using ProtoNets [59] (5-shot)
achieves the highest accuracy and lowest accuracy gap be-
tween disability and non-disability objects, versus vanilla
CLIP (0-shot) and CLIP with LLM-generated object descrip-
tions [39, 51]. Averaged over 25 CLIP variants.

Obj type ORBIT Clean Acc (%) ORBIT Clutter Acc (%)
0-shot [39] [51] 5-shot 0-shot [39] [51] 5-shot

Disability 41.8 48.3 50.1 86.2 25.8 32.1 34.2 54.5
Non-disability 58.9 57.0 57.0 88.3 50.9 50.2 49.4 69.1
Accuracy gap 17.1 8.7 6.9 2.1 25.1 18.1 15.2 14.6

tionally sample K training shots of each class which we use
to compute the class prototypes. As before, we evaluate the
model on M test images for the disability and non-disability
target object in each task pair, with the prediction taken to
be the closest prototype. We consider K = [5, 10, 20, 40].
We compare this to recent methods [39, 51] which im-
prove CLIP’s zero-shot performance by embedding LLM-
generated descriptions of objects (rather than just the raw
labels). We use GPT-4 as the LLM and the same generation
hyperparameters as [39, 51].

We find that augmenting CLIP with LLM-generated ob-
ject descriptions [39, 51] outperforms vanilla CLIP (0-shot)
which just embeds the raw object labels, but not a few-shot
approach (5-shot) which embeds a few image examples of
each object (see Tab. 3). This holds for both the ORBIT
Clean and Clutter datasets. Crucially, the accuracy gap be-
tween disability and non-disability objects is lowest with a
few-shot approach, though this accuracy gap quickly satu-
rates, with no significant gains coming from more than 5
shots (see Fig. B.4). We also note that while a few-shot
approach can reduce the accuracy gap to 2% in the simple
images from ORBIT Clean, it is less effective in the more
realistic images from ORBIT Clutter, with disability ob-
jects performing 14-15% points worse than non-disability
objects, even when scaled to 40 shots (see Fig. B.4b).

Furthermore, a few-shot approach is only effective as a
mitigation if CLIP is pre-trained on a large enough dataset.
We find that for pre-training datasets of less than 100M
examples, the accuracy difference is 3-4x larger than that
for 100-1000M examples, and 9-10x larger than that for
1B+ examples (see Figs. B.5a and B.5b). These factors are
roughly constant across the number of shots. Overall, this
speaks to the power of large-scale pre-training, even if a
small amount of extra effort is required.

4.2. Robustness to image quality from BLV users

Images captured by BLV users are of more variable quality
than those captured by sighted users. These issues include
atypical framing, camera blur, camera viewpoint (rota-
tion), occlusion, overexposure, and underexposure [17, 31],
which are annotated in the ORBIT Clean and VizWiz Clas-
sification datasets. We run the standardized zero-shot set-
up (see Sec. 3.1) on these datasets for all CLIP variants.
We then use the statistical tools described in Sec. 3.2 to
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disentangle the marginal effect of each quality issue on
model performance, both in general and for disability ob-
jects specifically. For ORBIT, we treat Xi as a binary vec-
tor indicating the presence of five quality issues6 in image i,
Di as a binary indicating the presence of an exclusive dis-
ability object, and DiXi as the interactions between them.
For VizWiz, we encode seven quality issues (including the
“other” category) in Xi, but exclude Di or DiXi as VizWiz
labels do not include disability objects.

4.2.1 Blur, viewpoint, occlusion and lighting issues sig-
nificantly reduce model accuracy.

In Fig. 3, we show that the marginal effects of blur, view-
point (rotation), occlusion, and lighting issues on model
accuracy are negative, large, and statistically significant
for most models. All else equal, blur reduces model ac-
curacy by 11 percentage points and 1 percentage point
in the ORBIT and VizWiz datasets, respectively, on av-
erage. Viewpoint issues by 9 and 8 percentage points on
each dataset respectively; occlusion by 9 and 14 percentage
points; and lighting issues by 23 and 8 percentage points.
We note that these effects are cumulative meaning that the
impact on model accuracy is summed if multiple issues oc-
cur in the same image. We also note that pre-training on
larger datasets, in general, does not guarantee robustness
(e.g. variants pre-trained on LAION-2B, one of the largest
datasets, are negatively affected by viewpoint and occlusion
issues by 3-12 and 8-19 percentage points, respectively).
We include the raw marginal effects in Tabs. B.3 to B.5.

Framing issues in the ORBIT dataset stand as the ex-
ception, with the marginal effect being positive and statisti-
cally significant. This can be explained by how the ORBIT
videos were collected. To orient the camera, BLV users
were instructed to hold it close to the object initially, and
then move away. So, the initial frames in the video tend
to be at close range – an easier recognition task – but also
have framing issues. This is supported by the VizWiz results
where framing issues, which occur at further distances from
the object, have a negative marginal effect on accuracy.

4.2.2 The impact of quality issues is typically not worse
for disability compared to non-disability objects.

Fig. 3 further shows that accuracy is 29 percentage points
lower for exclusive disability objects than non-disability ob-
jects in the ORBIT Clean dataset, on average across all
models, supporting the findings in Sec. 4.1.1. The marginal
effect of a quality issue, however, typically affects disability
objects no worse than non-disability ones. This can be seen
by comparing the net effect of a quality issue on each ob-
ject type. Let the baseline be the accuracy for non-disability
objects. The accuracy for a disability object with no quality

6We combine over- and underexposure into a joint “lighting issue” due
to low incidence rates of each of these issues.
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Figure 3. Blur, viewpoint/rotation, occlusion and lighting is-
sues all have large negative marginal effects on model accu-
racy, with high statistical significance, but these are not com-
pounded for exclusive disability objects. Each dot represents a
CLIP variant, with its color showing the significance level.

issues will be 29 percentage points lower. Introducing oc-
clusion will reduce the accuracy for non-disability objects
by 9 percentage points on average. For disability objects,
occlusion will reduce accuracy by this, plus the marginal
effect of the interaction term (+2 percentage points), for a
net effect of -7. The positive and significant interaction term
indicates that having an occlusion issue and being a disabil-
ity object has an effect that is slightly less than the sum of
its parts. The only exception is overexposure issues, which
do compound if they co-occur with a disability object.

4.3. Robustness to language used by BLV users

Assistive applications are likely to leverage the multi-modal
capabilities of LMMs, so it is important to understand how
CLIP performs on the range of language used by BLV peo-
ple. For example, BLV users commonly use tactile rather
than visual words to describe their objects [44]. In this
section, we study one instantiation of this – CLIP’s robust-
ness to recognizing objects described by their color, “yellow
mug”, versus their material, “plastic cup”.

To do this, three annotators manually labeled the OR-
BIT validation and test objects (208 objects) with a color
and a material7. Each adjective was selected from a pre-
defined list of 20 colors and 23 materials (see App. A.4). A
text prompt was then created for each object using the tem-
plate “<adjective> <object name>”, where <adjective>
was the object’s color or material, and <object name> was
the noun extracted from the raw object label. We use these
templates – referred to as color and material prompts – to
examine CLIP’s sensitivity to different object descriptions.

7We assigned up to 2 adjectives per object in some cases where objects
were multiple colors or materials.
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Table 4. Describing an object by its color (rather than material,
or color and material) leads to text embeddings that are most
aligned with that object’s image embeddings. CLIP scores [26]
between image and prompt embeddings are averaged (with 95%
c.i.) for 100 images per object per prompt type on ORBIT Clean.

Prompt Obj.
name

Material +
obj. name

Color +
obj. name

Color +
material +
obj. name

CLIP Score 24.07 ±
0.02

23.88 ±
0.02

25.20 ±
0.02

24.76 ±
0.02

4.3.1 CLIP classifies objects more accurately when
they are described by color rather than material

We compute CLIP scores [26] between an image and four
different prompt embeddings, for 100 randomly sampled
images of each object in ORBIT Clean. We consider the
color and material prompts, a lower bound containing just
the object name, and an upper bound adding both color and
material adjectives. We expect that the lower bound prompt,
which provides the least detail about the object, should align
less strongly with the object’s image embedding than the
upper bound prompt, which provides the most specific de-
tail. In Tab. 4, however, we see this is not the case. Rather,
color prompts have the highest CLIP scores and material
prompts the lowest. Interestingly, the upper bound has a
lower average CLIP score than the color prompt, suggest-
ing that adding the object’s material is harming alignment.

To quantify the impact of this on accuracy, we run the
standard zero-shot set-up (Sec. 3.1), embedding these tex-
tual prompts instead of the raw object labels. We see that
across all variants, CLIP classifies objects 7.1 percentage
points more accurately when they are described by their
color rather than their material (see Fig. B.6).

4.3.2 Materials are under-represented in large-scale
datasets compared to colors

We further examine this result by measuring how frequently
colors versus materials appear in the captions of LAION-
400M, LAION-2B and DataComp-1B. We use the extracted
noun phrases from Sec. 4.1.2, and count the number of
times the 20 material and 23 color annotations are men-
tioned. In Tab. 5, we see that colors are mentioned ∼4x
more frequently than materials across both datasets, once
normalized. This helps to explains some of the results

Table 5. Materials occur ∼4x less frequently than colors in
the captions of popular large-scale image-text datasets. The
mentions of 20 colors and 23 materials were counted in the noun
phrases extracted in Tab. 2.

LAION-400M LAION-2B DataComp-1B

Color mentions 475,060
(0.12%)

1,756,102
(0.06%)

1,165,871
(0.09%)

Material mentions 131,876
(0.03%)

513,014
(0.02%)

354,598
(0.03%)

Norm’ed color/
material ratio 4.1 3.9 3.8

victor reader stream

0.0031

0.0055

0.0081

guide cane

liquid level indicator

0.0115

0.0087

0.0069

0.0017

victor reader stream

liquid level indicator

guide cane

0.0009

guide cane

guide cane

Figure 4. OWL-ViT [41] detects disability objects less consis-
tently than non-disability objects. Disability objects are often
mistaken for other objects, sometimes with higher confidence.

in Sec. 4.3.1. Taken together, this suggests that models pre-
trained on these datasets may perform worse for BLV users
who describe their objects by their material, with the poten-
tial that this may extend to other tactile-based descriptions.

5. Example-based impact analysis

Sec. 4 broadly shows that CLIP is sensitive to image and
textual data provided by BLV users in a zero-shot classifi-
cation task. We investigate whether these performance dis-
parities persist in three downstream models that use CLIP
– OWL-ViT [42], CLIPSeg [37], and DALL-E2 [53]. We
run our analysis on 180 BLV images which are system-
atically selected for 20 objects – the 5 top- and bottom-
performing disability and non-disability objects from the
ORBIT dataset (see App. C for full protocol). For space
reasons, we include CLIPSeg results in App. C.3.

5.1. Object detection with OWL-ViT

Object detection is already widely available in BLV assis-
tive applications [3, 5], and in future, many may rely on
models that use CLIP, such as OWL-ViT [41]. OWL-ViT
predicts bounding boxes for objects specified in free-form
text prompts. It does this by appending a bounding box
regression and class-wise layer to CLIP’s (pre-trained) en-
coders and then fine-tuning on an object detection dataset.
We run all 180 images through OWL-ViT (with a ViT-B/32
vision encoder) with the (cleaned) noun phrase extracted
from the raw object label as the text prompt. A team of three
annotators then manually evaluated the detections. We find:

Disability objects are less consistently detected than
non-disability objects. Our results show that 6/10 non-
disability objects were correctly detected (taken as the box
with the highest confidence) in all 9 frames showing that ob-
ject, compared to 3/10 disability objects. In many of these
failed frames, the model mistook the disability object for
another object, often with a higher confidence (Fig. 4). This
behavior would have a large negative effect on the user ex-
perience of an object detection app.
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Table 6. OWL-ViT [41]’s correct bounding box predictions
have confidence scores that are ∼5x lower for disability than
non-disability objects on average. The confidence score of the
predicted box per image is averaged (with 95% c.i.) over 90 im-
ages for disability and non-disability objects, respectively.

Object Correct boxes Incorrect boxes
Dis. objs 0.016 ± 0.008 0.008 ± 0.003
Non-dis. objs 0.084 ± 0.030 0.008 ± 0.003

The model is less confident about disability object de-
tections than non-disability object detections. In Tab. 6,
we see that OWL-ViT’s confidence for the correct bounding
box is ∼5x lower for disability objects compared to non-
disability objects. We see that incorrect boxes have similar
confidence scores between disability and non-disability ob-
jects, which is expected. See examples in Fig. C.1.

5.2. Text-to-image generation with DALL-E2

DALL-E2 [53] also uses CLIP: during training its decoder
is conditioned on image embeddings from frozen CLIP. We
investigate the downstream impacts of this by examining if
DALL-E2 can generate disability content. We create two
prompts for each of the 20 objects using the templates:
i) “<object name>” ii) “<object name> on <surface>
next to a <adjacent-object>”. The object name was the
object label’s cleaned noun phrase, and the surface/adjacent
object was chosen to match a randomly sampled clutter im-
age of that object (see App. C for details). Three annotators
then manually evaluated four generations from DALL-E2
per prompt. A generated image was considered correct if it
contained the object specified in the prompt. We find:

Generations of disability objects are more likely to
be incorrect compared to non-disability objects. DALL-
E2 correctly generated the object in the prompt for 18/80
images of disability objects, versus 74/80 images of non-
disability objects. For some disability objects, no genera-
tions contained a valid representation of the object – includ-
ing guide canes, electronic Braille devices, and liquid level
indicators (see Figs. 5 and C.4). In these cases, the genera-
tions either defaulted to a more common object (e.g. a walk-
ing stick for “guide cane”) or fabricated an object entirely
(e.g. random dot patterns for “Braille sense display”, color-
ful thermometers for “liquid level sensor”). It also failed to
generate specific instances of assistive devices (e.g. “Victor
Reader Stream”, a talking book device, resulted in images
of books or river streams). In contrast, DALL-E2 generates
highly realistic of non-disability objects (see Fig. C.4a).

6. Discussion
Our evaluation of CLIP reveals that it consistently under-
performs on BLV data across visual content, visual qual-
ity, and textual content, irrespective of architecture size,
pre-training dataset, or pre-training dataset size. We dis-
cuss mitigation strategies to make LMMs more equitable

for BLV users and marginalized groups more generally.
Our results suggest that the performance disparities

come in part from the distribution shift between web-
crawled and BLV user data. This highlights the impor-
tance of systematic reporting of the contents of large-scale
datasets used for pre-training, in the spirit of datasheets for
datasets [24]. Our analysis in Secs. 4.1.2 and 4.3.2 pro-
vides a starting point, but this should be extended to other
datasets and marginalized content. With the data compo-
sition known, mitigation strategies can then be developed.
For example, assistive device websites and disability dataset
platforms like IncluSet [4] could explicitly be crawled.

We also show that a few-shot approach can mitigate per-
formance disparities relating to image content – a more
cost-effective alternative than re-training a LMM. The few-
shot model adaptation could be done when the LMM is de-
veloped, when the application is developed, or by the end-
users themselves as part of a teachable paradigm [31, 38].
Each of these options is an open research question with
the need to more deeply explore interaction paradigms and
light-weight model adaptation techniques [11, 27].

Finally, application-level mitigations should also be con-
sidered. For BLV users, auxiliary models could support
users to reduce image variance, helping them stabilize the
camera or alerting about the lighting conditions, for exam-
ple. We could also leverage data augmentation techniques
that are personalized to individual users or user groups. For
BLV users who tend to take blurry images, for example, we
could automatically inject blur into the few-shot images so
that the model becomes more robust to this quality issue.

The findings in this paper prompt a critical look at the
development cycle of current LMMs. Greater transparency
and disaggregation in dataset reporting is needed, regardless
of the proprietary nature of a dataset. Future work should
also explore lightweight model adaption techniques that al-
low application developers and users to bring equity to their
experiences. We must continue to work with marginalized
communities – “nothing about us without us” – to equalize
the benefit of LMMs and their extraordinary capabilities.

Real image DALL-E2 generations

Guide cane on a purple 
blanket next to a slipper

Braille sense display

Figure 5. DALL-E2 [53] either defaults to common objects or
fabrications when prompted with disability objects like guide
canes and electronic Braille devices. Instead, it generates high-
quality images of non-disability objects (see Fig. C.4a).
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