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Abstract

Zero-shot 3D point cloud understanding can be achieved
via 2D Vision-Language Models (VLMs). Existing strate-
gies directly map VLM representations from 2D pixels of
rendered or captured views to 3D points, overlooking the
inherent and expressible point cloud geometric structure.
Geometrically similar or close regions can be exploited
for bolstering point cloud understanding as they are likely
to share semantic information. To this end, we introduce
the first training-free aggregation technique that leverages
the point cloud’s 3D geometric structure to improve the
quality of the transferred VLM representations. Our ap-
proach operates iteratively, performing local-to-global ag-
gregation based on geometric and semantic point-level rea-
soning. We benchmark our approach on three downstream
tasks, including classification, part segmentation, and se-
mantic segmentation, with a variety of datasets represent-
ing both synthetic/real-world, and indoor/outdoor scenar-
ios. Our approach achieves new state-of-the-art results in
all benchmarks. Code and dataset are available at https:
//luigiriz.github.io/geoze-website/.

1. Introduction
Zero-shot point cloud understanding aims to develop deep
learning models capable of performing recognition tasks,
such as shape classification or segmentation, on data un-
observed at training time [8, 18, 35]. Especially, vision-
language models (VLMs), such as CLIP [22], trained on
internet-scale image-text pairs, can be effectively employed
for zero-shot visual recognition tasks [11]. However, train-
ing a 3D deep model using CLIP’s dataset size and proce-
dure is currently infeasible since point cloud-text pair data
of the same scale as that used for CLIP is not yet available.

Transferring VLM representations from images to point
clouds has proven to be the most effective strategy so far for
achieving zero-shot point cloud understanding [8, 30, 33,
35]. For example, PointCLIP [33] pioneers a training-free
approach to directly transfer and combine per-pixel VLM
representations of multiple rendered views of a point cloud
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Figure 1. Given a set of dense per-pixel VLM representations
(e.g. CLIP [22]) extracted from different viewpoint images of a
point cloud, our approach is the first geometrically-driven aggre-
gation technique to effectively transfer these image representations
to 3D points. We use geometric features (e.g. FPFH [23], normals)
extracted from the point cloud to denoise the VLM representations
through an iterative process. This process begins by aggregating
information locally and then extends to operate globally, thereby
facilitating improvements across a variety of downstream tasks.

for zero-shot classification and part segmentation. Its suc-
cessor PointCLIPv2 [35] enhances 3D understanding by re-
fining view rendering quality. ConceptFusion [8] fuses per-
object VLM representations into per-pixel representations,
transferring them to 3D points without requiring training.
Both PointCLIPv2 and ConceptFusion have been tested in
downstream tasks involving 3D scene understanding. How-
ever, 3D points remain isolated when transferring features
from 2D domain to 3D domain, lacking any bridge for intra-
information flow. Additionally, current fusion operations
often disregard the global context and spatial geometric
structures. We argue that the geometric structure of a point
cloud contains valuable information that could be used to
enhance the quality of the transferred VLM representations.
In practical terms, we can rely on the key assumption: VLM
representations should exhibit local smoothness and global
consistency when their geometric structures are similar. To
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the best of our knowledge, no existing training-free method
has harnessed the geometric information when transferring
VLM representations from pixels to 3D points.

In this paper, we introduce the first geometrically-driven
training-free approach to aggregate point-level VLM repre-
sentations for zero-shot point cloud understanding (GeoZe).
Unlike previous methods that employ naive pooling opera-
tions to transfer and aggregate VLM representations from
images to 3D points [8, 18, 35], GeoZe harnesses both lo-
cal and global structural information to enable geometric
consistency of VLM representations across the point cloud.
GeoZe leverages superpoints to aggregate local information
from neighboring points and facilitates a global exchange
among superpoints with similar geometric structures, pro-
moting accuracy and computational efficiency for down-
stream tasks. We utilize geometric representations (3D
descriptors [23]) to identify the structures sharing similar
VLM representations. Our approach employs a weighted
linear combination for aggregation, where the weights are
calculated by jointly considering point cloud VLM rep-
resentations, geometric representations, and coordinates.
A critical aspect of our method is maintaining the origi-
nal alignment of visual representations in the representa-
tion space to ensure compatibility with their correspond-
ing language representations. To achieve this, we intro-
duce the concept of VLM representation anchors. These
anchors serve to correct potential offsets that may arise
during the aggregation process, thereby preserving the in-
tegrity of the original representations. We evaluate GeoZe
on three zero-shot downstream tasks (shape classification,
part segmentation, and semantic segmentation) across five
datasets (ModelNet40 [29], ObjectScanNN [25], ShapeNet-
Part [31], ScanNet [5], and nuScenes [1]). We use var-
ious 3D data benchmarks, including synthetic/real-world
datasets, indoor/outdoor settings, and LiDAR/RGBD acqui-
sition sensors. GeoZe consistently outperforms the consid-
ered baseline methods by a significant margin in a total of
nine experiments. In summary, our contributions are:
• We introduce GeoZe, the first geometrically-driven ag-

gregation approach for zero-shot point cloud understand-
ing, leveraging VLMs.

• We show GeoZe’s versatility, being training-free and
adaptable to various architectures for different down-
stream tasks.

• We establish new state-of-the-art benchmarks in zero-shot
downstream tasks, including object classification, part
segmentation, and semantic segmentation.

2. Related works
Zero-shot PCD understanding. The advent of large-scale
VLMs has prompted a surge in zero-shot point cloud under-
standing [3, 4], including shape classification [6, 7, 30, 33],
and dense semantic segmentation [8, 18, 32, 35]. Zero-

shot point cloud understanding can be performed by train-
ing a 3D encoder tasked with aligning 3D representations
with VLM representations projected from images [6, 7, 18,
30, 32, 35]. For example, ULIP [30] trains a 3D encoder
to align 3D features within the same latent space as the
multi-view visual features extracted by CLIP’s visual en-
coder and the textual features processed by CLIP’s text en-
coder. CG3D [6] also trains a 3D encoder and introduces
prompt tuning for the visual encoder. CLIP2Point [7] re-
trains CLIP’s original image encoder with multi-view depth
maps using a contrastive approach. CLIP2 [32] dissects
3D scenes into text-image-point cloud proxies and applies
cross-modal pre-training to generate point-level VLM rep-
resentations. OpenScene [18] distills multi-view pixel-level
VLM representations into a 3D encoder to learn point-level
representations. Zero-shot point cloud understanding can
also be achieved in a training-free manner [8, 33, 35]. Point-
CLIP [33] renders multi-view depth maps from point clouds
and aggregates view-level zero-shot predictions for 2D-to-
3D knowledge transfer. PointCLIPv2 [35] incorporates
large language models for 3D-specific text prompts and in-
troduces dense depth rendering with a novel 2D-3D map-
ping, enabling dense point-level representation and, conse-
quently, part segmentation tasks. ConceptFusion [8] seeks
dense point-level representation for semantic scene under-
standing by exploiting off-the-shelf image segmenters to
combine local crops and global representations from im-
ages to extract pixel-level features. All the aforementioned
methods do not take geometrical attributes into account
during the semantic feature aggregation process. In con-
trast, GeoZe incorporates geometric information during the
VLM representation aggregation phase on the point cloud to
enhance zero-shot performance across various downstream
tasks. GeoZe does not require any learnable parameters and
can be seamlessly integrated into any training-free method.

Point representation aggregation. Most methods learn to
encode the geometry of point clouds via neural networks
and supervised learning. PointNet [20] uses max pool-
ing for aggregation, while PointNet++ [21] hierarchically
merges representations at multiple scales. PointCNN [12]
hierarchically aggregates local representations using con-
volution operators on a transformed feature space. RS-
CNN [13] introduces ad-hoc convolutions that consider
local neighborhood relations and geometric structure for
aggregation. SPG [10] models the input point clouds
as hierarchical super-points graphs, in which geometri-
cal feature aggregation is performed with graph analysis.
DGCNN [26] learns a graph for each point cloud and ap-
plies convolution operations on its edges. Point Trans-
former [34] introduces a transformer block to aggregate fea-
tures via self-attention. Such operation can be computation-
ally expensive, works like Fast Point Transformer [17] and
Point TransformerV2 [28] mitigate this drawback. Instead
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Figure 2. Overview of the GeoZe framework. GeoZe first clusters point cloud P into superpoints P̄ along with their associated geometric
representation Ḡ, VLM representation F̄ , and anchors C. For each superpoint p̄j , we identify its kNN within the point cloud to form a
patch Pj with their features Gj and Fj . For each patch, we perform a local feature aggregation to refine the VLM representations F . The
superpoints then undergo a process of global aggregation. A global-to-local aggregation process is applied to update the per-point features.
Lastly, we employ the VLM feature anchors to further refine per-point features, which are then ready to be utilized for downstream tasks.

of learning semantic representations directly from 3D ge-
ometry, one can exploit multi-view rendering to learn 3D
representation with additional visual inputs [2, 16, 27]. Re-
cent zero-shot point cloud understanding methods transfer
VLM representation to 3D either via learning a 3D encoder
with backbones from PointNet++ [21] or PointMLP [14],
or by mapping dense multi-view visual representation onto
the 3D point cloud without training [8, 35]. OpenScene [18]
projects multi-view pixel-level VLM representations on the
3D points, and multiple VLM representations for a point
are fused via average pooling. ConceptFusion [8] employs
SLAM techniques to incrementally integrate pixel-level
VLM representations into the 3D space with a momentum-
based update scheme. Also PointCLIPv2 [35] uses aver-
age pooling to fuse multi-view pixel-level VLM representa-
tions. The aforementioned aggregation methods either con-
sider 3D geometry employing learning-based methods or
simply aggregate VLM representations without taking into
account local and global geometrical structure. Differently,
GeoZe can effectively aggregate VLM representation in a
geometrically-driven manner without training.

3. Our approach
3.1. Overview

We begin by extracting dense pixel-level VLM representa-
tions, e.g. with CLIP [22], from each viewpoint image of
a point cloud. The image can be rendered [35] or be the
original one used to reconstruct the point cloud [18]. These
representations are then projected onto the 3D points. We
compute point-level geometric representations, such as Fast
Point Feature Histograms (FPFH) [23] or normal, to guide
the aggregation of our VLM representations. By utilizing
point cloud coordinates and geometric representations, we
generate superpoints along with their associated geometric

and VLM representations. For each superpoint, we identify
its kNN within the point cloud to form a patch. For each
patch we perform a local feature aggregation to denoise the
VLM representations. Then, superpoints undergo a process
of global aggregation. We apply Mean Shift clustering on
point-level VLM representations to establish VLM repre-
sentation anchors. A global-to-local aggregation process
is applied to update the point representations, based on the
coordinate distance and VLM representations similarity be-
tween points and superpoints. Lastly, we employ the VLM
representation anchors to further refine point-level represen-
tations, which become then ready to be utilized for down-
stream tasks. The diagram of GeoZe is shown in Fig. 2.

3.2. Problem formulation

Let P = {pi ∈ R3}Ni=1 be a point cloud composed of N
3D points pi. For each pi we compute and associate a VLM
representation fi ∈ Rb, where b is the dimension of fi. Let
F = {fi ∈ Rb}Ni=1 be the set of VLM representations as-
sociated to each 3D point. For each point pi, we compute
and associate a geometric representation gi ∈ Rd, where d
is the dimension of gi. Let G = {gi ∈ Rd}Ni=1 be the set
of geometric representations associated to each 3D point.
GeoZe transforms F in geometrically-coherent VLM rep-
resentations by combining the information from P , F , and
G based on local and global information through an iterative
aggregation process. F can be used for downstream tasks,
such as classification and segmentation.

3.3. VLM representation anchors and superpoints

The cardinality of point clouds is typically large, hence we
compute superpoints and perform computations on them. A
superpoint is a cluster of points featuring homogeneous ge-
ometric and VLM representations within a neighborhood of
points. Information can be propagated back to individual
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points, resulting in dense point estimations. Intervening on
VLM representations may lead to representations that di-
verge from the original feature space. Hence, we calculate
a set of VLM representation anchors from the superpoints,
which act as a reference for determining the final point-level
representations. Steps for this computation are: i) initial-
ize a set of point seeds uniformly distributed over the point
cloud; ii) compute superpoints based on both geometric and
visual information; iii) compute anchors based on aggre-
gates of points that exhibit similar VLM representations.
Seed initialization. We compute seeds through Farthest
Point Sampling (FPS) [21]. Specifically, we apply FPS
on P to sample N̄ seeds based on point coordinates. Let
P̄ = {p̄j ∈ R3}N̄j=1 be the set of seeds. The corre-
sponding VLM representations and geometric features are
F̄ = {f̄j ∈ Rb}N̄j=1, and Ḡ = {ḡj ∈ Rd}N̄j=1, respectively.
Superpoint computation. Points proximate in the repre-
sentation space are not necessarily proximate in the coordi-
nate space. We aim to produce superpoints that uniformly
partition the entire point cloud; thus, we formulate this as an
optimal transport problem [15, 19]. Specifically, we com-
pute superpoints iteratively by searching for centroids in
the coordinate, geometric, and VLM representation spaces.
This is achieved by initializing and updating their respective
seeds, P̄ , Ḡ, and F̄ . Firstly, for a given j-th seed, we select
a set of K1 nearest neighbors, denoted asNj , in the coordi-
nate space with respect to p̄j , and compute the average simi-

larity µ̄ = {µ̄j} with µ̄j =
1

2K1

∑K1

k=1

(
1.0 +

f̄k
j f̄j

∥f̄k
j ∥∥f̄j∥

)
.

Then, we solve the following optimization problem:

min
γ

∑
ij

γij

(
1√
Dc

∥pi − p̄j∥2 +
1√
Dg

∥gi − ḡj∥2

)
,

∑
i

γij = µ̄j

/∑
k

µ̄j ,
∑
j

γij = 1
/
N,

(1)

where γij is the probability of affiliation of pi to p̄j , and
γ = {γij}NN̄

ij is the set of these probabilities. Dc and Dg

represent the average of the shortest distances between su-
perpoints in the coordinate and geometric spaces, respec-
tively. Eq. (1) can be solved by using the Sinkhorn algo-
rithm [19]. We update the elements of P̄ , Ḡ and F̄ as

p̄j←
∑

i∈Ni
γijpi∑

i∈Ni
γij

, ḡj←
∑

i∈Ni
γijgi∑

i∈Ni
γij

, f̄j←
∑

i∈Ni
γijfi∑

i∈Ni
γij

.

This formulation prevents superpoints that are connected in
the feature space from being grouped into the same cate-
gories if they are disjoint in 3D space. We alternately iterate
µ̄, P̄ , Ḡ and Eq. (1) Γ times to converge to a stable solution.
VLM representation anchors. We model anchors as cen-
troids of clusters characterized by homogeneous VLM rep-
resentations and employ Mean-Shift for iterative cluster de-
termination [9]. We use Mean-Shift over other clustering
methodologies, such as KMeans or Mixture Models, due to

its ability to adaptively vary the number of clusters based
on a kernel bandwidth and to be density aware. This ap-
proach can be particularly effective because the clusters we
seek are those characterized by high-density points with
distinctive representations, allowing each anchor centroid
to potentially represent a semantic category. Clusters with
lower densities can instead be more likely to be represen-
tative of noisy points. We introduce an optimized version
of the Mean Shift clustering algorithm by considering both
geometric and vision features. This is implemented by ini-
tializing the anchors with the original representations of the
seeds, C0

v = {C0
vj = f̄j}N̄j=1 and C0

g = {C0
gj = ḡj}N̄j=1.

Mean-Shift is iterative and the t-th iteration is computed as:

Ct+1
s ← ZKtD−1,D ← diag(Kt⊤1),

Kt ← exp

(
FCt

v
⊤

δ2v∥F∥∥Cv∥

)
exp

(
GCt

g
⊤

δ2g∥G∥∥Cg∥

)
,

(2)

where δs(s∈{v, g}) is the bandwidth that corresponds to the
average similarity from each point to its 16-th nearest neigh-
bor within the VLM representation space, and ∥ · ∥ is the
L2 norm. Mean-shift iterations persist until convergence,
which in our experiments typically occurs around 40 iter-
ations. Centroids are then computed using non-maximum
suppression: starting with the point of maximum density,
all proximates with a similarity greater than the threshold
δs/2(s∈{v, g}) are excluded, with the process iteratively
repeated. δs(s∈{v, g}) is the bandwidth that corresponds to
the average similarity from each centroid to its 16-th nearest
neighbor within the feature space. Points are subsequently
allocated to segments, according to proximity to their clos-
est cluster center. We iterate this procedure about 40 times
to reach the final count of centroids L, which serve as the
label prototypes Cv,Cg for subsequent analyses.

3.4. Geometrically-driven aggregation

Given the superpoints and VLM representation anchors, we
perform an aggregation of VLM representations at point
level. We aggregate VLM representations locally within the
neighborhood of each superpoint and subsequently conduct
a global aggregation among the superpoints. This informa-
tion is aggregated from superpoints to individual points, as-
signing a VLM representation to each point.
Local aggregation. Assuming that VLM representations
should exhibit local smoothness, we perform local aggrega-
tion through a linear combination of VLM representations
in the neighborhood of each superpoint. Specifically, for
the j-th superpoint, we select a set of K2 nearest-neighbor
points defined as Pj for the point coordinates, F j for the
point-level VLM representations, and Gj for the point-level
geometric representations. We compute the linear combina-
tion weights as the solution to an optimal transport problem
using the Sinkhorn algorithm [19]. We apply the Sinkhorn
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algorithm based on the similarity of points in terms of their
geometric and VLM representations. This approach allows
us to regulate the contributions from neighboring points,
mitigating situations where a few highly similar points dis-
proportionately influence the linear combination. We de-
fine the geometric similarity as Sj

g = GjGj⊤/
√
d, and

the VLM representation similarity as Sj
v = FjFj⊤/

√
b.

Therefore, we compute the linear combination weights as
Wj

g = SH
(
Sj

g

)
,Wj

v = SH
(
Sj

v

)
, where SH is the Sinkhorn

function with 5 iterations. We combine, normalize, and use
these weights to aggregate the VLM representations

Wj = SM(Wj
g ∗Wj

v), Fj =
1

2

(
Fj +WjFj

)
, (3)

where SM is the Softmax operation. Then, we use the re-
fined local features (F j) to update the superpoint features
by F̄ = γF̄ . γ is same as in Eq. (1). Once all the super-
points are processed, the next step is the global aggregation.
Global aggregation. Geometrically similar regions may
belong to similar objects, hence their VLM representations
should be similar too. In order to aggregate VLM represen-
tations of objects with similar geometric features we expand
our search at global level. As for the local aggregation, we
use the Sinkhorn algorithm based on the similarity of geo-
metric and VLM representations. Let S̄g be the geometric
similarity computed among all superpoints, where each el-
ement is computed as S̄g

ij = ḡiḡ
⊤
j /
√
d. Similarly, let Sv

be the VLM representation similarity, where each element
is computed as S̄v

ij = f̄if̄
⊤
j /
√
b. The weights W̄ for the

global aggregation are expressed as:

W̄ g=SH
(
S̄g

)
, W̄ v=SH

(
S̄v

)
, W̄=SM(W̄ g ∗ W̄ v ∗ M̄),

where M̄ is a mask matrix with their element M̄ij = 1 if
∥p̄i−p̄j∥2 < Dc, otherwise M̄ij = 0. Then, the superpoint
level features are updated by F̄ = 1

2

(
F̄ + W̄ F̄

)
.

Superpoint-to-point aggregation. We aggregate the up-
dated superpoints’ VLM representations together with their
neighboring points. We use the distance between the
point and each superpoint to weight the contribution of
the VLM representation to aggregate. Specifically, given
a query point pi ∈ P , the weight of superpoint p̄j ∈
P̄ to query point is decided by their coordinate distance
Sc
ij=SM (Dc−∥pi−p̄j∥2) and feature similarity Sv

ij =

fif̄
⊤
j /
√
b. We opted for the tanh kernel due to its abil-

ity to sharpen the distance measure, thereby ensuring that
points are primarily influenced by their closest super-
points in the coordinate space. Let Sc={Sc

ij}N,N̄
i,j=1,1 and

Sv={Sv
ij}N,N̄

i,j=1,1. Then, the weight W is calculated by

W c = SH (Sc) ,W v = SH (Sv) ,W = SM(W c ∗W v). (4)

The point-level feature is updated via F = 1
2

(
F +WF̄

)
to produce our final aggregated representations.

Anchor projection. Noisy representations may be incor-
porated during aggregation, thus causing offsets within the
VLM representation space. Therefore, we project VLM
representations onto our VLM representation anchors as
ci = argmaxcj∈C

(
f⊤
i Cv(g

⊤
i Cg

)
) This makes the aggre-

gated VLM representations to be more inclined to resemble
their corresponding semantic representations.

4. Results
4.1. Experimental setup

GeoZe is implemented using PyTorch and Open3D li-
braries. Experiments are executed on an NVIDIA A40
48GB GPU. We use FPFH [23] as geometric features. Ad-
ditional setting details are in the Supplementary Material.
Prompting. We use the text prompting techniques pro-
posed in the comparison methods. Specifically, for Point-
CLIPv2 [35] we use the prompts obtained via “GPT
Prompting” [35]. For OpenScene [18] and ConceptFu-
sion [8], we use the “prompt engineering” proposed in [18].

4.2. Shape Classification

Setting. We evaluate GeoZe on four datasets for shape clas-
sification tasks. Specifically, we use the synthetic dataset
ModelNet40 [29], and three variants of the real-world
dataset ObjectScanNN [25]. ModelNet40 [29] comprises
12,311 point clouds, with 2,468 of these designated for test-
ing, uniformly sampled from CAD mesh surfaces across 40
categories. We report the results on the test set. ScanOb-
jectNN [25] comprises 15 categories and 2,902 point clouds
divided in: OBJ-ONLY (ground-truth segmented objects
extracted from the scene beforehand, i.e., objects without
background), OBJ-BG (objects attached with background
data), and S-PB-T50-RS (objects perturbed with random
rotation and scaling). We report the results computed on
the test set that comprises 580 point clouds. GeoZe pro-
cesses the depth maps extracted with PointCLIPv2 [35].
Unlike PointCLIPv2 that performs average pooling on the
global representations of each depth map, we transform
depth maps in point clouds, apply GeoZe, and then perform
max pooling on the new VLM representations.
Results. Tab. 1 reports comparative results in terms of clas-
sification accuracy. GeoZe outperforms PointCLIPv2 on all
datasets. Specifically, GeoZe achieves 70.17% on Model-
Net40, outperforming PointCLIPv2 by +5.95. Moreover,
GeoZe achieves 59.34%, 46.00%, and 39.87% on the three
variations of ScanObjectNN. The margin with respect to
PointCLIPv2 is significant, i.e., +18.03, +8.13, and +4.37
accuracy, respectively. In Fig. 3, we report a t-SNE com-
parison between the class representations extracted with
PointCLIPv2 and GeoZe. We quantify t-SNE clusters with
clustering metrics: Silhouette Coefficient, Inter-cluster Dis-
tance, and Intra-cluster Distance. The metrics underscore
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Table 1. Zero-shot 3D classification results on ModelNet40 [24],
and ScanObjectNN [25] in terms of accuracy. Bold font denotes
best performance. Keys: MN40: ModelNet40, SOO: S-OBJ-
ONLY, SOB: S-OBJ-BG, SPB: S-PB-T50-RS. repo.: reported
from the paper. repr.: reproduced by us.

Method MN40 SOO SOB SPB

PointCLIPv2 (repo.) 64.2 50.1 41.2 35.4
PointCLIPv2 (repr.) 63.3 41.3 37.9 35.5
GeoZe 70.2 59.3 46.0 39.9

∆Accuracy +6.8 +18.0 +8.1 +4.4

SC: 0.02
 Intra: 282.92

Inter: 20.98

(a) PointCLIPv2 [35]

SC: 0.11
 Intra: 257.99

Inter: 22.17

(b) GeoZe

Figure 3. T-SNE embeddings of (a) PointCLIPv2 [35] and (b)
GeoZe on ModelNet40. GeoZe produces better separated and
grouped clusters for different categories, as evidenced by the su-
perior silhouette coefficient (SC) and greater inter-cluster distance
(inter), alongside a smaller intra-cluster distance (intra).

the efficacy of GeoZe in more effectively separating point
features from diverse categories.

4.3. Part Segmentation

Setting. We evaluate GeoZe on ShapeNetPart [31] for the
part segmentation task. We compare GeoZe against Point-
CLIPv2 [35]. ShapeNetPart includes 2,874 different ob-
jects, divided in 16 categories, and containing a total of 50
different part labels. These annotations are at point level.
Following the evaluation procedure in PointCLIPv2 [35],
we randomly sample 2,048 points from each point cloud.
Results. Tab. 2 reports the results in terms of the mean in-
tersection of union (mIoU). For PointCLIPv2, we report the
results presented in the original paper and the ones we re-
produced by executing their released source code. GeoZe
outperforms PointCLIPv2 by +5.6, achieving 57.4 mIoU.
GeoZe improves the part segmentation quality for 14 out
of 16 objects types, with very large margin in the case of
chair (+14.6), earphone (+7.2), laptop (+13.5) and mug
(+15.2). Fig. 4 reports qualitative part segmentation ex-
amples obtained with PointCLIPv2 and GeoZe. GeoZe can
effectively denoise features, thus producing more homoge-
neous segmented parts. There are cases, like the aeroplane,
that are difficult to improve due to the high level of noise.

4.4. Semantic Scene Segmentation

Setting. We evaluate GeoZe on ScanNet [5] and
nuScenes [1] for the semantic scene segmentation task.
ScanNet is an RGBD dataset including 2.5M views of 1,513

indoor scenes, annotated with point-level semantic labels
and comprising 20 object classes. We evaluate methods on
the original validation set. nuScenes is a LiDAR dataset
of 400K outdoor scene point clouds with semantic annota-
tions for 16 different classes. We apply GeoZe to the 3D
point-level features extracted with different 2D feature ex-
tractors, specifically those used in OpenScene [18], based
on OpenSeg and LSeg, and that used in ConceptFusion [8].
Results. In Tab. 3 we report the original results of Open-
Scene [18] and the ones reproduced by us with the “2D
Fusion”-version of their approach in the indoor dataset
ScanNet. 2D Fusion is the only training-free version of
OpenScene. For ConceptFusion [8], we reproduced the re-
sults with the original code1. GeoZe outperforms Open-
Scene (OpenSeg), OpenScene (LSeg), and ConceptFusion
by +2.0, +3.9, and +3.1 mIoU on average, respectively.
Specifically, GeoZe outperforms OpenScene (OpenSeg) on
17 out 20 classes of ScanNet, with significant gains on
wall (+5.8), floor (+8.7), and bathtub (+6.2) classes. GeoZe
outperforms OpenScene (LSeg) on all the 20 classes, in par-
ticular for floor (+7.5), bathtub (+6.2), and toilet (+9.6)
classes. GeoZe outperforms ConceptFusion on 19 out of
20 classes, with a significant margin in the case of bath-
tub (+18.5), books (+5.6), and floor (+5.2) classes.

Tab. 4 reports the results in the outdoor dataset nuScenes.
Similarly to Tab. 3, we reproduce the results of the 2D Fu-
sion-version of OpenScene [18] using the OpenSeg feature
extractor as it is the only one available. GeoZe outperforms
OpenScene (OpenSeg) by 2.0 mIoU on average, and on 11
out of the 16 classes, with a improvement on bus by 8.1
mIoU, truck by 6.3 mIoU, and drivable surface by 15.2
mIoU. Fig. 5 reports examples of qualitative results. GeoZe
produces more homogeneous segmented regions and re-
duces noise, particularly at the point cloud boundaries.

4.5. Ablation study

We use the part segmentation task on ShapeNetPart for the
ablation study of GeoZe. The Supplementary Material con-
tains additional ablation studies.
Effectiveness of aggregation levels. We assess the contri-
butions of the local, global, and superpoint-to-point aggre-
gations, and superpoint computation and anchor projection
steps: for convenience, we name these steps as L, G, SP,
SC and A. Since GeoZe first clusters a point cloud into su-
perpoints and then propagates them back to its original res-
olution, we adopt the propagation strategy outlined in [21]
as our baseline, in short B. Fig. 6 reports the results of our
ablation study. B scores 54.0 mIoU. Superpoint computa-
tion (SC) and superpoint-to-point aggregation (SP) improve
the baseline by 0.7 and 1.0 mIoU, respectively. The com-
bination SC+SP results in a gain of 1.7 mIoU. Local aggre-

1These results are different from those reported in the original paper [8]
because authors only evaluated a subset of the classes and scenes.

27901



Table 2. Zero-shot part segmentation results on ShapeNetPart [31] in terms of mean Intersection over Union (mIoU). GeoZe outperforms
PointCLIPv2’s [35] on 14 out of 16 classes. Bold denotes best performance. Key: repo.: reported from the paper. repr.: reproduced by us.
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Figure 4. Zero-shot part segmentation results on ShapeNetPart [31]. (top row) ground-truth annotations, (middle row) PointCLIPv2 [35],
and (bottom row) GeoZe. Parts segmented by GeoZe are more homogeneous than those segmented by PointCLIPv2.

Table 3. Zero-shot semantic segmentation results on ScanNet [5] in terms of mean Intersection over Union (mIoU). GeoZe outperforms
the comparison methods (OpenScene [18] and ConceptFusion [8]) on all datasets. Bold font indicates best performance.
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∆IoU +2.0 +5.8 +8.7 +0.6 +2.6 +3.6 +1.6 +3.9 -0.7 +3.1 +2.9 -4.8 +3.2 +2.4 -2.4 +2.6 +1.9 +4.1 +0.5 +6.2 -2.1

OpenScene [18] (LSeg)

Reported 50.0 - - - - - - - - - - - - - - - - - - - -
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Table 4. Semantic segmentation results on nuScenes [1] in terms of mean Intersection over Union (mIoU), using OpenSeg feature extrac-
tion. GeoZe outperforms the OpenScene on 11 out of 16 classes. Bold font indicates best performance. Key: repr.: reproduced by us.
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Figure 5. Zero-shot semantic segmentation results on ScanNet [5] using OpenSeg feature extraction (Tab. 3). (top row) ground-truth
annotations, (middle row) OpenScene (OpenSeg), and (bottom row) GeoZe.
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Figure 6. Ablation study on GeoZe’s modules, tested on the part
segmentation task. Keys: B: baseline. SC: superpoint computa-
tion. SP: superpoint-to-point aggregation. G: global aggregation.
L: local aggregation. A: anchor projection. Full: the whole model.

gation (SC+L+SP) leads to an improvement of 0.5 mIoU
over SC+SP, underlining the importance of local smooth-
ing. Global aggregation (SC+G+SP) improves 0.8 mIoU
over SC+SP, indicating the positive effect of global seman-
tic context. Anchor projection (SC+A+SP) improves 0.8
mIoU over SC+SP, while the combination of SC+L+G+SP
results in 57.1 mIoU. The full GeoZe reaches 57.4 mIoU.
Impact of feature types. Tab. 5 reports the results of the
different types of features in the aggregation process. Our
experiments indicate that incorporating geometric, semantic
and coordinate information significantly enhances the effec-
tiveness of local aggregation. Similarly, global aggregation
based on geometric and semantic features allows for a great
increase in performance. It improves the segmentation ac-
curacy by nearly +1.2 mIoU (55.7% vs. 56.9%).

4.6. Computational analysis
We compare the processing time of GeoZe against the ag-
gregation approaches of the evaluated methods and report
the average time increment per point cloud. We run the
baselines methods and GeoZe on a NVIDIA A40 48GB
GPU and report inference time in the Tab. 6. Although
we did not implement any low-level optimization of our al-
gorithm, we can observe that the increment introduced by
GeoZe on top of PointCLIPv2 and OpenScene is limited.

Table 5. Ablation study evaluating the influence of geometric in-
formation on part segmentation within the ShapeNetPart dataset.
Keys: Coors: coordinate, CLIP: VLM representation, GA: global
aggregation, LA: local aggregation.

Feature Feature Combinations

LA
CLIP [35] ✓ ✓ ✓ ✓ ✓
Coors ✓ ✓ ✓
FPFH [23] ✓ ✓ ✓

GA CLIP [35] ✓ ✓ ✓
FPFH [23] ✓ ✓ ✓

mIoU 55.7 56.2 56.2 56.4 55.7 56.5 56.9 57.4

Table 6. Comparison of inference times across different methods.
ShapeNet ScanNet

PointCLIPv2 [35] GeoZe OpenScene [18] GeoZe

Time(ms) 7.52 9.83 2088.72 2125.61

5. Conclusions
We presented the first training-free aggregation technique
that leverages the point cloud’s 3D geometric structure to
improve the quality of the transferred VLM representations.
GeoZe is designed to iteratively aggregate representations at
local level first and global level then. VLM representations
are extracted from a CLIP model [22], while geometric rep-
resentations are extracted from the FPFH algorithm [23].
We carried out an extensive evaluation on three downstream
tasks: classification, part segmentation, and semantic seg-
mentation. We reported the results on both synthetic/real-
world, and indoor/outdoor datasets, and showed that GeoZe
achieves new state-of-the-art results in all benchmarks.
Limitations. GeoZe depends on the quality of VLM repre-
sentations, it may not accurately handle features of objects
that constitute a small portion of the 3D scene, and it in-
creases the inference time compared to a naive aggregation.
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