This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Logarithmic Lenses: Exploring Log RGB Data for Image Classification

Bruce A. Maxwell, Sumegha Singhania, Avnish Patel, Rahul Kumar, Heather Fryling,
Sihan Li, Haonan Sun, Ping He, Zewen Li
Northeastern University, Boston, USA

{b.maxwell, singhania.s, patel.avni, kumar.rahul4, fryling.h, }@northeastern.edu

{li.siha, sun.haon, hi.pin, 1li.zewen }@northeastern.edu

Abstract

The design of deep network architectures and training
methods in computer vision has been well-explored. How-
ever, in almost all cases the images have been used as pro-
vided, with little exploration of pre-processing steps beyond
normalization and data augmentation. Virtually all images
posted on the web or captured by devices are processed for
viewing by humans. Is the pipeline used for humans also
best for use by computers and deep networks?

The human visual system uses logarithmic sensors; dif-
ferences and sums correspond to ratios and products. Fea-
tures in log space will be invariant to intensity changes and
robust to color balance changes. Log RGB space also re-
veals structure that is corrupted by typical pre-processing.

We explore using linear and log RGB data for training
standard backbone architectures on an image classification
task using data derived directly from RAW images to guar-
antee its integrity. We found that networks trained on log
RGB data exhibit improved performance on an unmodified
test set and invariance to intensity and color balance modi-
fications without additional training or data augmentation.

Furthermore, we found that the gains from using high
quality log data could also be partially or fully realized
from data in 8-bit SRGB-JPG format by inverting the sSRGB
transform and taking the log. These results imply existing
databases may benefit from this type of pre-processing.

While working with log data, we found it was critical
to retain the integrity of the log relationships and that net-
works using log data train best with meta-parameters dif-
ferent than those used for sSRGB or linear data.

Finally, we introduce a new 10-category 10k RAW image
data set (RAWI0) for image classification and other pur-
poses to enable further the exploration of log RGB as an
input format for deep networks in computer vision.

1. Introduction

Image classification is a fundamental task in computer
vision. The ImageNet database enabled the develop-
ment of large scale deep networks which have been the
foundation of the machine learning revolution in com-
puter vision and related areas [6]. The task has been
well studied and spawned numerous foundational archi-
tectures that have found utility in multiple applications
[21][41][14][42][16][38].

While many variations in network design, training meth-
ods, meta-parameters, and data augmentation have been
studied in-depth, very little effort has been directed towards
evaluating different image data spaces. This is likely, in
part, because most large scale databases like ImageNet,
COCO, Pascal VOC, Faces in the Wild, and Intrinsic Im-
ages in the Wild are built from images collected from the
web [6][22][8][17][1]. Therefore, the pre-processing steps
are unknown, and it is difficult to revert the data to true lin-
ear RGB. It may also be due to the fact that people have no
problem understanding these images.

However, people do not learn to see based on web im-
ages. Our visual systems learn from our own sensors, which
means they have access to the physical rules that govern
the interactions of light and matter. Furthermore, the hu-
man visual system uses a logarithmic sensor, which is part
of what gives us the capability of seeing across a wide dy-
namic range [37]. It also means that basic features—those
generated by adding and subtracting signals—are computing
products and ratios rather than differences.

In this work we evaluate the hypothesis that using log
of linear RGB, can provide improvements in performance
for convolutional networks orthogonal to prior work on net-
work design, training methods, or meta-parameter adjust-
ment. Furthermore, we demonstrate that networks trained
using log RGB provide natural invariance to intensity and
color balance variation.

There is some prior work on using RAW imagery for
object detection, and color constancy databases are linear
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RGB as white balancing occurs before other pre-processing
[441[33][24][13][4]1[7]. One prior work has shown that log
RGB can provide improved performance on a small data set
using a simple five layer convolutional neural network [30].

Our work is the first to show improved overall perfor-
mance and invariance to intensity and color balance on an
image classification task using standard backbone architec-
tures: ResNetl8, and DenseNet 121 [14][16]. The mod-
els were trained from scratch on a 10-category 10k image
data base of RAW images [RAW10]. The RAW 10 database
of RAW images, and processed sSRGB-JPG, linear, and log
RGB versions of them, will be available after CVPR 2024.

For our primary experiment we trained a ResNetlS8,
DenseNet121, and a custom CNN architecture on three ver-
sions of the RAW10 data set: sRGB, linear RGB, and log
RGB. In addition to evaluating their performance on an un-
modified test set, we also evaluated their performance on
the test set with random modifications to intensity and color
balance. For all cases, the log RGB data provided gains in
performance across all three networks.

We further explored whether it is useful to take 8-bit
sRGB JPG images, execute an inverse SRGB transform, and
take the log to get pseudo-log RGB data. We evaluated
pseudo-log data on a log-trained network and log data on
a pseudo-log trained network. In both cases, the pseudo-
log data exhibited most or all of the gains achieved by using
true log RGB data, suggesting that existing image databases
may also benefit from this transformation, and that true log
RGB data sets may be expanded with pseudo-log data.

As RAW10 contains some objects where color is a fea-
ture and some objects where it is not, we also analyzed the
results and found that log-trained networks actually showed
more balanced results between the color-relevant and color-
irrelevant objects than the other two.

While training and evaluating log data trained networks,
we also explored different pre-processing steps and meta-
parameters. We found that retaining the integrity of the
logarithmic nature of the data was critical, and that log-
trained networks work best with somewhat different meta-
parameters than linear- or SRGB-trained networks. A sim-
ple substitution of log RGB for sSRGB in an existing pipeline
will likely not work. With attention to detail and some sim-
ple guidelines, however, using log RGB is not difficult.

Finally, we discuss some potential explanations for why
log RGB provides these improvements, including visualiza-
tions of log RGB histograms and basic features in log space.

Our novel contributions include the following.

1. We show that using log of linear RGB data improves
performance on a substantial image classification task.

2. We show that using log of linear RGB data provides in-
variance to intensity and color balance variation.

3. We show that these improvements occur using multiple
standard backbone architectures.

4. We further show that these improvements may be real-
ized for data that has undergone an sRGB transformation
and reduction to 8-bits per color channel, suggesting that
it may be helpful on existing databases.

5. We introduce a new image database, RAW10, suitable
for image classification and other computer vision tasks.

2. Related Work

As noted above, image classification is a foundational and
well-studied task. There are many standard deep network
architectures, or backbones, that have been trained on Im-
ageNet and used for a wide variety of vision tasks. Ex-
amples include AlexNet, VGG-16/19, GoogLeNet, ResNet,
MobileNet, and DenseNet, and experimentation contin-
ues [21][41][14][42][38][16]. For our purposes, we chose
ResNet18 and DenseNet121 as high-performance architec-
tures with smaller parameter counts, given that we needed
to train them from scratch on our database.

We collected a new database, because there are few im-
age sets available in RAW or linear format outside of color
constancy, as noted above. The PascalRAW and LOD
data sets support object detection or instance segmenta-
tion [33][15][3], however, we wanted to use a larger and
more balanced set of categories than PascalRAW, and LOD
is intended for special illumination conditions. The ROD
database built by [44] provides 25k high dynamic range
linear imagery for object detection using six categories in
driving scenes, but it was not released until after we had
collected the data for RAW10, and the HDR nature of the
data would need to be tested for linearity.

Prior work on using RAW data outside of color con-
stancy is minimal, with the work of [44] being the most
recent. There is also some work using PascalRAW, but re-
ported results are limited [33][24].

Log RGB has been explored in some applications, such
as for computing illumination invariant HOG features in
[43] and computing material priors in [35] . Marchant and
Onyango [26] and Finlayson et al. [9][10] separately de-
rived a 1-D log of chromaticity space, which is invariant to
Planckian illuminants. This analysis and methodology has
been used for illumination invariant skin-lesion detection
[34][25] and for work on color constancy [40].

Maxwell et al. (2008) showed there was regular struc-
ture in log RGB that could be exploited to create an illumi-
nation invariant 2-D log chromaticity space [28]. This has
been used for both intrinsic image decomposition [23] and
shadow removal on road surfaces [29].

Cotogni and Cusano proposed equivariant networks,
which contain a modification to standard convolution en-
abling them to be invariant to offsets in the input data
[5]. They converted both CIFAR [20] and ImageNet into
pseudo-log RGB using an inverse sRGB transform and
demonstrated that the networks maintained performance de-
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Figure 1. 3-D Histograms showing the structure of body cylinders
for linear RGB, sRGB, log RGB, and log of SRGB spaces

spite synthetically varying the color balance of the images.
They did the same for color constancy on the NUS data set
[4]. However, more recent work suggests that log RGB pro-
vides invariance to intensity change and robustness to color
variation for convolutional networks without modification.

Funt and Zhu, for example, showed that using Lapla-
cian of log RGB as input to a ResNet50 network also pro-
vides invariance to intensity and color variation on standard
databases, however, their performance was not better than
sRGB on the unmodified data [11]. The method is equiva-
lent to placing a fixed 1-filter layer in front of the network
and using log RGB as input. Our approach gives the net-
work the flexibility to learn the first layer filters, and on the
RAW10 DB using log RGB provided the best performance.

Maxwell ef al. (2023) also showed invariance to intensity
and color balance for log RGB, and showed log RGB was
the best performer for a 2-class image classification task
with a small 5-layer network [30]. Herein we use standard
backbone deep network architectures and the much larger
RAW 10 database, replicating the performance gains and ro-
bustness to intensity and color balance on a larger scale.

Most other prior work on data quality examines noise,
blur, and compression, such as [2] and [12].

Warped Cylinders 115

3. Background and Methods

Most of the photons measured by a camera sensor come
from reflected light, which is the result of physical interac-
tions between incident illumination and the reflecting ma-
terial. The reflective properties of inhomogeneous dielec-
tric materials—paint, plastic, wood, skin, leaves, cloth, and
many others—are well modeled by the dichromatic reflection
model, which includes two reflection mechanisms: body
reflection and surface reflection [39][19]. Body reflection
is what we generally consider to be the color of an object,
while surface reflection produces specularities or highlights
and reflective or mirror-like effects.

The Lambertian model is most commonly used for body
reflection; in linear RGB the reflected light is the product of
the material reflectance and the incident illumination. The
intensity of the incident illumination can vary due to both
geometry and cast shadows.

The Bi-Illuminant Dichromatic Reflection (BIDR)
Model separates the incident illumination into two com-
ponents: the direct illuminant, and the ambient illumina-
tion. The direct illuminant is the illuminant that causes most
shadows and shading, while the ambient illumination is all
the remaining indirect light falling on a surface [28].

The body reflection components of the BIDR model fol-
low a well-defined relationship as the amount of direct illu-
mination changes, given by (1). The image value I is the
result of the product of the and the body reflection Rp and
the ambient illumination L 4 plus the product of the and the
body reflection and the direct illumination L p modified by
v, which represents both geometric shading and cast shad-
ows that modify the intensity of the direct illuminant.

I=LsRp++vLpRp :RB(LA+’YLD) (D

In linear RGB, the body reflection for each material falls
along the line, or cylinder, defined by (1) that starts at the
color of a fully shadowed pixel (y = 0) and ends at the
color of a fully lit pixel (y = 1). If the ambient and direct il-
lumination are different colors—almost all scenes fall in this
category—then the cylinders do not intersect at a single point
and do not go through the origin (R, G, B) = (0,0,0). In
linear RGB space both the length and orientation of the
body cylinders are dependent on both the direct illumina-
tion color and the material body color. This can be seen in
Figure 1, which shows the 3-D histograms of an image of a
shadow crossing a multi-colored surface. Each body color
on the surface appears in Figure 1(b) as a line in linear RGB
space. Brighter materials have longer lines because R has
a larger magnitude. Note how the non-linear sSRGB trans-
form stretches and bends the body cylinders in Figure 1(c).

A log transform of the body reflection model separates
the confounded body reflection and illumination terms (2).
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Figure 2. Example images of each class in the RAW10 database

logI =logRp(La+~Lp)

2
=log R +log(La +vLp) @

The body reflection cylinders (approximate) for each
material are now defined solely by the illumination colors
and intensities, with their location defined by the material’s
body color. As illumination is a slow-changing signal, this
means that the body reflection cylinders for different mate-
rials are all oriented in roughly the same direction and are
all roughly the same length. Figure 1(d) shows the log RGB
histogram of the multi-colored surface. In the log RGB his-
togram, the body cylinders in log space are all pointing up
and right. The more horizontal strip of yellow pixels are
actually transition pixels from the yellow to the white mate-
rial. Note how in log space the SRGB transformation warps
the structure of the body cylinders by bending them at the
bright end as in Figure 1(e).

The hypothesis we are testing in this work is whether
using linear RGB or log RGB as the input data for deep
networks produces better results—broadly defined—for com-
puter vision tasks. If we give deep networks access to data
that follows physical rules, does it improve their ability to
learn the task?

4. Experiments and Results
4.1. RAW10 Database

Given the lack of publicly available databases of high qual-
ity RAW imagery, we collected a new data set of roughly
10,000 images, 1000 each of ten different categories: ap-
ples, tomatoes, bananas, recycle bins, stop-signs, plates,
books, spatulas, mugs, and pens. We intentionally picked

five objects where color is an informative feature and five
where color is not inherent to the object.

The images were collected by roughly one hundred dif-
ferent individuals with different cameras and objects. All
images were collected in a RAW format (e.g. CR2, DNG,
NEF). The total data set contains over 10,000 images. We
used 1000 images—100 per category—for the validation set,
and 2000 images—200 per category—for the test set, leaving
over 7,000 for the training set. Figure 2 shows a sample im-
age from each category. For a subset of the images, we also
have camera JPEG versions provided by the capture device.

From the RAW images we built three databases to use
for training: JPG-sRGB, TIFF-Linear, and EXR-Log (re-
ferred to hereafter as SRGB, linear, and log). To build the
databases we first processed the RAW images using the
rawPy package to de-Bayer, white balance, and scale the
exposure levels [36]. We used the camera white balance
and specified that fewer than 0.001% of the pixels in the
image should be saturated. We then used the OpenCV re-
size function with the INTER_AREA method to scale the
images to make the short edge 480 pixels. At this point in
the process the data was represented using 16-bits per color
channel with a range of [0, 65535].

To create the sSRGB data set, we converted the data to
float32, scaled the data to [0, 1], applied the sSRGB trans-
formation [ 18], scaled the values to [0, 255], and converted
the image to 8-bit uint type before saving it as a JPG using
the OpenCV imwrite method with default settings. To cre-
ate the linear data set, we stored the 16-bit data in the TIFF
format using the imageio imwrite method. To create the log
data set, we converted the data to float32 and took the nat-
ural log of the non-zero pixel values to get log RGB with
a range of [0, 11.1]. We then saved the data in a float32
EXR file using the imageio imwrite method with default
settings. Note the EXR package is not enabled by default in
OpenCV. We used the rescaled images in the sRGB, linear,
and log data sets for all subsequent experiments.

We also created three alternative versions of the test set
with different transformations applied: random color bal-
ance, random intensity variation, and both random inten-
sity and color balance variation using a protocol identical
to [30] and based on the same model as [11]. We applied
the transformations to the linear data before converting it to
JPG-sRGB, linear, and log representations. We evaluated
the different networks on identically modified test sets.

4.2. Core Experiments

For the core experiments we trained three versions of three
different network architectures and evaluated each one us-
ing four different test sets. The three architectures we eval-
uated were ResNet18 (11.7M), DenseNet121 (§M), and an
11-layer custom CNN (3M). Given the size of the database,
we chose lower parameter models to minimize overfitting.
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Figure 3. Custom 11-layer CNN with ~3M parameters.

DenseNet121 sRGB LinRGB LogRGB
Original Test Set (2k) 91.4 91.6 91.9
Random CB 84.7 84.7 88.0
Random Intensity 91.0 91.4 91.8
Both 81.0 82.0 86.9
Validation set (1k) 88.30 89.50 90.17
Training set (7k) 99.79 99.54 98.92
ResNet18 sRGB LinRGB LogRGB
Original Test Set (2k) 86.9 88.9 90.6
Random CB 72.6 75.7 86.9
Random Intensity 72.8 76.3 87.2
Both 67.3 71.9 83.9
Validation set (1k) 87.60 87.40 89.08
Training set (7k) 99.22 96.49 99.61

Table 1. Results on the RAWI10 data set for ResNetl8 and
DenseNet121 network architectures, three data types, and four
variations of the training set.

We used the ResNetl8 model from torchvision, but
added a 0.5 dropout layer and a Batch Normalization layer
after each ResNet block. We added one additional Batch
Normalization layer after the first convolution layer. These
updates enabled the network to train with less overfitting.

For the DenseNet121 architecture, we added a single 0.5
dropout layer right before the final fully connected layer to
avoid overfitting. Figure 3 shows the custom network de-
sign. While the custom design did not perform as well as
the two standard backbones, it is a third example of log data
performing better than sSRGB or linear using the same net-
work architecture. Our goal was to find a smaller architec-
ture that could still learn the problem.

We trained three versions of each network architecture,
randomly initialized, on the three different input types:
sRGB, linear, and log. For each data type we experimented
with meta-parameters to obtain the best-performing model.
The sRGB and linear data produced their best results us-
ing the same meta-parameters. However, the log network
required different meta-parameters in order to train well.
Section 4.4 discusses the experiments in more detail.

When presenting the linear and log data to the network,
we did not follow the usual ImageNet type normalization
for linear and log inputs. Instead, the linear data was
rescaled to [0, 1] and the log data was left unchanged with
the range [0, 11.1]. We experimented with scaling the log
data to [0, 1] and scaling to [0, 256] before taking the log,
but neither method trained as well. Likewise, normalizing
the log RGB data to [0, 1]-which is roughly the same as
taking the 11th root of the data—did not work. Subtracting
5.05 from the log data to center the data on zero also did
not work. Note that it is also important not to resize the
log RGB data, as interpolation in log space does not pro-
duce the same image as interpolation in linear space. All
resizing, intensity, and color balance operations should be
executed in linear RGB to retain the integrity of the data.

Table 1 shows the accuracy results for ResNetl18 and
DenseNet121. The networks trained on the log RGB data
performed the best on all versions of the test set: origi-
nal, random color balance, random intensity, and both aug-
mentations. The log trained network exhibited minimal im-
pact of intensity variation across the three input types. The
SRGB-trained and linear-trained networks performed sim-
ilarly, and neither generalized as well to the modified test
sets as the log trained network, although the DenseNet ar-
chitecture exhibited better generalization than ResNet18.

Table 2 shows the results on the custom network. Some-
what surprisingly, the SRGB data did better in some cases
when trained on the original data set. We also trained the
network on an augmented, but fixed training set as well as
a dynamically augmented training set, in both cases includ-
ing images with no augmentation, random color balance,
random intensity variation, and both types of variation with
equal probability. In the latter two cases, the custom net-
work trained on log data did better across the board and
learned the task better than on the original data set. While
the SRGB and linear networks also improved their perfor-
mance, they did not improve as much as the log network.
Note also that the losses on the test set indicate the log net-
work was more confident in its answers than the SRGB or
Linear networks, even when its accuracy was slightly lower.
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Original sRGB LinRGB LogRGB
Original Test Set 72.05/1.7 64.32/3.1 70.42/1.4
Random CB 59.75/2.77 52.89/3.7 58.93/2.2
Random Intensity | 72.05/1.7 62.50/3.0 71.88/1.4
Both 54.71/3.2 48.27/3.7 56.18/2.5
Validation set (1k) | 71.50/2.0 73.10/1.7  72.90/1.4
Fixed sRGB LinRGB LogRGB
Original Test Set 72.05/1.8 73.52/1.9 76.92/1.4
Random CB 74.04/1.7 72.58/1.8 76.45/1.4
Random Intensity | 74.28/1.7 73.63/1.8 76.39/1.4
Both 73.52/1.7  72.23/19 76.39/1.4
Validation set (1k) | 71.10/2.0  71.30/2.0  73.20/1.7
Dynamic sSRGB LinRGB LogRGB
Original Test Set 72.17/1.6  73.87/1.4 75.40/1.4
Random CB 73.11/1.5  72.29/1.5  75.92/1.4
Random Intensity | 73.29/1.5 73.05/1.4  75.63/1.4
Both 73.93/1.5 7229/1.5 75.04/1.4
Validation set (1k) | 72.60/1.8  71.30/1.7  73.10/1.3

Table 2. Accuracy/Loss on the custom 11-layer CNN for the orig-
inal training set, a fixed augmented training set, and a dynamically
augmented training set.

True log train ResNet ResNet DenseNet DenseNet
Test Data (log) True Pseudo True Pseudo
Original 90.64 89.90 91.94 91.70
CB 86.90 86.40 87.95 87.85
Intensity 87.22 89.90 91.75 91.90
Both 83.87 83.95 86.85 86.65
Pseudo-log train | ResNet ResNet DenseNet DenseNet
Test Data (log) True Pseudo True Pseudo
Original 90.29 89.85 91.74 91.85
CB 86.60 86.95 87.70 87.60
Intensity 90.20 90.25 91.70 91.60
Both 83.40 83.35 84.05 83.80

Table 3. Results of training ResNet18 and DenseNet121 on true-
log data or pseudo-log data and testing on both true-log and
pseudo-log data. All combinations are better than comparable re-
sults training and testing on SRGB (column 1 of figure 1).

4.3. Pseudo-log Experiments and Results

We captured RAW images to guarantee linear data that pre-
serves the physics of reflection and illumination. How-
ever, most available data sets exist as 8-bit per color chan-
nel sRGB data, with other potential modifications such as
color saturation, sharpening, or contrast enhancement. Im-
ages from the web may also have been resized or edited
and resaved in JPEG format, further degrading the integrity
of the data. Nevertheless, we explored whether it would be
worthwhile to invert the SRGB transformation and then take
the log to get data that approximates log of linear RGB.
We introduce the terms pseudo-linear and pseudo-log to
designate data that was originally 8-bit SRGB and has had

ResNet DenseNet
Par sRGB Lin Log | sRGB Lin Log
Optim. SGD SGD Adam | SGD SGD Adam
LR .0005 .0045 .00736 .005 .01 .005
mom 0.9 0.9 n/a 0 0 n/a
eps n/a n/a 0.1 n/a n/a 0.1
Sched. Step Step Poly Poly  Poly Poly
gamma 0.8 0.8 n/a n/a n/a n/a
step 5 5 n/a n/a n/a n/a
decay 0.01 0.01 0.01 0.01 0.01 0.03
train 99.22  96.49 99.61 | 99.79 99.54 98.92
val 87.60 8740  89.08 | 88.30 89.50 90.17
test 86.92 88.91 90.64 | 9135 91.60 91.94

Table 4. Optimizer (Adam or SGD), scheduler (Poly = Polynomi-
alLR or Step = StepLR), meta-parameters, train set, validation set,
and unmodified test set accuracy for ResNet18 and DenseNet121.
The Polynomial scheduler order was one (linear), with the number
of iterations set to 100.

an inverse sSRGB transformation applied (pseudo-linear)
followed by a log transform (pseudo-log). True linear and
true log data are derived from images in RAW format using
a process, such as in section 4.1, that retains the integrity
and numerical precision of the original sensor data.

To create the pseudo-log version of the RAW10 data set,
we used the SRGB JPG files as the source data, executed an
inverse sSRGB transform, then a log transform. Numerical
issues with this process include quantization to 8-bits, the
inverse SRGB transform mapping multiple values to a single
value for darker pixels while creating skips between values
for brighter pixels, and JPG compression artifacts.

We executed four experiments using true-log and
pseudo-log data. First, we evaluated the performance of
the true-log and pseudo-log test sets on true-log trained
ResNet18 and DenseNet121 networks. Second, we trained
both networks using the pseudo-log data and evaluated their
performance on both the true-log and pseudo-log test sets.
The results are in table 3. In both cases, using the pseudo-
log data provided a benefit compared to a network trained
on the original sSRGB data, particularly for the modified
test sets. Conversely, the differences between training on
pseudo-log data or true-log data were small, though train-
ing on true-log data showed a slight benefit in most cases.

This finding is significant because it means that the mil-
lions of images in existing annotated data sets may be useful
for training log of RGB networks, even if those networks
are then used with true log data.

4.4. Meta-parameter Exploration

In order to test our hypothesis that log images are better
inputs for this task, we needed to identify the best per-
forming networks for each input data type. Given the dif-
ferences in ranges and data meanings, we evaluated two
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optimizers—AdamW and SGD-and two schedulers—a Poly-
nomial scheduler and a Step Scheduler. We trained all three
networks using all four combinations as well as exploring
different learning rates, momentum coefficients, and weight
decays. All network combinations were trained for 100
epochs. All of the networks attained over 99% performance
on the training set regardless of the optimizer and sched-
uler except the DenseNet log network and ResNet18 linear
network, which attained 98.92% and 96.49%, respectively,
with their optimal validation set parameters. Table 4 shows
the optimal parameters and accuracies for the ResNet and
DenseNet networks and data types.

The custom network showed less sensitivity to meta-
parameters. All three versions of the custom network used
a learning rate of 0.003, and the Adam optimizer with an
eps of 0.1. The sRGB and Linear networks used a dropout
percentage of 0 (no dropout), while the log network used a
dropout percentage of 0.5.

4.5. A Bias Towards Color?

We selected five categories of the RAW10 data base to be
objects where color may be a helpful feature: apples, ba-
nanas, tomatoes, recycle bins, and stop-signs. The other five
categories we selected to be color agnostic: plates, mugs,
pens, books, and spatulas (broadly defined). We wanted
to test the hypothesis that networks trained on log RGB
might perform better on objects where color was a defin-
ing feature. Table 5 shows the accuracies per class for the
ResNet18 network trained on sSRGB, linear, and log data.

Some objects stand out in their performance. Of note,
the stop-sign proved to be an easy category regardless of
input space, likely because it was the only object captured
solely outdoors, meaning that context provided useful infor-
mation. The sSRGB network had the most difficulty with the
banana, pen, and spatula categories in the modified test sets.

The average accuracies for color-relevant versus color-
irrelevant categories exhibit much less difference for the log
network, both in absolute terms and as a percentage, than
the linear and SRGB networks. The gains in performance
over the linear and SRGB networks were larger in the color-
irrelevant categories. This suggests that ratios may be useful
features not only within an object, but also between objects.
For two pixels within an object, their ratios should stay con-
sistent across illumination changes. Ratios between objects,
however, are less likely to exhibit a consistent pattern, espe-
cially if the objects are not at the same depth.

The results of this analysis do not support the hypothe-
sis that a log-trained network will perform better only on
objects where color is relevant, but instead show improved
performance for both color-relevant and color-irrelevant ob-
jects. In fact, the relative gain in performance was greater
for color-irrelevant objects.

5. Discussion

The experiments support the hypothesis that using log of
linear RGB is a more effective pre-processing pipeline than
the pipeline typically used for images to be viewed by hu-
mans. In addition, the results support the hypothesis that
even images stored in an SRGB 8-bit jpg-compressed can
provide improved performance by undoing the sSRGB trans-
formation and converting them to pseudo-log images.

An important question is to ask why log images are bet-
ter inputs. The mathematical derivations and visualizations
in section 3 provide a basis for building hypotheses. In par-
ticular, computing differences in log space means calculat-
ing ratios in linear space, and ratios between nearby pixels
under similar illumination are invariant to illumination in-
tensity and color balance. Ratios have also been found to
be useful for object recognition and differentiating surfaces
that are continuous from ones that are not [31], [32], [27].

For example, figure 4 shows the gradient magnitude of
an image with edges between differently colored regions
that cross shadow boundaries. These are the type of features
that would be computed by a CNN filter. In SRGB the gradi-
ent features change color and magnitude as the illumination
changes. In linear RGB the color of the gradient features is
consistent, but their magnitude still changes with the illumi-
nation. In log of linear RGB, the gradient features not only
retain their color, but also their magnitude. The features
of a multi-colored object become stable across illumination
change in log RGB, whereas in sSRGB the features change
due to both material color and illumination conditions. A
network trained on sSRGB data has to either be sloppy with
respect to color or learn different rules for different colors
and different illumination conditions.

These visualizations provide a potential explanation for
the improvements in performance and invariance to inten-
sity and color balance provided by log-trained networks.
The performance results by themselves challenge the idea
of using images processed for human consumption. The
improvement gains of using log of linear RGB inputs are
orthogonal to network design, meaning that most network-
based CV solutions could improve their performance sim-
ply by changing the preprocessing of the inputs. The gains
also do not appear to be solely for categories where color is
an identifying property of the object.

The results of the experiments with pseudo-log data, also
suggest that there is benefit in re-processing existing images
and retraining networks with pseudo-log data. Such a find-
ing means that, while it is beneficial to train on high quality
log data, networks can benefit from training on re-processed
existing data. This has broad implications across many vi-
sion applications. Every computer vision researcher and de-
veloper should be asking themselves why they are training
on sRGB images, especially if they are working on edge
devices or have access to RAW data in their vision pipeline.
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sRGB apple banana bin stop-sign tomato | book mug pen plate spatula Lhe tm  BA
original 825 855 89.0 99.5 95.0 | 920 90.0 73.0 875 75.0 | 90.3 835 8.1
color balance | 66.5 46.0 82.0 96.0 89.0 | 90.5 845 47.0 81.0 43.0 | 759 69.2 9.7
intensity 67.0 48.5 80.5 96.5 88.0 | 920 84.0 465 815 43.0 | 76.1 69.4 9.7
both 59.0 435 78.0 87.5 820 | 8.0 825 415 755 37.0 | 70.0 64.5 8.5
Linear apple banana  bin stop-sign tomato | book mug pen plate spatula e  pm A
original 90.0 920 86.5 99.0 89.0 | 83.0 90.0 855 895 845 | 91.3 865 55
color balance | 88.0 64.0 79.0 93.0 725 | 725 755 71.0 755 655|793 720 10.1
intensity 88.5 64.0 80.0 94.0 73.0 | 740 76.0 71.0 765 655 | 799 72,6 10.1
both 88.5 56.5 775 87.5 620 | 695 735 745 70.6 590 | 744 694 7.2
Log apple banana  bin stop-sign tomato | book mug pen plate spatula He  pm A
original 90.0 91.5 875 98.0 940 | 900 89.0 855 91.0 89.0 | 92.2 889 3.7
color balance | 87.0 81.0 88.0 98.5 875 | 8.0 89.0 815 875 820 | 884 854 35
intensity 87.5 84.0 885 97.5 875 | 8.6 895 82.0 885 81.0 | 89.0 853 43
both 85.0 72.5 865 97.0 80.5 | 8.5 855 805 89.0 769 | 84.3 835 1.0

Table 5. Accuracies per class on RAW10 for ResNet18, average accuracy of color-relevant objects p. and color-insensitive objects fi,,
and % difference between the two %A, given for the original test set, color balance variation, intensity variation, and both.

(a) Original image in SRGB

(b) Gradients of sSRGB.

(¢) Gradients of linear RGB. (d) Gradients of log of linear RGB

Figure 4. Gradient magnitudes of the three data types. The circles—white pair and yellow pair—show shadow and lit areas of the same edge.
Gradients in sSRGB change color in the shadow, in linear RGB change magnitude, and in log RGB are consistent in both intensity and color.

The finding that using log data improves a network’s per-
formance does not, however, mean that performance can-
not be improved by network structures designed specifically
for log data. For example, there may be benefits to mod-
ifying the designs of the first few network layers. Other
more radical network modifications may be worth explor-
ing. Log space is not as intuitive as linear space, and there is
lots of room for more exploration of both architectures and
the training process to identify stable and effective meta-
parameters and training methods.

6. Summary

Using log RGB data improves the performance of two stan-
dard deep network architectures compared to training on
SRGB or linear data for a substantial image classification
task. Furthermore, the benefit appears to hold for these net-
works even when converting from 8-bit sSRGB JPG files into
a pseudo-log RGB space using an inverse sSRGB transfor-
mation. This implies that existing data sets may be useful in

training networks to use log RGB images as inputs. These
gains appear to be orthogonal to network architecture and
training set augmentation.

The interaction of light and matter produces structure in
the appearance of objects, and that structure may be made
easier to learn by a log transformation. Furthermore, basic
features such as edges are more consistent in log RGB than
in SRGB or linear RGB space, giving log-trained networks
a natural robustness to intensity and color balance variation.

There is still much to explore. The natural separation of
illumination and reflectance that occurs in log space sug-
gests it may be more suitable for tasks such as color con-
stancy, shadow removal, and intrinsic imaging. Future ex-
ploration should also include building custom architectures
that take advantage of the structure found in log RGB data.

Acknowledgements: The authors would like to recog-
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