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Figure 1. IReNe enables instant 360◦ recoloring of pre-trained NeRFs using only a single image edited by the user (top row). We introduce
an optimization scheme to avoid color bleeding at object boundaries and ensure consistency in view-dependent effects. Furthermore, as
illustrated in the bottom row, various types of recoloring are possible, including full-object, partial-object, and multiple-object recoloring.

Abstract

Advances in NERFs have allowed for 3D scene recon-
structions and novel view synthesis. Yet, efficiently edit-
ing these representations while retaining photorealism is
an emerging challenge. Recent methods face three primary
limitations: they’re slow for interactive use, lack precision
at object boundaries, and struggle to ensure multi-view con-
sistency. We introduce IReNe to address these limitations,
enabling swift, near real-time color editing in NeRF. Lever-
aging a pre-trained NeRF model and a single training im-
age with user-applied color edits, IReNe swiftly adjusts net-
work parameters in seconds. This adjustment allows the
model to generate new scene views, accurately represent-
ing the color changes from the training image while also

controlling object boundaries and view-specific effects. Ob-
ject boundary control is achieved by integrating a trainable
segmentation module into the model. The process gains ef-
ficiency by retraining only the weights of the last network
layer. We observed that neurons in this layer can be classi-
fied into those responsible for view-dependent appearance
and those contributing to diffuse appearance. We introduce
an automated classification approach to identify these neu-
ron types and exclusively fine-tune the weights of the diffuse
neurons. This further accelerates training and ensures con-
sistent color edits across different views. A thorough vali-
dation on a new dataset, with edited object colors, shows
significant quantitative and qualitative advancements over
competitors, accelerating speeds by 5× to 500×.

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;
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1. Introduction
Neural Radiance Fields (NeRFs) [24] have gained trac-
tion due to their ability to construct realistic 3D environ-
ments from 2D images and render high-fidelity, photoreal-
istic novel viewpoints. Such advancements unlocked many
possibilities, from immersive virtual environments [3, 4, 28]
to applications like augmented reality [11, 27]. Nonethe-
less, the challenge of seamlessly and efficiently editing
these neural representations while preserving photorealism
remains a critical and largely unexplored frontier. Current
NeRF color editing techniques [14, 18, 20] face several lim-
itations that impede their practical applications. First, total
required time to perform edition is more than 1 minute for
the fastest methods. This makes them ill-suited for interac-
tive applications that demand real-time feedback. Second,
current methods often lack accuracy, especially when man-
aging color edits within object boundaries. Lastly, existing
editing techniques encounter difficulties in sustaining con-
sistent edits across various viewpoints, especially for scenes
intended for 360-degree rendering.

In our paper, we present IReNe, a novel approach that
facilitates the Instant Recoloring of Neural radiance fields,
effectively addressing the challenges highlighted earlier.
Leveraging an off-the-shelf, pre-trained NeRF model (in
our case, Instant-NGP [25]) and a single training image
featuring user-applied color adjustments to one or various
objects, IReNe swiftly fine-tunes the network parameters
within seconds. This rapid fine-tuning enables the model to
dynamically generate novel scene views, faithfully preserv-
ing the color modifications made in the training image.

Our approach is founded on four pivotal contributions.
Firstly, we augment the pre-trained NeRF model with a
lightweight, trainable segmentation module, providing en-
hanced control over color edits within object boundaries.
Secondly, speed is achieved by selectively fine-tuning the
last layer of the network, leveraging only a single training
image provided by the user. Thirdly, we show (and take
advantage of) that neurons in this last layer show special-
isation. Some neurons are responsible for rendering view-
dependent appearance while others exclusively contribute
to diffuse appearance. We implement an automated clas-
sification methodology to distinguish between these neuron
types, enabling us to exclusively fine-tune the neurons asso-
ciated with diffuse appearance. This strategy not only expe-
dites the training process but also guarantees uniform color
edits across various viewpoints, enhancing the model’s con-
sistency and performance.

Up until now, there has been no dataset available for the
quantitative assessment of NeRF color editing methodolo-
gies. The fourth contribution of our work involves the de-
velopment of such a dataset, where the color of certain ob-
jects within the NeRF Synthetic [24], LLFF [23] and Mip-
NeRF 360 [3] scenes have been meticulously edited man-

ually using Photoshop. Through a comprehensive quan-
titative and qualitative evaluation on this dataset, it be-
comes evident that IReNe outperforms [18] by a significant
margin. Moreover, it presents considerably better results
than [20], addressing issues such as color bleeding outside
object boundaries and challenges in maintaining viewpoint
consistency. Most notably, our architecture’s retraining can
be accomplished in under 5 seconds—a stark contrast to the
1-minute requirement of [20] and the 30-120 minutes re-
construction time of [18]. This capability opens the door to
seamlessly integrating IReNe into interactive image editing
pipelines that demand immediate response. The Dataset is
available in our project page.

2. Related Work

Novel view synthesis of 3D scenes is a well-established
field. Recently, Neural Radiance Fields (NeRF) [24]
marked a breakthrough in this domain. However, editing
this new neural representation presents challenges because
the 3D information is implicitly encoded in each neuron of a
multi-layer perceptron (MLP). Consequently, several works
have aimed to extend the original NeRF formulation for dif-
ferent kinds of edits, such as scene relighting [5, 6, 29, 39],
scene composition [19, 21, 37], object manipulation [16],
inpainting [35], or text-based editing [15, 32–34, 36]. In
this work, we focus on the problem of editing the color of
the NeRF, addressing the challenges associated with creat-
ing predictable, globally coherent, and fast edits.

Color Editing. Editing the color of an image has tradition-
ally been done using two paradigms. Edit-propagation tech-
niques, which involve using local colored cues, such as user
scribbles or points, that are propagated to similar areas of
the image [1, 2, 10, 13]. The challenges lie in finding a sim-
ilarity metric that can match the image features of the input
exemplar and identify similar points in both local and non-
local areas of the image. Deep learning-based approaches
have been successful in addressing said challenges, lever-
aging the effectiveness of convolutional networks as fea-
ture extractors [22, 38]. The other paradigm is to use pre-
computed color palettes [9, 12, 30]. These palettes contain
the most relevant colors and serve as a basis for describ-
ing the rest through linear compositing. Editing palettes is
a choice among artists who might combine it with object
segmentation to perform global or local modifications.

NeRF Color Editing. Directly applying color editing
methods to a NeRF is not possible as the color values of
the scene are implicitly stored in the neurons. A NeRF
contains view-dependent effects such as specular reflec-
tions that need to be handled appropriately to avoid arti-
facts. Some of the existing strategies focus on extending
the original NeRF architecture so palette-based edits can
be applied. RecolorNeRF [14] estimates a color palette in
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Figure 2. Overview of IReNe. We use a pre-trained NeRF and a user-edited training image Iedit. Our pre-trained NeRF is an Instant
NGP [25] with: a density MLPσ , with multiresolution hash features f , and a color MLPc. Mapping the user’s edits into the NeRF involves
the following steps: 1) Automatic detection of the diffuse neurons in the last layer of MLPc. 2) Training an MLPs, ruled by the features
f , to estimate a volumetric soft-segmentation α of the edited region. 3) Fine-tuning the weights of the diffuse neurons in the last layer of
MLPc. 4) Alpha blending with the mask α, to estimate the color of a 3D point x as a linear combination of the color cx predicted by the
frozen weights with the color c′x predicted by the retrained weights. 5) Volumetric rendering to obtain the edited image Irender. MLPs and
the trainable last-layer neurons are optimized through standard RGB loss computation between Irender and Iedit in under 5 seconds.

pixel space and, through optimization, decomposes each
point into a weighted combination of color bases shared
across the scene. Palette-NeRF [18] improves it by ac-
counting for specular (or view-dependent) effects. While
producing compelling results, this method is very costly,
taking hours to train, and is limited to global editions. Al-
though, after said long training, multiple editions can be
performed without additional computational cost. Others,
such as ICE-NeRF [20], leverage user scribbles to propa-
gate the edition to the full volume encoded by NeRF. In
particular, ICE-NeRF utilizes user inputs to apply volume
segmentation, which is later used for handling local color
edits. As opposed to PaletteNeRF and RecolorNeRF, which
optimize the full NeRF, ICE-NeRF fine-tunes only a spe-
cific set of neurons of a pre-trained color MLP, achieving
faster convergence. However, while fast, its edits suffer
from color bleeding at the borders. Furthermore, as ac-
knowledged in the original work, the reprojection method
utilized to propagate user inputs is not able to handle com-
plex 360◦ scenes. Concurrently to us, ProteusNeRF [32],
proposes a framework for interactive editing of NeRF, by
propagating edits among views based on image features of
a pre-trained model [7]. However, their results heavily rely
on the view-consistency of these features, which are suscep-
tible to failure under view-dependent effects such as specu-
larities. Also, their edits take between 10 to 70 seconds in
contrast to the 5 seconds of our work.

Inspired by these ideas, our method is also retrained from
an existing NeRF. However, rather than a complete retrain-
ing, we selectively reuse information in the color MLP, akin
to ICE-NeRF, expediting convergence. Additionally, we

integrate a learnable segmentation branch capable of seg-
menting editable regions across images, even in sequences
with 360◦ views. As demonstrated in the results section,
this segmentation, coupled with a selection and retraining of
neurons responsible for diffuse rendering, effectively pre-
vents color bleeding beyond the editable region and guaran-
tees view-consistent edits.

3. Background
Many current NeRF methods use two modules. The first is
a set of explicit trainable features that encode each 3D point
x in space in a high-dimensional feature vector fx. The sec-
ond is a neural network, implemented as two multi-layer
perceptrons, MLPσ and MLPc. MLPσ takes as input the
feature value for each point and outputs a density value, σ,
and a hidden feature vector, h. To estimate the color of the
given point, an encoding γ(·) [24, 25] is applied to the view
direction, θ, that, along with h, is fed into a second MLPc

that outputs the color c of the point x. Each MLP is repre-
sented by a set of trainable parameters (ϕσ, ϕc). Formally,

MLPσ(fx, ϕσ) = σx, hx (1)
MLPc(hx, γ(θ), ϕc) = cx,θ (2)

Our method builds on a pre-trained NeRF using Instant-
NGP [25], which implements γ using spherical harmonics.
Another key characteristic of this method is that the learn-
able feature representation fx is arranged into L levels of
a multiresolution hash grid where the number of features
per level is determined as a geometric progression. At each
level l a hash grid function fx,l produces the value of the
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Figure 3. Volumetric rendering for the activations of 3 neurons in
the last layer. Points with similar color in 3d space will share a
similar activation pattern.

features for the given resolution. The final feature is a con-
catenation of the features from each level:

fx = {fx,0 ⊕ fx,1 ⊕ ...⊕ fx,L}. (3)

The feature encodings {fx} and the MLP weights for density
and color (ϕσ and ϕc) are learned at the same time in an
end-to-end approach by minimizing a standard RGB loss
between the volume rendered RGB value for each pixel Cij

and the original RGB value from the training image C ′
ij ,

L =
∑

∥Cij − C ′
ij∥

2

2
(4)

4. Method
Given as input a single re-colored view of the NeRF Iedit ∈
RW×H×3, our goal is to instantly propagate this edition
to the entire NeRF taking into account the local or global
nature of the edit and view-dependent effects. Addressing
this requires overcoming several challenges: First, achiev-
ing near real-time NeRF editing is crucial. We accomplish
this by selectively retraining only the last layer of the color
MLP (refer to Sec. 4.1). This approach significantly reduces
the number of parameters requiring modification compared
to alternative methods [14, 18, 20]. Secondly, since the
edition is being performed only on a single view, being
able to reproduce coherent view-dependent effects is inher-
ently complex. To solve it, we propose to use the view-
dependent information already present in the pre-trained
NeRF (Sec. 4.2). Finally, the NeRF edits need to be re-
stricted to the modified regions. We prevent the edits from
propagating to undesired areas by introducing a lightweight

R=0.6

R=0.05

Figure 4. Rendered activations of the same pose while varying the
view directional encoding. Top, diffuse neuron. Bottom, view-
dependent neuron.

soft-segmentation network trained on the existing features
(Sec. 4.3). Fig. 2 presents an overview of the method.

4.1. Last Layer Re-training

Given a pre-trained NeRF model, the color MLPc can be
seen as a mapping ruled by the output hidden vector hx of
the density MLPσ , by the view direction encoding γ(θ),
and by the parameters ϕc of the MLPc, as seen in Eq. (2).
A naı̈ve approach to perform the color edition would be to
completely retrain the color MLP, obtaining a new set of
parameters ϕ′c for the new set of colors c′x,θ, as follows,

MLPc(hx, γ(θ), ϕ
′
c) = c′x,θ. (5)

However, besides being a costly process due to the full
retraining, this also leads to changes of important and useful
information already available in the NeRF. Thus, instead of
re-training the full MLP, we propose to retrain only the last
layer of the color MLPc, formally,

MLPlast(hx,θ, ϕ
′
last) = c′x,θ, (6)

where hx,θ is the output of the penultimate layer, that de-
pends on the position x and the view direction θ, and ϕ′last
is the new set of parameters for the last layer of the color
MLPc. Although simple, this strategy enables us to achieve
not only rapid edits but also, as demonstrated in Sec. 5.3, to
generate higher-quality edits than full re-training. The up-
dated color MLPc is obtained by exclusively retraining its
last layer to match the single image user edit, using Eq. (4).
In Fig. 3 we show insights on why our approach performs so
well without retraining the whole model. It can be seen that
the neuron activations of the last layer show strong evidence
of what seems to be color specialisation.

4.2. View-dependent Effects Preservation

The color MLPc contains all the information necessary to
render the color of the scene, including view-dependent ef-
fects. Thus, by directly modifying ϕlast using a single im-
age to supervise the training, there is a high risk of modi-
fying this information in an inconsistent manner, generating
artifacts. To solve this, we propose a method to reuse the ex-
isting view-dependent information in the pre-trained NeRF.
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NeRF Synthetic [24] LLFF [23] Mip NeRF 360 [3]

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
INGP (ref) [25] 32.88 0.968 0.025 25.95 0.786 0.161 27.32 0.720 0.278

PaletteNeRF [18] 29.92 0.960 0.038 24.02 0.763 0.200 22.24 0.666 0.351
RecolorNeRF [14] 29.00 0.943 0.048 24.07 0.714 0.340 - - -
IReNe 30.33 0.959 0.035 25.63 0.783 0.165 26.80 0.714 0.292

Table 1. Quantitative results and comparison with the state-of-the-art.

Within the provided h , the 64-dimensional vector com-
ing from the output of the penultimate layer, we identified
two distinct behaviors: certain entries in this vector exhibit
significant changes as the viewing direction changes, while
others maintain constancy, encapsulating what we refer as
geometry information (as shown in Fig. 4). We preserve
much of the view-dependent information by freezing part
of the weights of this last layer. By doing so, pre-existing
information is retained after the edition process.

To achieve this, we propose a method to automatically
identify entries in hk exhibiting such behavior. Specif-
ically, for the pixels in the input edited view Iedit, we
compute the neuron activations of the last layer, yield-
ing hθ ∈ RW×H×64 , for a given view direction θ. We
then uniformly sweep θ along the azimuth every ψ de-
grees, obtaining a set of view-dependent feature vectors
{hθ0 , hθ1 , ..., hθQ} where the value of Q depends on the an-
gular resolution of the scene as we discuss in the imple-
mentation details. We aggregate the values of this set along
the spatial dimensions obtaining A ∈ R64×Q, where each
Ak ∈ RQ is a profile of the angular behavior of each output
color neuron k across the whole scene (see Fig. 4).

Subsequently, we label the neuron k as a view-dependent
neuron if either of the two conditions is met: 1) if std(Ak)

µ(Ak)
<

τ1, where std(·) and µ(·) are the mean and standard devi-
ation, respectively; or 2) if min(Ak) ≤ τ2. During train-
ing, we preserve the weights of neurons identified as view-
dependent, thereby retaining their original color. Our strat-
egy of preserving the color of the view-dependent effects
is consistent with related methods that explicitly separate
view-dependent effects from diffuse reflections using opti-
mization techniques [18].

4.3. Soft 3D Segmentation from 2D User Edits

Since the information encoded on the color MLPc is global,
performing modifications such as the one depicted in Eq. (6)
may lead to undesired edits in other regions of the scene.
To address this issue, we introduce a 3D segmentation step
to selectively apply edits only in the target regions. Since
our goal is to achieve near-real-time interactive editing, we
avoid relying on 2D segmentation models [8] or user scrib-
bles [20] and the subsequent propagation of segmentation
using depth information. Instead, we propose to reuse the

already existing information in the feature grid to imple-
ment a soft 3D segmentation model for our NeRF. We in-
troduce a small MLPs that learns a soft-segmentation field
αx = MLPs(fx) for the edited area using as input the fea-
tures f of the multiresolution hash grid. The output of this
network is a single value that represents the probability α of
a feature at a specific point being part of the edited area.

We use this probability to perform alpha blending be-
tween the outputs of the network using the original set of
parameters for the color MLP (ϕc) and the new ones (ϕ′last):

cx = αxc
′
x + (1− αx)cx, (7)

where c′x is the new color and cx is the original one.
The new MLPs introduced to perform the soft segmen-

tation is trained alongside the last layer of the color MLPc

using the loss presented in Eq. (4), without the need for any
ground truth segmentation mask. Convergence is typically
achieved in less than 5 seconds.

Implementation details. The soft segmentation MLPs is
implemented as a two-layer MLP. The input layer takes the
32-dimensional multiresolution hash grid feature vector f .
The hidden layer has 64 neurons, the output is the one-
dimensional probability (α). Selected values of τ1 and τ2
are 0.5 and 100 respectively. Q is equal to 30 for all the
scenes. For Blender and MIP360 we sweep the whole ψ.
Due to its forward-facing nature, only half of the ψ is con-
sidered for LLFF. We used the Pytorch [26] implementation
of Instant-NGP [25], our models were trained on a single
NVIDIA RTX 3090 GPU. Every scene was trained for 200
iterations over the same edited image using the Adam Opti-
mizer [17] with a constant learning rate set to 0.01.

5. Evaluation
In this section we describe how we achieved the first quan-
titative results of NeRF recoloring methods by creating
ground truth edits that allow meaningful and detailed com-
parisons. We also show qualitative results to visually com-
pare our method with the state of the art.

Dataset. To the best of our knowledge, existing methods
lack dedicated metrics to quantitatively evaluate the qual-
ity of the edition with respect to ground truth edits. We
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PaletteNeRF(30m) ICE-NeRF(25s) IReNe(5s)Reference

Figure 5. Qualitative comparison with state of the art methods. For each approach we show as a small overlayed image the input that
the method requires from the user. For PaletteNeRF we show the original and the edited color palettes of the image. For IReNe, we show
the region the user selects using Photoshop (or any similar editing tool). On that region we can interactively perform several color edits by
modifying the HSV color within the region.

address this issue by creating a new benchmark building
on existing datasets. From NeRF Synthetic [24], we used
Lego, Mic, Drums, Ficus, and Hotdog (some texture files
for Ship, Materials, and Chair are missing), and edited the
color map before re-rendering the scene. We then used 1
view for training and 200 for evaluation. From LLFF [23]
and MIP360 [3], we used all scenes, for which we apply
manually the same edits using Photoshop to 11 views (1 for
training, 10 for evaluation).

5.1. Quantitative Evaluation

We quantitatively compare our method with PaletteN-
eRF [18] and RecolorNeRF [14]. Unfortunately, ICE-
NeRF’s code is not publicly available, so we just provide

qualitative comparisons in the following subsection. Both
PaletteNeRF and RecolorNeRF are methods that require a
color palette, while our dataset contains full re-colored im-
ages as input. Thus, for a fair comparison with these meth-
ods, we re-trained the models using our edited image in the
RGB loss and froze all the parameters except the palette. In
this way, we simulate the process of finding the most appro-
priate palette in an automated manner (applying stochastic
gradient descent). As a result, we obtained the best palette
for our edits and were able to emulate our full-image edits.

Quantitative evaluations are reported in Table 1. As both
IReNe and PaletteNeRF are trained from Instant-NGP [31],
we include metrics from this model on the ten evaluation
images (without color edition) as a reference for the maxi-
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Figure 6. Additional qualitative results of IReNe. First column: Original scene, Other columns: Edited scene. Rows 1-2: Two partial
editions to the flower scene. Rows 3-4: Multicolor edition on the same scene. The third row has 3 edits: lego body (yellow to blue), lego
emergency light (red to green), oven mitten (red to green). The fourth row has 2 edits. Rows 5-6: Single edit to recolor the vegetation.

mum achievable metric. Notably, IReNe outperforms state-
of-the-art methods across the three metrics—PSNR, SSIM,
and LPIPS. Furthermore, on real datasets (LLFF and Mip
NeRF 360), IReNe achieves metrics comparable to Instant-
NGP, suggesting proximity to the performance limit im-
posed by the pre-trained model. Results for RecolorNeRF
on the Mip NeRF dataset are not reported due to this method
not being able to converge on those scenes. In terms of
computation time, our model achieves remarkable speed-
ups compared to other approaches. Specifically, the average
training time for IReNe is 5 seconds, while RecolorNeRF
requires 15-20 minutes, and PaletteNeRF takes between 30
minutes and 2 hours. ICE-NeRF reports training times of
25 seconds. In summary, IReNe achieves between 5× and
500× speed-ups compared to existing approaches.

5.2. Qualitative Evaluation

We offer qualitative comparisons of our method with Palet-
teNeRF and ICE-NeRF. For PaletteNeRF, we manually se-
lected the palette to achieve the most visually appealing im-
age. Unfortunately, no code was provided for ICE-NeRF,
so we had to use the result images from their paper and sup-
plemental material. However, due to the low resolution of
ICE-NeRF renders, we chose not to provide zoomed regions
in the images to ensure a fair comparison.

Fig. 5 shows the comparison between different meth-
ods. Additionally, we present the original image and the
supplementary information generated by each method (user
scribbles for ICE-NeRF, color palette for PaletteNeRF, and
the region selection that the user creates in Photoshop for
IReNe before applying the HSV color change in said re-
gion). The user edit that IReNe uses is a region selection
that the user does on one image, on which we then per-
form the desired color change in HSV space. For the first 2
results the camera pose of the render was not available for
ICE-NeRF so we had to find by hand a similar pose and thus
the slight misalignment between the pose used by PaletteN-
eRf and IReNe and the pose in ICE-NeRFs results.

When analyzing the results in Fig. 5 it can be seen that
ICE-NeRF performs poorly in the real scenes from the Mip
NeRF 360 dataset, where the color bleeds out into the rest
of the scene. Their results are better in Synthetic NeRF
dataset but it can be seen that ICE-NeRF destroys part of
the contained information when optimizing color. As a way
to check if that degradation happens due to the method, the
green chair images for the ground truth are obtained from
the same ICE-NeRF source and serve as a quality baseline.
In the LLFF dataset ICE-NeRF results are more robust. As
PaletteNeRF is only able to support global recoloring, the
edition is applied outside of the interest region (e.g. Horns
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(a) Original (b) Ground Truth Edit (d) Last Layer (e) Soft segmentation (f) IReNe(c) Full MLP

Figure 7. Qualitative ablation study. Rendered images from the results detailed in Table 2.

NeRF Synthetic [24] LLFF [23] Mip NeRF 360 [3]

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
Full MLP 28.25 0.950 0.047 24.86 0.777 0.172 24.31 0.685 0.325
Last layer 29.09 0.951 0.044 24.99 0.779 0.176 25.35 0.702 0.310
Soft Segmentation 30.20 0.956 0.037 24.77 0.784 0.163 25.68 0.707 0.295
IReNe 30.33 0.959 0.035 25.63 0.783 0.165 26.80 0.714 0.292

Table 2. Ablation study. In this ablation comparison we show the results of learning the full color MLP instead of just the last layer (Full
MLP), the result of only training the last layer but not applying the soft segmentation MLP or the neuron selection (Last layer), the result
of using the last layer and the soft segmentation (Soft Segmentation), and the full method IReNe.

scene). It is also spilling some of the color edition into the
view-dependent effects of other regions (e.g. the pink color
for the Lego is propagated to the yellow table reflections).
We show additional results of our method in Fig. 6, with
multicolor edits and other complex color editions.

5.3. Ablation Study

Tab. 2 provides quantitative results on the quality of dif-
ferent variants of our method. Training uniquely the last
layer of MLPc results in better quality metrics than training
the full MLP. Also, adding the soft segmentation further in-
creases the quality of IReNe, while being able to retain ex-
isting view-dependent information in the pre-trained model
leads to the highest quality. The effect of each of the contri-
butions can be qualitative observed in Fig. 7.

6. Conclusions
We introduced IReNe, a new method that enables inter-
active NeRF editing with a single user edit. The pro-
posed method not only outperforms current state-of-the-art
in terms of speed and interactivity but also overcomes the
main limitations of the existing methods, namely multi-
view consistency and precision at object boundaries. Be-
sides the high-quality results obtained by IReNe, we also

provide insights on how color is encoded in NeRFs. We
hope that this work may serve as inspiration to further lines
of research, as well as enable use cases and edition work-
flows that were possible using traditional 2D/3D tools and,
now, can be achieved in NeRFs thanks to IReNe.

Limitations and Future Work. One of the main limita-
tions of our work is the need to rely on external edition
tools, such as Photoshop, to achieve the complete edition.
Also, while the last layer retraining and the method for dis-
criminating which weights to freeze are very robust to the
chosen image, the soft segmentation model results may be
poor on some occasions. Besides trying to solve these limi-
tations, future work should include the capacity to not only
recolor regions but also being able to affect the indirect il-
lumination produced by edited objects onto other objects.
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