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Figure 1. From a single monocular camera, we reconstruct a high fidelity 3D scene live at 3fps. For every incoming RGB frame, 3D
Gaussians are incrementally formed and optimised together with the camera poses. We show both the rasterised Gaussians (left) and
Gaussians shaded to highlight the geometry (right). Notice the details and the complex material properties (e.g. transparency) captured.
Thin structures such as wires are accurately represented by numerous small, elongated Gaussians, and transparent objects are effectively
represented by placing the Gaussians along the rim. Our system significantly advances the fidelity a live monocular SLAM system can
capture.

Abstract

We present the first application of 3D Gaussian Splatting
in monocular SLAM, the most fundamental but the hardest
setup for Visual SLAM. Our method, which runs live at 3fps,
utilises Gaussians as the only 3D representation, unifying
the required representation for accurate, efficient tracking,
mapping, and high-quality rendering. Designed for chal-
lenging monocular settings, our approach is seamlessly ex-
tendable to RGB-D SLAM when an external depth sensor is
available. Several innovations are required to continuously
reconstruct 3D scenes with high fidelity from a live camera.
First, to move beyond the original 3DGS algorithm, which
requires accurate poses from an offline Structure from Mo-
tion (SfM) system, we formulate camera tracking for 3DGS
using direct optimisation against the 3D Gaussians, and
show that this enables fast and robust tracking with a wide
basin of convergence. Second, by utilising the explicit na-
ture of the Gaussians, we introduce geometric verification

*Authors contributed equally to this work.

and regularisation to handle the ambiguities occurring in
incremental 3D dense reconstruction. Finally, we introduce
a full SLAM system which not only achieves state-of-the-art
results in novel view synthesis and trajectory estimation but
also reconstruction of tiny and even transparent objects.

1. Introduction

A long-term goal of online reconstruction with a single
moving camera is near-photorealistic fidelity, which will
surely allow new levels of performance in many areas of
Spatial Al and robotics as well as opening up a whole range
of new applications. While we increasingly see the ben-
efit of applying powerful pre-trained priors to 3D recon-
struction, a key avenue for progress is still the invention
and development of core 3D representations with advan-
tageous properties. Many “layered” SLAM methods ex-
ist which tackle the SLAM problem by integrating multi-
ple different 3D representations or existing SLAM compo-
nents; however, the most interesting advances are when a
new unified dense representation can be used for all aspects
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of a system’s operation: local representation of detail, large-
scale geometric mapping and also camera tracking by direct
alignment.

In this paper, we present the first online visual SLAM
system based solely on the 3D Gaussian Splatting (3DGS)
representation [10] recently making a big impact in offline
scene reconstruction. In 3DGS a scene is represented by
a large number of Gaussian blobs with orientation, elonga-
tion, colour and opacity. Other previous world/map-centric
scene representations used for visual SLAM include occu-
pancy or Signed Distance Function (SDF) voxel grids [23];
meshes [28]; point or surfel clouds [9, 29]; and recently
neural fields [33]. Each of these has disadvantages: grids
use significant memory and have bounded resolution, and
even if octrees or hashing allow more efficiency they can-
not be flexibly warped for large corrections [25, 37]; meshes
require difficult, irregular topology to fuse new informa-
tion; surfel clouds are discontinuous and difficult to fuse
and optimise; and neural fields require expensive per-pixel
raycasting to render. We show that 3DGS has none of these
weaknesses. As a SLAM representation, it is most simi-
lar to point and surfel clouds, and inherits their efficiency,
locality and ability to be easily warped or modified. How-
ever, it also represents geometry in a smooth, continuously
differentiable way: a dense cloud of Gaussians merge to-
gether and jointly define a continuous volumetric function.
And crucially, the design of modern graphics cards means
that a large number of Gaussians can be efficiently rendered
via “splatting” rasterisation, up to 200fps at 1080p. This
rapid, differentiable rendering is integral to the tracking and
map optimisation loops in our system.

The 3DGS representation has up until now only been
used in offline systems for 3D reconstruction with known
camera poses, and we present several innovations to enable
online SLAM. We first derive the analytic Jacobian on Lie
group of camera pose with respect to a 3D Gaussians map,
and show that this can be seamlessly integrated into the
existing differentiable rasterisation pipeline to enable cam-
era poses to be optimised alongside scene geometry. Sec-
ond, we introduce a novel Gaussian isotropic shape regu-
larisation, to ensure geometric consistency, which we have
found is important for incremental reconstruction. Third,
we propose a novel Gaussian resource allocation and prun-
ing method to keep the geometry clean and enable accu-
rate camera tracking. Our experimental results demonstrate
photorealistic online local scene reconstruction, as well as
state-of-the-art camera trajectory estimation and mapping
for larger scenes compared to other rendering-based SLAM
methods. We further show the uniqueness of the Gaussian-
based SLAM method such as an extremely large camera
pose convergence basin, which can also be useful for map-
based camera localisation. Our method works with only
monocular input, one of the most challenging scenarios in

SLAM. To highlight the intrinsic capability of 3D Gaussian
for camera localisation, our method does not use any pre-
trained monocular depth predictor or other existing tracking
modules, but relies solely on RGB image inputs in line with
the original 3DGS. Since this is one of the most challeng-
ing SLAM scenario, we also show our method can easily be
extended to RGB-D SLAM when depth measurements are
available.
In summary, our contributions are as follows:

* The first near real-time SLAM system which works with a
3DGS as the only underlying scene representation, which
can handle monocular only inputs.

* Novel techniques within the SLAM framework, including
the analytic Jacobian on Lie group for direct camera pose
estimation, isotropic regularisation of the Gaussian shape,
and geometric verification.

» Extensive evaluations on a variety of datasets both for
monocular and RGB-D settings, demonstrating compet-
itive performance, particularly in real-world scenarios.

2. Related Work

Dense SLAM: Dense visual SLAM focuses on reconstruct-
ing detailed 3D maps, unlike sparse SLAM methods which
excel in pose estimation [4, 5, 21] but typically yield maps
useful mainly for localisation. In contrast, dense SLAM
creates interactive maps beneficial for broader applications,
including AR and robotics. Dense SLAM methods are gen-
erally divided into two primary categories: Frame-centric
and Map-centric. Frame-centric SLAM minimises pho-
tometric error across consecutive frames, jointly estimat-
ing per-frame depth and frame-to-frame camera motion.
Frame-centric approaches [1, 36] are efficient, as individual
frames host local rather than global geometry (e.g. depth
maps), and are attractive for long-session SLAM, but if a
dense global map is needed, it must be constructed on de-
mand by assembling all of these parts which are not nec-
essarily fully consistent. In contrast, Map-centric SLAM
uses a unified 3D representation across the SLAM pipeline,
enabling a compact and streamlined system. Compared
to purely local frame-to-frame tracking, a map-centric ap-
proach leverages global information by tracking against the
reconstructed 3D consistent map. Classical map-centric ap-
proaches often use voxel grids [2, 23, 26, 40] or points [9,
29, 41] as the underlying 3D representation. While voxels
enable a fast look-up of features in 3D, the representation
is expensive, and the fixed voxel resolution and distribution
are problematic when the spatial characteristics of the en-
vironment are not known in advance. On the other hand, a
point-based map representation, such as surfel clouds, en-
ables adaptive changes in resolution and spatial distribution
by dynamic allocation of point primitives in the 3D space.
Such flexibility benefits online applications such as SLAM
with deformation-based loop closure [29, 41]. However, op-
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timising the representation to capture high fidelity is chal-
lenging due to the lack of correlation among the primitives.
Recently, in addition to classical graphic primitives, neu-
ral network-based map representations are a promising al-
ternative. iMAP [33] demonstrated the interesting proper-
ties of neural representation, such as sensible hole filling
of unobserved geometry. Many recent approaches combine
the classical and neural representations to capture finer de-
tails [8, 27, 46, 47]; however, the large amount of computa-
tion required for neural rendering makes the live operation
of such systems challenging.

Differentiable Rendering: The classical method for
creating a 3D representation was to unproject 2D obser-
vations into 3D space and to fuse them via weighted av-
eraging [16, 23]. Such an averaging scheme suffers from
over-smooth representation and lacks the expressiveness to
capture high-quality details. To capture a scene with photo-
realistic quality, differentiable volumetric rendering [24]
has recently been popularised with Neural Radiance Fields
(NeRF) [17]. Using a single Multi-Layer Perceptron (MLP)
as a scene representation, NeRF performs volume rendering
by marching along pixel rays, querying the MLP for opac-
ity and colour. Since volume rendering is naturally differ-
entiable, the MLP representation is optimised to minimise
the rendering loss using multiview information to achieve
high-quality novel view synthesis. The main weakness of
NeRF is its training speed. Recent developments have in-
troduced explicit volume structures such as multi-resolution
voxel grids [6, 14, 34] or hash functions [19] to improve
performance. Interestingly, these projects demonstrate that
the main contributor to high-quality novel view synthesis
is not the neural network but rather differentiable volu-
metric rendering, and that it is possible to avoid the use
of an MLP and yet achieve comparable rendering quality
to NeRF [6]. However, even in these systems, per-pixel
ray marching remains a significant bottleneck for rendering
speed. This issue is particularly critical in SLAM, where
immediate interaction with the map is essential for tracking.
In contrast to NeRF, 3DGS performs differentiable rasteri-
sation. Similar to regular graphics rasterisations, by iterat-
ing over the primitives to be rasterised rather than march-
ing along rays, 3DGS leverages the natural sparsity of a
3D scene and achieves a representation which is expres-
sive to capture high-fidelity 3D scenes while offering sig-
nificantly faster rendering. Several works have applied 3D
Gaussians and differentiable rendering to static scene cap-
ture [11, 38], and in particular more recent works utilise
3DGS and demonstrate superior results in vision tasks such
as dynamic scene capture [15, 42, 44] and 3D genera-
tion [35, 45]. Our method adopts a Map-centric approach,
utilising 3D Gaussians as the only SLAM representation.
Similar to surfel-based SLAM, we dynamically allocate the
3D Gaussians, enabling us to model an arbitrary spatial dis-

tribution in the scene. Unlike other methods such as Elastic-
Fusion [41] and PointFusion [9], however, by using differ-
entiable rasterisation, our SLAM system can capture high-
fidelity scene details and represent challenging object prop-
erties by direct optimisation against information from every
pixel.

3. Method
3.1. Gaussian Splatting

Our SLAM representation is 3DGS, mapping the scene with
a set of anisotropic Gaussians G. Each Gaussian G' contains
optical properties: colour ¢! and opacity . For continuous
3D representation, the mean u%,v and covariance X! , de-
fined in the world coordinate, represent the Gaussian’s po-
sition and its ellipsoidal shape. For simplicity and speed,
in our work we omit the spherical harmonics representing
view-dependent radiance. Since 3DGS uses volume ren-
dering, explicit extraction of the surface is not required. In-
stead, by splatting and blending A" Gaussians, a pixel colour
C, is synthesised:

i—1

Cp=> o [JA-ay). (1)

ieEN j=1

3DGS performs rasterisation, iterating over the Gaussians
rather than marching along the camera rays, and hence, free
spaces are ignored during rendering. During rasterisation,
the contributions of « are decayed via a Gaussian function,
based on the 2D Gaussian formed by splatting a 3D Gaus-
sian. The 3D Gaussians N (py;,, X)) in world coordinates
are related to the 2D Gaussians N (p;, 3;) on the image
plane through a projective transformation:

pr=nm(Tow - pw) , Sr=IWSyWHIT | ()

where 7 is the projection operation and T'cyw € SE(3) is
the camera pose of the viewpoint. J is the Jacobian of the
linear approximation of the projective transformation and
W is the rotational component of T'cy. This formulation
enables the 3D Gaussians to be differentiable and the blend-
ing operation provides gradient flow to the Gaussians. Us-
ing first-order gradient descent [12], Gaussians gradually
refines both their optic and geometric parameters to repre-
sent the captured scene with high fidelity.

3.2. Camera Pose Optimisation

To achieve accurate tracking, we typically require at least 50
iterations of gradient descent per frame. This requirement
emphasises the necessity of a representation with computa-
tionally efficient view synthesis and gradient computation,
making the choice of 3D representation a crucial part of de-
signing a SLAM system.
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Figure 2. SLAM System Overview: Our SLAM system uses 3D Gaussians as the only representation, unifying all components of SLAM,
including tracking, mapping, keyframe management, and novel view synthesis.

In order to avoid the overhead of automatic differen-
tiation, 3DGS implements rasterisation with CUDA with
derivatives for all parameters calculated explicitly. Since
rasterisation is performance critical, we similarly derive the
camera Jacobians explicitly.

To the best of our knowledge, we provide the first ana-
lytical Jacobian of S E(3) camera pose with respect to the
3D Gaussians used in EWA splatting [48] and 3DGS. This
opens up new applications of 3DGS beyond SLAM.

We use Lie algebra to derive the minimal Jacobians, en-
suring that the dimensionality of the Jacobians matches the
degrees of freedom, eliminating any redundant computa-
tions. The terms of Eq. (2) are differentiable with respect
to the camera pose T cyy; using the chain rule:

opg _ Ou; Dpg

OTcw  Ope DTow’

X 0¥; 03 Dpug 0¥ DW
OTcw  0J Ouc DTow  OW DTow

where T'cyy represents the 3D position of Gaussian in the
camera coordinate. We take the derivatives on the manifold
to derive minimal parameterisation. Borrowing the notation
from [30], let T' € SE(3) and 7 € se¢(3). We define the
partial derivative on the manifold as:

DIT) 4 | Log(f(Exp(r) oT) o f(T) )

DT 7—0 T )
where o is a group composition, and Exp, Log are the expo-
nential and logarithmic mappings between Lie algebra and
Lie Group. With this, we derive the following:

3)
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where * denotes the skew symmetric matrix of a 3D vector,
and W ; refers to the ¢th column of the matrix.

3.3. SLAM

In this section, we present details of full SLAM framework.
The overview of the system is summarised in Fig. 2. Please
refer to the supplementary material for the further parameter
details.

3.3.1 Tracking

In tracking only the current camera pose is optimised, with-
out updates to the map representation. In the monocular
case, we minimise the following photometric residual:

Epho - HI(gvTCW) - j||1 3 (7)

where (G, T cw ) renders the Gaussians G from T ¢y, and
I is an observed image.

We further optimise affine brightness parameters for
varying exposure. When depth observations are available,
we define the geometric residual as:

Egeo = HD(g7TCW) - DH1 5 (8)

where D(G, T cw ) is depth rasterisation and D is the ob-
served depth. Rather than simply using the depth measure-
ments to initialise the Gaussians, we minimise both photo-
metric and geometric residuals: AppoEpho+(1—Apho) Egeos
where App,, is a hyperparameter.

As in Eq. (1), per-pixel depth is rasterised by alpha-
blending:

1—1
Dp=Y zai [[(1-a)), )
ieN j=1
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where z; is the distance to the mean iy, of Gaussian ¢ along
the camera ray. We derive analytical Jacobians for the cam-
era pose optimisation in a similar manner to Eq. (3), (4).

3.3.2 Keyframing

Since using all the images from a video stream to jointly
optimise the Gaussians and camera poses online is infeasi-
ble, we maintain a small window W}, consisting of carefully
selected keyframes based on inter-frame covisibility. Ideal
keyframe management will select non-redundant keyframes
observing the same area, spanning a wide baseline to pro-
vide better multiview constraints. The parameters are de-
tailed in supplementary.

Selection and Management Every tracked frame is
checked for keyframe registration based on our simple yet
effective criteria. We measure the covisibility by measur-
ing the intersection over union of the observed Gaussians
between the current frame ¢ and the last keyframe j. If the
covisibility drops below a threshold, or if the relative trans-
lation ¢;; is large with respect to the median depth, frame ¢ is
registered as a keyframe. For efficiency, we maintain only a
small number of keyframes in the current window W, fol-
lowing the keyframe management heuristics of DSO [4].
The main difference is that a keyframe is removed from
the current window if the overlap coefficient with the lat-
est keyframe drops below a threshold.

Gaussian Covisibility An accurate estimate of covisibil-
ity simplifies keyframe selection and management. 3DGS
respects visibility ordering since the 3D Gaussians are
sorted along the camera ray. This property is desirable for
covisibility estimation as occlusions are handled by design.
A Gaussian is marked to be visible from a view if used in
the rasterisation and if the ray’s accumulated « has not yet
reached 0.5. This enables our estimated covisibility to han-
dle occlusions without requiring additional heuristics.

Gaussian Insertion and Pruning At every keyframe,
new Gaussians are inserted into the scene to capture newly
visible scene elements and to refine the fine details. When
depth measurements are available, Gaussian means py;, are
initialised by back-projecting the depth. In the monocular
case, we render the depth at the current frame. For pix-
els with depth estimates, iy, are initialised around those
depths with low variance; for pixels without the depth es-
timates, we initialise fty;, around the median depth of the
rendered image with high variance.

In the monocular case, the positions of many newly in-
serted Gaussians are incorrect. While the majority will
quickly vanish during optimisation as they violate multi-
view consistency, we further prune the excess Gaussians by

checking the visibility amongst the current window Wj,. If
the Gaussians inserted within the last 3 keyframes are un-
observed by at least 3 other frames, we prune them out as
they are geometrically unstable.

3.3.3 Mapping

The purpose of mapping is to maintain a coherent 3D struc-
ture and to optimise the newly inserted Gaussians. Dur-
ing mapping, the keyframes in W, are used to reconstruct
currently visible regions. Additionally, two random past
keyframes W, are selected per iteration to avoid forgetting
the global map. Rasterisation of 3DGS imposes no con-
straint on the Gaussians along the viewing ray direction,
even with a depth observation. This is not a problem when
sufficient carefully selected viewpoints are provided (e.g.
in the novel view synthesis case); however, in continuous
SLAM this causes many artefacts, making tracking chal-
lenging. We therefore introduce an isotropic regularisation:

1G]
Biso =Y _|lsi —si- 1], (10)
=1

to penalise the scaling parameters s; (i.e. stretch of the
ellipsoid) by its difference to the mean s;. As shown in
Fig 3, this encourages sphericality, and avoids the problem
of Gaussians which are highly elongated along the viewing
direction creating artefacts. Let the union of the keyframes
in the current window and the randomly selected one be
W = W, U W,. For mapping, we solve the following
problem:

min E* 4 NisoFiso - (11)

Tk, €SE(3),G, vge:w ph
VkEW

If depth observations are available, as in tracking, geometric

residuals Eq. (8) are added to the optimisation problem.

4. Evaluation

We conduct a comprehensive evaluation of our system
across a range of both real and synthetic datasets. Addi-
tionally, we perform an ablation study to justify our design
choices. Finally, we present qualitative results of our sys-
tem operating live using a monocular camera, illustrating its
practicality and high fidelity reconstruction.

4.1. Experimental Setup

Datasets For our quantitative analysis, we evaluate our
method on the TUM RGB-D dataset [32] (3 sequences) and
the Replica dataset [31] (8 sequences), following the evalu-
ation in [33]. For qualitative results, we use self-captured
real-world sequences recorded by Intel Realsense d455.
Since the Replica dataset is designed for RGB-D SLAM
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Figure 3. Effect of isotropic regularisation: Top: Rendering
close to a training view (looking at the keyboard). Bottom: Ren-
dering 3D Gaussians far from the training views (view from a side
of the keyboard) without (left) and with (right) the isotropic loss.
When the photometric constraints are insufficient, the Gaussians
tend to elongate along the viewing direction, creating artefacts in
the novel views, and affecting the camera tracking.

evaluation, it contains challenging purely rotational cam-
era motions. We hence use the Replica dataset for RGB-D
evaluation only. The TUM RGB-D dataset is used for both
monocular and RGB-D evaluation.

Implementation Details We run our SLAM on a desktop
with Intel Core 19 12900K 3.50GHz and a single NVIDIA
GeForce RTX 4090. We present results from our multi-
process implementation aimed at real-time applications.
For a fair comparison with other methods on Replica, we
additionally report result for single-process implementation
which performs more mapping iterations. As with 3DGS,
time-critical rasterisation and gradient computation are im-
plemented using CUDA. The rest of the SLAM pipeline is
developed with PyTorch. Details of hyperparameters are
provided in the supplementary material.

Metrics For camera tracking accuracy, we report the Root
Mean Square Error (RMSE) of the Absolute Trajectory Er-
ror (ATE) of the keyframes. To evaluate map quality, we re-
port standard photometric rendering quality metrics (PSNR,
SSIM and LPIPS) following the evaluation protocol used
in [27]. To evaluate the map quality, on every fifth frame,
rendering metrics are computed. We exclude the keyframes
(training views). We report the average across three runs for
all our evaluations. In the tables, the best result is in bold,
and the second best is underlined.

Baseline Methods We primarily benchmark our SLAM
method against other approaches that, like ours, do not have
explicit loop closure. In monocular settings, we compare

with state-of-the-art classical and learning-based direct vi-
sual odometry (VO) methods. Specifically, we compare
DSO [4], DepthCov [3], and DROID-SLAM [36] in VO
configurations. These methods are selected based on their
public reporting of results on the benchmark (TUM dataset)
or the availability of their source code for getting the bench-
mark result. Since one of our focuses is the online scale esti-
mation under monocular scale ambiguity, the method which
uses ground truth poses for the system initialisation such
as [13] is not considered for the comparison. In the RGB-
D case, we compare against neural-implicit SLAM meth-
ods [7, 8, 27, 33, 39, 43, 46] which are also map-centric,
rendering-based and do not perform loop closure.

4.2. Quantitative Evaluation

Camera Tracking Accuracy Table 1 shows the tracking
results on the TUM RGB-D dataset. In the monocular set-
ting, our method surpasses other baselines without requiring
any deep priors. Furthermore, our performance is compara-
ble to systems which perform explicit loop closure. This
clearly highlights that there still remains potential for en-
hancing the tracking of monocular SLAM by exploring fun-
damental SLAM representations.

Our RGB-D method shows better performance than any
other baseline method. Notably, our system surpasses
ORB-SLAM in the frl sequences, narrowing the gap be-
tween Map-centric SLAM and the state-of-the-art sparse
frame-centric methods. Table 2 reports results on the syn-
thetic Replica dataset. Our single-process implementation
shows competitive performance and achieves the best re-
sult in 4 out of 8 sequences. Our multi-process implemen-
tation which performs fewer mapping iterations still per-
forms comparably. In contrast to other methods, our sys-
tem demonstrates higher performance on real-world data,
by optimising the Gaussian positions to compensate for the
sensor noise.

Novel View Rendering Table 5 summarises the novel
view rendering performance of our method with RGB-D
input. We consistently show the best performance across
most sequences and is least second best. Our rendering
FPS is hundreds of times faster than other methods, offer-
ing a significant advantage for applications which require
real-time map interaction. While Point-SLAM is compet-
itive, that method focuses on view synthesis rather than
novel-view synthesis. Their view synthesis is conditional
on the availability of depth due to the depth-guided ray-
sampling, making novel-view synthesis challenging. On
the other hand, our rasterisation-based approach does not
require depth guidance and achieves efficient, high-quality,
novel view synthesis. Fig. 4 provides a qualitative compar-
ison of the rendering of ours and Point-SLAM (with depth
guidance).
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Loop-

Input Method frl/desk fr2/xyz fr3/office  Avg.
closure

DSO [4] 22.4 1.10 9.50 11.0

5 wlo DROID-VO [36] 5.20 10.7 7.30 1.713

§ DepthCov-VO [3] 5.60 1.20 68.8 252

s Ours 3.78 4.60 3.50 3.96

= Wl DROID-SLAM [36]  1.80 0.50 2.80 1.70

ORB-SLAM?2 [20] 1.90 0.60 2.40 1.60

iMAP [33] 4.90 2.00 5.80 4.23

NICE-SLAM [46] 426 6.19 3.87 4.77

DI-Fusion [7] 4.40 2.00 5.80 4.07

wio Vox-Fusion [43] 3.52 1.49 2601 1034

a ESLAM [8] 247 111 242 2.00

8 Co-SLAM [39] 2.40 1.70 240 217

~ Point-SLAM [27] 4.34 131 3.48 3.04

Ours 1.50 1.44 1.49 147

BAD-SLAM [29] 1.70 1.10 1.70 1.50

w/ Kintinous [40] 3.70 2.90 3.00 3.20

ORB-SLAM?2 [20] 1.60 0.40 1.00 1.00

Table 1. Camera tracking result on TUM for monocular and
RGB-D. ATE RMSE in cm is reported. In both monocular and
RGB-D cases, we achieve state-of-the-art performance. In partic-
ular, in the monocular case, not only do we outperform systems
which use deep prior, but we achieve comparable performance
with many of the RGB-D systems.

Method r0 rl r2 o ol 02 o3 04 Avg.
iMAP [33] 312 254 231 1.69 1.03 399 4.05 193 258
NICE-SLAM 097 131 107 088 1.00 1.06 1.10 1.13 1.07
Vox-Fusion [43] 1.37 4.70 147 848 204 258 1.11 294 3.09
ESLAM [8] 071 070 052 057 055 058 0.72 0.63 0.63
Point-SLAM [27] 0.61 041 0.37 0.38 048 054 069 072 0.53
Ours 044 032 031 044 052 023 0.17 225 058

Ours (sp) 033 022 029 036 019 025 0.12 081 032

Table 2. Camera tracking result on Replica for RGB-D SLAM.
ATE RMSE in cm is reported. We achieve best performance across
most sequences. Here, Ours is our multi-process implementation
and Ours (sp) is the single-process implementation which ensures
a certain amount of mapping iteration similar to other works.

Input Method frl/desk fr2/xyz fr3/office Avg.

9 w/o Ejg, 4.16 4.66 5.73 4.83
S w/o kf selection 13.2 4.36 8.65 8.73
= Ours 3.78 4.60 3.50 3.96
a w/0 Egeo 2.39 0.62 4.98 2.66
% w/o kf selection 1.64 1.49 2.60 1.90
~ Ours 1.50 1.44 1.49 1.47

Table 3. Ablation Study on TUM RGB-D dataset. We analyse
the usefulness of isotropic regularisation, geometric residual, and
keyframe selection to our SLAM system. Further isotropic regu-
larisation ablation is available in supplementary.

Memory Usage [MB]
iMAP [33] NICE-SLAM [46] Co-SLAM [39] Ours (Mono) Ours (RGB-D)
0.8MB 40.3.4MB 6.4MB 2.6MB 3.97MB

Table 4. Memory Analysis on TUM RGB-D dataset. The base-
line numbers are computed from the parameter numbers in [39]

Ablative Analysis In Table 3, we perform ablation to con-
firm our design choices. Isotropic regularisation and ge-
ometric residual improve the tracking of monocular and
RGB-D SLAM respectively, as they aid in constraining the
geometry when photometric signals are weak. For both
cases, keyframe selection significantly improves systems
performance, as it automatically chooses suitable keyframes

Method PSNR[db]T SSIM?T LPIPS| Rendering FPS

NICE-SLAM[46] 24.42 0.809 0.233 0.54
Vox-Fusion[43] 24.41 0.801 0.236 2.17
Point-SLAM [27] 35.17 0.975 0.124 1.33
ours 38.94 0.968 0.070 769

Table 5. Average rendering performance on Replica (RGB-D).
Our method outperforms most of the rendering metrics compared
to existing methods. Note that Point-SLAM uses ground-truth
depth to guide sampling along rays. The full detail is available
in supplementary.

Point-SLAM Ours GT

Figure 4. Rendering examples on Replica. Point-SLAM struggle
with rendering fine details due to the stochastic ray sampling.

based on our occlusion-aware keyframe selection and man-
agement. We further compare the memory usage of dif-
ferent 3D representations in Table 4. MLP-based iMAP is
clearly more memory efficient, but it struggles to express
high-fidelity 3D scenes due to the limited capacity of small
MLP. Compared with a voxel grid of features used in NICE-
SLAM, our method uses significantly less memory.

Method seql seq2 seq3 Avg.

Neural SDF (Hash Grid) 0.13 0.15 0.16 0.14

Neural SDF (MLP) 040 038 0.22 0.33

Ours w/o depth 0.82 091 0.65 0.79

Ours w/ depth 083 1.0 0.65 0.82
Table 6. Camera convergence analysis. We report the ratio of
successful camera convergence for the different sequences, across

different differentiable 3D representations.

Convergence Basin Analysis In our SLAM experiments,
we discovered that 3D Gaussian maps have a notably large
convergence basin for camera localisation. To investigate
further, we conducted a convergence funnel analysis, an
evaluation methodology proposed in [18] and used in [22].
Here, we train a 3D representation (e.g. 3DGS) using 9
fixed views arranged in a square. We set the viewpoint in
the middle of the square to be the target view. As shown
in Fig 5, we uniformly sample a position, creating a funnel.
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Camera Layout

Ours w/ depth  Ours w/o depth

Figure 5. Convergence basin analysis: Left: 3D Gaussian map
from training views (Yellow) and visualisation of the test poses
(Red) and target pose (Blue). Right: Convergence basin of our
method. The green marks success, and the red marks failure.

Figure 6. Monocular SLAM result on fr1/desk sequence: We
show the reconstructed 3D Gaussian maps (Left) and novel view
synthesis result (Right).

From the sampled position, given the RGB image of the
target view, we perform camera pose optimisation for 1000
iterations. The optimisation is successful if it converges to
within Icm of the target view within the fixed iterations.
We compare our Gaussian approach with Co-SLAM [39]’s
network (Hash Grid SDF) and iMAP’s [33] network with
Co-SLAM’s SDF loss for further geometric accuracy (MLP
Neural SDF). We render the training views using a synthetic
Replica dataset and create three sequences for testing (seql,
seq2 and seq3). The width of the square formed by the
training view is 0.5m, and the test cameras are distributed
with radii ranging from 0.2m to 1.2m, covering a larger
area than the training view. When training the map, the
three methods— Ours w/depth, Hash Grid SDF, and MLP
SDF—use RGB-D images, whereas Ours w/o depth utilises
only colour images. Fig. 5 shows the qualitative results and
Table 6 reports the success rate. For both with and without
depth for training, our method shows better convergence.

Figure 7. Self-captured Scenes: Challenging scenes and objects,
for example, transparent glasses and crinkled texture of salad are
captured by our monocular SLAM running live.

Unlike hashing and positional encoding which can lead to
signal conflict, anisotropic Gaussians form a smooth gradi-
ent in 3D space, increasing the convergence basin. Further
experimental details are available in supplementary ??.

4.3. Qualitative Results

We report both the 3D reconstruction of the SLAM dataset
and self-captured sequences. In Fig. 6, we visualise the
monocular SLAM reconstruction of frl/desk. The place-
ments of the Gaussians are geometrically sensible and are
3D coherent, and our rendering from the different view-
points highlights the quality of our systems’ novel view
synthesis. In Fig. 7, we self-capture challenging scenes for
monocular SLAM. By not explicitly modelling a surface,
our system naturally handles transparent objects which is
challenging for many other SLAM systems.

5. Conclusion

We have proposed the first SLAM method using 3D Gaus-
sians as a SLAM representation. Via efficient volume ren-
dering, our system significantly advances the fidelity and di-
versity of object materials a live SLAM system can capture.
Our system achieves state-of-the-art performance across
benchmarks for both monocular and RGB-D cases. Inter-
esting directions for future research are the integration of
loop closure for handling large-scale scenes and extraction
of geometry such as surface normal as Gaussians do not ex-
plicitly represent the surface.
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