
TetraSphere: A Neural Descriptor for O(3)-Invariant Point Cloud Analysis

Pavlo Melnyk, Andreas Robinson, Michael Felsberg, Mårten Wadenbäck
Computer Vision Laboratory, Department of Electrical Engineering, Linköping University, Sweden

{pavlo.melnyk, andreas.robinson, michael.felsberg, marten.wadenback}@liu.se

Abstract

In many practical applications, 3D point cloud analy-

sis requires rotation invariance. In this paper, we present

a learnable descriptor invariant under 3D rotations and

reflections, i.e., the O(3) actions, utilizing the recently intro-

duced steerable 3D spherical neurons and vector neurons.

Specifically, we propose an embedding of the 3D spherical

neurons into 4D vector neurons, which leverages end-to-

end training of the model. In our approach, we perform

TetraTransform—an equivariant embedding of the 3D input

into 4D, constructed from the steerable neurons—and ex-

tract deeper O(3)-equivariant features using vector neurons.

This integration of the TetraTransform into the VN-DGCNN

framework, termed TetraSphere, negligibly increases the

number of parameters by less than 0.0002%. TetraSphere

sets a new state-of-the-art performance classifying randomly

rotated real-world object scans of the challenging subsets

of ScanObjectNN. Additionally, TetraSphere outperforms

all equivariant methods on randomly rotated synthetic data:

classifying objects from ModelNet40 and segmenting parts

of the ShapeNet shapes. Thus, our results reveal the prac-

tical value of steerable 3D spherical neurons for learning

in 3D Euclidean space. The code is available at https:
//github.com/pavlo-melnyk/tetrasphere.

1. Introduction
Automatic processing of 3D data obtained with sensors such
as LIDARs, sparse stereo, and sparse time-of-flight is a
central problem for many autonomous systems [13, 19, 34].
Point clouds—in the form of an array of a fixed number of
3D coordinates and corresponding optional features (e.g.,
color or intensity)—are a common representation of such
data in various 3D vision tasks.

Consider, for example, the task of 3D object classification,
where the goal is to predict the correct class given a point
cloud. Importantly, the order of the points and different ori-
entations of the shape do not alter its class membership. This
imposes the requirements of permutation and rotation invari-
ance on the classifier. Furthermore, in certain real-world
scenarios (such as left- and right-hand traffic), global reflec-

B(S1)

B(SK)

N × 4 × KTetraTransform

N × 3

N × 3

N × 4 × K

O(3) G<O(4) G<O(4)

Figure 1. Key component in our method (best viewed in color): a
learnable O(3)-equivariant TetraTransform layer consisting of K
steerable 3D spherical neurons [28] that lifts the input 3D points to
equivariant 4D representations (see Section 4.1 for details).

tion invariance is desired. For instance, a vehicle designed
for either type of traffic may be considered the same.

Fulfilling the first requirement is commonly done by
constructing a model using shared multilayer perceptrons
(MLPs) and a global aggregation function, producing
permutation-invariant features, as in, e.g., PointNet [32].

To attain rotation invariance [40], a common approach
is to augment available data by performing random rota-
tions and train the model in the hope that it can generalize
to other, possibly unknown, orientations during inference.
However, such an approach relies heavily on augmentation
and requires an increased model capacity. Such methods
are commonly referred to as rotation-sensitive, e.g., [33, 42].
Using the augmentation approach with rotation-sensitive
methods only approximates rotation invariance. There are
also rotation-equivariant methods [10, 38, 43], in which
the learned features rotate correspondingly with the input,
and rotation-invariant (RI) techniques [6, 8, 18, 24, 47], in
which the central trend is to construct RI low-level geomet-
ric features and use them instead of point coordinates. An
alternative approach is to compute a canonical pose and then
de-rotate the input point cloud and perform processing on it
[12, 23, 37].

Our method is a combination of SO(3)-equivariant steer-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5620

able 3D spherical neurons [28] and vector neurons[10],
where deep rotation-equivariant features are learned using
vector neurons and invariant predictions are obtained by
taking the inner products of these features point-wise. How-
ever, unlike the original SO(3)-equivariant framework [10],
we propagate equivariant features through the network by
constructing a specific 4D space spanned by what we call a
tetra-basis, as shown in Figure 1. Our main hypothesis is that
features from learned rotation-equivariant TetraTransform

projections are more expressive than the points themselves.
We summarize our contributions as follows:

(1) We propose an embedding of 3D spherical neurons [28]
into 4D vector neurons [10], which we show they are both
O(3)-equivariant, and propose TetraSphere—a learnable
O(3)-invariant descriptor for 3D point cloud classification,
built upon VN-DGCNN [10].
(2) We unveil the practical utility of the steerable neurons,
which, to the best of our knowledge, have never been used
in an end-to-end framework previously.
(3) We demonstrate the effectiveness of TetraSphere by evalu-
ating it on standard benchmarks, consistently outperforming
the baseline VN-DGCNN, and setting new state-of-the-art
performance classifying arbitrarily rotated real-world scans
from ScanObjectNN [39], even when they are significantly
perturbed and occluded, and the best performance among
equivariant methods benchmarked with the randomly rotated
synthetic data from ModelNet40 [44] and ShapeNet [3].

2. Related Work
2.1. Rotation-sensitive 3D point cloud learning
PointNet [32] is the pioneering work for learning on raw
point sets as input data for the tasks of classification, part
segmentation, and semantic segmentation. Its limited ability
for recognizing fine-grained patterns was addressed in the
PointNet++ method [33] that recursively applies PointNet on
a nested partitioning of the input point cloud. Other notewor-
thy methods include PointCNN [25] with a special type of
convolution operator applied to the input points and features
before they are processed by an ordinary convolution, and
dynamic graph CNN (DGCNN) [42], where a graph convo-
lution is applied to edges of the k-nearest neighbor graph
of the point clouds. Xiang et al. [45] introduced CurveNet
based on a sequence-of-points (curve) grouping operator and
a curve aggregation operator. A more geometrically inspired
approach was presented by Melnyk et al. [27], who revis-
ited modeling spherical decision surfaces with conformal
embedding [30] in the context of learning 3D point cloud
representations.

Somewhat surprisingly, similar to the projective method
for 3D semantic segmentation by Järemo Lawin et al. [22],
it was shown by Goyal et al. [15] that on a point cloud
classification task, a simple projection-based baseline called

SimpleView performs on par with 3D approaches. More-
over, the authors designed a protocol for a fair comparison
between point cloud learning methods revealing the impor-
tance of many factors independent of the proposed archi-
tectures, such as evaluation procedure and hyperparameter
tuning. Recently, a transformer-based approach combining
local and global attention mechanisms was presented by
Berg et al. [1].

Notably, the aforementioned approaches are rotation-
variant, i.e., they require data augmentation if rotation in-
variance is desired. This also entails the model having an
increased number of parameters for memorizing the data in
various orientations.

2.2. Rotation-aware models
As an alternative, approaches have been proposed for learn-
ing rotation equivariant features, in which learned represen-
tations rotate in accordance with the input [2, 14, 26, 31,
38, 52]. Among these are quaternion-based models [35, 52]
and methods that perform a projection of the 3D input to a
unit sphere [9, 11] and realize convolutions in the spherical
harmonic domain.

The work of Deng et al. [10] introduced vector neurons

by extending neurons from 1D scalars to 3D vectors, and
thereby enabling a simple mapping of SO(3)-actions to la-
tent spaces in the general rotation-equivariant framework.
In the context of equivariant methods, Melnyk et al. pro-
posed steerable 3D spherical neurons [28], which are SO(3)-
equivariant filter banks obtained by virtue of conformal mod-
eling [27, 30] and the symmetries of spheres as geometric
entities [28].

Other methods make use of group representation theory
and transform the input points into a space in which it is
easier to express rotation-equivariant maps [14, 31, 38], and
after that obtain rotation-invariant prediction, e.g., when
performing classification. This is achieved using filters con-
strained to be combinations of spherical harmonics, which
limits their expressiveness. Therefore, such methods have
naturally limited learning capability, and their performance
falls short compared to rotation-sensitive methods for tasks
that do not require rotation invariance.

There is a plethora of conceptually different works on
hand-crafting low-level rotation invariant (RI) geometric fea-
tures for arbitrary pairs of points (PPF) based on angles and
distances [8, 17, 18, 47, 49, 51], proposed to be used instead
of the input point coordinates. For instance, similar to the
triplets used by Granlund et al. [16], Zhang et al. [50] intro-
duced a convolution operator that uses a point neighborhood
constructed with triple-point (reference-neighbor-centroid)
local triangles. In contrast, vector norm and relative angles
between points were used by Chen et al. [4]. A robust RI
representation, capturing both local and global shape struc-
tures, and region relation convolution, alleviating global
information loss, were presented by Li et al. [24].

5621

The pose information loss problem was revealed and ad-
dressed by introducing a pose-aware RI convolution (PaRI-
Conv) with compact and efficient kernels by Chen and
Cong [5]. Therein, a lightweight augmented PPF (APPF)
is proposed, encoding the local pose of each point in a lo-
cal neighborhood in an ambiguity-free manner. Notably,
their approach is also invariant under reflections, i.e., O(3)-
invariant, and they use local reference frames (LRFs) as in-
put. However, utilizing principal component analysis (PCA)
to construct the LRF for RI point cloud learning, as done by
Kim et al. [21] and Xiao et al. [46], is sensitive to perturba-
tions. This is why Chen and Cong [5] proposed to build the
LRFs upon local geometry only.

Input canonicalization is another category of methods
that includes both rotation-variant (e.g., variants of [32, 41]
that use spatial transformers), -equivariant (e.g., [12, 36,
37]), and -invariant [23] methods. The key idea in these
approaches is to bring the input to a computed or predicted
canonical reference frame and process it there.

Recently, Yu et al. [48] utilized the point-cloud registra-
tion approach to achieve rotation invariance. They proposed
registering the deep features to rotation-invariant features at
intermediate levels in their Aligned Integration Transformer
(AIT), thereby increasing feature similarities in the embed-
ding space and attaining rotation invariance.

Our approach builds upon the equivariant framework [10]:
we apply steerable 3D spherical neurons [28] to learn in K
different spaces O(3)-equivariant 4D features from the 3D
input point coordinates, and then aggregate the result by
means of an equivariant pooling over K; finally, we propa-
gate through the VN-backbone, wherein the inner product of
these features in the equivariant feature space is computed
(see Figure 2). This way, we create a learnable O(3)-invariant
descriptor, encoding both unambiguous pose information
and local and global context.

3. Preliminaries
In this section, we introduce the necessary notation and recap
the notion of equivariance and invariance and theoretical
results from prior work, which will enable us to realize an
embedding of steerable 3D spherical neurons into 4D vector
neurons.

We define a 3D point cloud X 2 RN⇥(3+C) as a
collection of N points, represented by their coordinates
x 2 R3 concatenated with the corresponding optional fea-
tures q 2 RC : X =

�
xn � q

n

 N

n=1
. In the scope of this pa-

per, we focus only on the point coordinates and assume that
the optional features are rotation- and reflection-invariant.

3.1. Equivariance and invariance
Given a group G and a set of transformations Tg : X ! X
for g 2 G, a function f : X ! Y is said to be G-equivariant

if for every g, there exists a transformation Vg : Y ! Y

such that

Vg[f(x)] = f(Tg[x]) for all g 2 G, x 2 X , (1)

where Tg represents transformation parameters.
Invariance is a particular type of equivariance. A function

f : X ! Y is said to be G-invariant if for every g 2 G, the
transformation Vg : Y ! Y is the identity, i.e.,

f(x) = f(Tg[x]) for all g 2 G, x 2 X . (2)

In particular, we consider invariance under 3D orthogonal
transformations (rotations and reflections), i.e., the group
O(3), and, as an intermediate step, equivariance under 3D
rotations—the group SO(3). In order to act as a transforma-
tion Tg on a 3D vector x 2 R3, the elements g 2 SO(3) are
often represented by 3⇥ 3 rotation matrices R [7]. However,
this representation is not unique [53].

Our proposed descriptor, which we present in Section 4, is
O(3)-invariant and equivariant under permutations of the in-
put points. That is, permuting point indices 1, . . . , N results
in the corresponding permutation of the descriptor outputs.

In the remainder of the manuscript, we use the same
notation to represent a 3D rotation matrix R in the Euclidean
space R3, the projective (homogeneous) space P(R3) ⇢ R4,
and R5, by appending the required number of ones to the
diagonal of the original rotation matrix without changing the
transformation itself [27].

3.2. Spherical neurons
Spherical neurons are defined as neurons with (hy-
per)spherical decision surfaces [27, 30]. Following Perwass
et al. [30], one embeds both a data vector x 2 Rn and a
hypersphere (c, r) in Rn+2 as

X =
�
x1, . . . , xn,�1,�1

2
kxk2

�
2 Rn+2,

S =
�
c1, . . . , cn,

1

2
(kck2 � r2), 1

�
2 Rn+2,

(3)

where c = (c1, . . . , cn) 2 Rn is the hypersphere center and
r 2 R is its radius. Their scalar product in Rn+2 is given by

X>S = �1

2
kx � ck2 + 1

2
r2 . (4)

The sign of this scalar product depends on the relative po-
sition of the point to the sphere in the Euclidean space Rn:
inside the sphere if positive, outside of the sphere if neg-
ative, and on the sphere if zero [30]. Perwass et al. [30]
suggested to use the scalar product (4) as a classifier, i.e., a
spherical neuron fS(X; S) = X>S with learnable parame-
ters S 2 Rn+2. Importantly, as noted by Melnyk et al. [27],
spherical neurons do not necessarily require an activation
function, due to the non-linearity of the embedding (3).

5622

During training, the components of S in (3) are treated
as independent learnable parameters. Therefore, a spherical
neuron effectively learns non-normalized hyperspheres of
the form eS = (s1, . . . , sn+2) 2 Rn+2. Due to the chosen
representation [30], both normalized and non-normalized
hyperspheres represent the same decision surface, and the
spherical neuron can thus be written as

fS (X; eS) = X>eS = � X>S, (5)

where � := sn+2 is the (learned) normalization parameter
and S 2 Rn+2 is the normalized sphere defined in (3). From
this point, we will write S when referring to a spherical
decision surface, specifying its normalization if needed.

Further details are found in the work of Melnyk et al. [27],
where, inter alia, it is demonstrated that the spherical neuron
activations are isometries in 3D. That is, rigid transforma-
tions commute with the application of the spherical neuron.
This result is a necessary condition to design rotation equiv-
ariant feature extractors based on spherical neurons [28], that
we review in Section 3.3.

3.3. Steerable 3D spherical neurons
A steerable 3D spherical neuron, recently introduced by
Melnyk et al. [28], is a filter bank consisting of one learn-
able spherical decision surface S 2 R5 (3) and three copies:
The original (learned) sphere center c0 is first rotated to
kc0kp

3
(1, 1, 1) with the corresponding (geodesic) rotation de-

noted as RO. The resulting sphere is then rotated into the
other three vertices of the regular tetrahedron. This is fol-
lowed by rotating all four spheres back to the original co-
ordinate system. One steerable 3D spherical neuron is thus
composed as the 4⇥ 5 matrix

B(S) =
h
(R>

O
RTi RO S)>

i

i=0...3
, (6)

where each of {RTi}3i=0 is the isomorphism in R5 corre-
sponding to a 3D rotation from (1, 1, 1) to the vertex i+ 1
of the regular tetrahedron. Hence, RT0 = I5, i.e., S remains
at c0.

We can view the steerable spherical neuron (6) as a func-
tion f4S(· ; S) : R5 ! R4 with five learnable parameters as
a vector S. Crucially for our work, Melnyk et al. [28] proved
that it is equivariant under 3D rotations:

VR B(S)X = B(S)RX, (7)

where X 2 R5 is a properly embedded 3D input point, R
is a representation of the 3D rotation in the space R5, and
VR 2 G < SO(4) is the 3D rotation representation in the
filter bank output space:

VR = M>RO R R>
O

M , (8)

where M 2 SO(4) is a change-of-basis matrix that holds the
homogeneous coordinates of the tetrahedron vertices (scaled
by 1/2) in its columns as

M =
1

2

2

664

1 1 �1 �1
1 �1 1 �1
1 �1 �1 1
1 1 1 1

3

775 . (9)

We will use the equivariant filter bank output as a replace-
ment for 3D points, e.g., in vector neural networks (VNNs)
by Deng et al. [10].

3.4. Vector neurons
Vector neurons (VNs) [10] are designed for processing data
embedded in R3 and produce an ordered set of 3D vectors
y 2 R3 as output. Taking a point cloud X 2 RN⇥3 as
input, a VN extracts vector-list features Y = {Yn}Nn=1 2
RN⇥C⇥3, where Y 2 RC⇥3 is a vector-feature and C is the
number of latent channels.

Specifically, a linear layer flin(· ;W) comprised of VNs
is defined by means of a weight matrix W 2 RC

0⇥C acting
on a vector-feature Y 2 Y as flin(Y;W) = WY, and is
SO(3)-equivariant since

flin(YR;W) = WYR = flin(Y;W)R = Y0R, (10)

where R 2 SO(3) and Y0 2 RC
0⇥3.

Deng et al. [10] also presented how common neural net-
work operations, such as batch norm [20], pooling, and
non-linearities, can be adopted for VNs, and how VNs can
be used in other point cloud processing networks. In particu-
lar, their VN-DGCNN modifies the permutation-equivariant
edge convolution of the predecessor DGCNN [42] by com-
puting adjacent edge features E0

nm
2 E of vector-list

representations Yn 2 RC⇥3, followed by a local SO(3)-
equivariant pooling as

E0
nm

= lVN-nonlin(⇥(Ym � Yn) + �Yn), (11)

Y0
n
= lVN-pool m:(n,m)2E(E0

nm
), (12)

where ⇥ and � are learnable weight matrices, VN-nonlin
and VN-pool are the respective equivariant non-linear and
pooling layers (see Section 3 in Deng et al. [10] for de-
tails). Notably, average pooling, being a linear operation,
maintains rotation-equivariance and helps to achieve higher
performance [10].

To summarize, the important properties of a VNN [10]
are that 1) it is SO(3)-equivariant and produces RI features
at the later layers, and 2) the local interaction between the
points is modeled by exploiting edges by means of edge
convolutions introduced in DGCNN [42].

5623

VN-DGCNN
!×3 !×$!×4 !×$"×4 !×$#×4

'VN(1) '&'(()'&'()) '&'
(*) '&'(+)cat ＋

!×$$×4 !×&$%	×4
%

'inv

!×$& ×4

FC

ch
ai

r

!×$&	×$′ $& $′

+(0) +(d)

!×4×K !×4

, ℋ

max
∥⋅∥
pool

TT

Figure 2. High-level architecture of TetraSphere (for classification): the equivariant TT layer (13) is followed by pooling over K steerable
spherical neurons and the application of the equivariant VN-DGCNN [10], consisting of d VN-layers lVN (15), and the block linv(· ;⇥,�)
(17), producing invariant features. The first (yellow) block contains the contributions of our work.

4. TetraSphere
In this section, we present TetraSphere—a learnable de-
scriptor for O(3)-invariant point cloud processing—based on
steerable 3D spherical neurons and the VN-framework (see
Figure 2). Firstly, we note that R in (8) can be a reflection,
i.e., have a determinant of �1, which will change the sign
of detVR accordingly, and (7) will still hold in this case.
Therefore, VR 2 G < O(4) and steerable neurons (6) are
O(3)-equivariant. The same applies to vector neurons: (10)
holds even if detR = �1, which means that vector neurons
are also O(3)-equivariant.

Our overall approach consists of two steps: 1) we extract
O(3)-equivariant features, and 2) we obtain O(3)-invariant
representations from them. As the first step, we perform
TetraTransform (TT), i.e., lift the 3D input to a specific 4D
space spanned by what we call a tetra-basis (see Figure 1).
Transforming points in the tetra-basis implies embedding
a 3D rotation/reflection into a proper subgroup of O(4), as
VR 2 G < O(4). Since the entire theory of VNs [10] applies
to R4 and O(4) exactly the same way it does to R3 and
O(3), we plug our TetraTransform into VNs of dimension
4 and achieve O(3) invariance. Note, however, that the VN
layers operating on 4D vectors in our model maintain the
equivariance under the subgroup G < O(4).

4.1. Learning O(3)-equivariant features
TetraTransform The first layer l(0) is formed by the TT
layer lTT(· ; S) : RN⇥3 ! RN⇥4⇥K , consists of K steer-
able spherical neurons B(Sk) (6), representing a K ⇥ 5
learnable weight matrix S.

TT first takes in a point cloud of 3D points X 2 RN⇥3

and embeds them in the conformal space R5 according to
(3), resulting in {Xn}Nn=1 2 RN⇥5.

Following the structure of point cloud processing net-
works [32, 42], the subsequent application of the steerable
spherical neurons (6) as B(Sk)X is shared across points,
thus making the output

Y(0) = lTT(X ; S) 2 RN⇥4⇥K (13)

both rotation- and permutation-equivariant. Importantly,
thanks to the embedding of vectors (3), lTT(· ; S) is a non-
linear layer, which is essential for neural networks.

Tetra-basis projections Note that each of the K steerable
spherical neurons (6) in lTT(· ; S) has its own representa-
tion of a 3D rotation R, given as V k

R 2 G < O(4), k 2
{1, . . .K}, due to the rotation RO in (8) (and (6)) being
computed from a learnable Sk. In fact, we see Y(0) as a
collection of N rotation-equivariant 4D vectors in K differ-
ent tetra-bases. This must be taken into consideration when
transforming Y(0) so as to preserve equivariance.
Aggregating over tetra-bases The case K = 1 corre-
sponds to a non-linear change of the coordinate system from
3D to a 4D space spanned by the tetra-basis. However, to
accumulate the features captured in the K > 1 tetra-bases,
we need to consider aggregation operators that respect equiv-
ariance. In our work, we propose to use maximum pooling
over K steerable neurons/tetra-bases for each of the input
N points, thus selecting one of the K 4D outputs of the TT
layer, indexed with k⇤, and define this operation as follows:

lpool(Y(0)) = Y(0)
:, :, k⇤ , k⇤ = mode

n
argmax

k

kY(0)
n, :, kk.

(14)
For an input point cloud, this operation corresponds to the
selection of the k⇤-th steerable neuron, the output of which
has the maximum l2-norm for the majority of points. Since
each of the K steerable neurons (6) is O(3)-equivariant and
hence, preserves the l2-norm of the output, the proposed
selection of one of them is O(3)-invariant, thereby respecting
the equivariance of the model.
Deeper equivariant propagation We proceed by adding
the O(3)-equivariant VN-framework [10], reviewed in Sec-
tion 3.4, on top of lTT: we apply VNs to the (pooled over K)
first layer output Y(0), which we, therefore, need to view as
a list of vector-features Y(0) = {Yn}Nn=1 2 RN⇥4.

We can thus extend VNs [10] to operate on our spe-
cific 4D vectors, contained in Y(0). Obviously, a linear
layer comprised of VNs flin(· ;W) is also equivariant under
VR 2 G < O(4). By replacing R in (10) with VR in (8),
and keeping in mind that vector-features Y contain now 4D
vectors, we see that (10) holds. The same applies to other
equivariant VN-layers (e.g., non-linearities, batch norm); see
Deng et al. [10].

We denote a consequent application of O(3)-equivariant
(and non-linear) edge convolution (EC) (11) and pooling

5624

(12) layers as lVN(· ;⇥,�) : RN⇥C⇥4 ! RN⇥C
0⇥4. In

general, the d-th VN-layer taking Y(d) 2 RN⇥C⇥4 as input
produces an O(3)-equivariant and permutation-equivariant
feature map

Y(d+1) = lVN(Y(d);⇥,�) 2 RN⇥C
0⇥4, (15)

where C 0 are the latent channels. Given the (pooled over K)
TT output (13) Y(0) 2 RN⇥4, a VN-layer outputs a feature
map Y(d) 2 RN⇥C⇥4.

4.2. O(3)-invariant representations
The TetraSphere architecture (see Figure 2), presented in
this section, performs TT (13) as the first step.

To obtain RI features, we follow related work (e.g., [10]
and [47]) and exploit the fact that the inner product of two
roto-equivariant vectors, rotated in Rn with the same R, is
invariant:

UR (TR)> = URR>T> = UT> = H, (16)

where U 2 RC⇥n, T 2 RC
0⇥n, and H 2 RC⇥C

0
. Note that

H is O(n)-invariant since the sign of det(R) does not change
the equality (16). To the best of our knowledge, this has not
been observed in prior work.

If we take (16) and consider U 2 RC⇥3 and T 2 RC
0⇥3

to be 3D vector-features of the same 3D point, but at two
different layers with C and C 0 channels, respectively, we
will get the VN-framework approach (see Section 3.5 in
Deng et al. [10]). In this case, we refer to (16) as a point-

wise inner product of features. We adopt this procedure to
our 4D vectors: In the first step, TT (13) produces Y(0) 2
RN⇥4⇥K . We then apply pooling over K spheres and a
desired number of VN-layers (15) to it, obtaining Y(d) 2
RN⇥C⇥4. To produce RI features, we follow Deng et al. [10]
and concatenate Y(d) with its global mean (over N), Y(d)

=
1
N

P
n
Y(d)
n 2 RC⇥4, and propagate the result through m

additional VN-layers to obtain Y(d+m) 2 RN⇥C
0⇥4. We

then extract matrices U 2 RC⇥4 from Y(d) and T 2 RC
0⇥4

from Y(d+m) and perform (16) for all N . Note that the
complexity of this product is linear, i.e., O(N), as opposed
to, e.g., the quadratic complexity of the product in the SGM
approach [47].

We denote the propagation from VN-layer d to layer
d + m with the subsequent point-wise product as a block
linv(· ;⇥,�) : RN⇥C⇥4 ! RN⇥C⇥C

0
, where ⇥ and �

denote the learnable parameters of the VN-layers. In practice,
we select C 0 = 3 following the original VN-approach [10].

In the case of a single VN-layer (15) following after the
TT-layer (13), we describe TetraSphere operating on X 2
RN⇥3 as

H = linv(lVN(lpool(lTT(X ; S)))), (17)

where H 2 RN⇥C⇥C
0

is an O(3)-invariant and permutation-
equivariant descriptor of X , that can be used for various
point-cloud analysis tasks.

Figure 3. Examples of the objects from the hardest subset of
ScanObjectNN [39]: chair, table, pillow, and display.

5. Experiments
In this section, we conduct experiments with TetraSphere
based on the rotation-equivariant VN-DGCNN architecture
[10]. We evaluate our model using both synthetic and real-
world 3D data and compare it with other methods.

5.1. Datasets and tasks
Real data classification We first consider the task of classi-
fication and evaluate our method on real-world indoor scenes.
For this, we use ScanObjectNN [39], which consists of 2902
unique object instances belonging to 15 classes. We em-
ploy two subsets: the easiest, called OBJ_BG and containing
objects with background, and the most challenging subset
called PB_T50_RS, consisting of approximately 15,000 point
clouds that undergo 50% bounding box translation, random
rotation around the gravity axis, and random scaling, in
which perturbations introduce various levels of partiality to
the objects. We follow the train/test split provided by the
original repository1. Some examples are presented in Fig-
ure 3. We preprocess both datasets the same way, sampling
1024 points per object instance, centering them at the origin,
and normalizing them to be within a unit sphere.
Synthetic data classification and part segmentation In
addition, we evaluate our model on the tasks of classify-
ing ModelNet40 data [44] provided by [32] that consist of
12,311 CAD models randomly sampled as point clouds com-
prised of 1024 points, and the task of part segmentation
using ShapeNet-part [3], consisting 16,881 point clouds of
16 categories partitioned with 50 part labels in total. We
follow [10] for the train/test split and sample 2048 points for
the model input.
Rotation setup In general, we employ the following
train/test rotation settings, following the general conven-
tion [10, 48, 51]: z/z, z/{SO(3), O(3)} and SO(3)/SO(3),
with the second one being the most challenging and the most
practical (in which we also include O(3) to test the invari-
ance under the transformations of the full orthogonal group).
Here, z denotes vertical-axis rotation augmentation, SO(3)
stands for arbitrary 3D rotations, and O(3) for arbitrary ro-
tations+reflections, all generated and applied to the input
shapes during training/testing. Note that the PB_T50_RS

subset of ScanObjectNN already includes z-axis rotation
augmentations, and therefore, we do not need to use addi-
tional augmentation during training for the z/· scenarios.

1https://github.com/hkust-vgd/scanobjectnn

5625

5.2. Architecture and implementation details
We use VN-DGCNN [10] as the backbone, with the standard
choice of k = 20 (nearest-neighbor graph computation pa-
rameter) for classification and k = 40 for part-segmentation
for all layers and the dropout in the last two fully-connected
layers of 0.5. We apply VN-LeakyReLU as the learnable
equivariant non-linearity in (11), and use average pooling in
VN-layers (12), given its reported higher performance. The
architecture for part-segmentation experiments is the same,
except the VN-DGCNN backbone is adjusted accordingly
(as per [10]). We experiment with different numbers K of
steerable spherical neurons in the TT layer and refer to the
resulting model simply as TetraSphere.

We adopt the official implementation of Deng et al. [10]
to implement our model in PyTorch [29]. Following Melnyk
et al. [28], we initialize the parameters in the TT layer (i.e.,
the spheres) using the standard initialization for the linear
layers in PyTorch. We use the same hyperparameters for
training TetraSphere as the baseline [10]: We employ SGD
with an initial learning rate of 0.1 and momentum equal to
0.9, and a cosine annealing strategy for gradually reducing
the learning rate to 0.001, and minimize cross-entropy with
smoothed labels. Like the baseline, we augment the data
with random translation in the range [�0.2, 0.2] and scaling
in the range [2/3, 3/2] during training. We train TetraSphere
for 1000 epochs for all ScanObjectNN experiments. Fol-
lowing the baseline, we set the number of epochs to 250
for ModelNet40 classification, and 200 for ShapeNet part
segmentation. The batch size is set to 32.

5.3. Results and discussion
The main results of our experiments are presented in Ta-
bles 1, 2, and 3, where for a fair comparison, we list methods
that only use point clouds as input, and no additional informa-
tion, such as normals or features, or test-time augmentation.
From Table 1, in the task of classifying the easier subset of
real-world object scans with background (and no perturba-
tions), our method outperforms the baseline VN-DGCNN,
especially in the more practical z/SO(3) scenario, and the
recent method by Yu et al. [48], thus setting a new state-of-
the-art performance. Here, we observe that increasing the
number of steerable neurons beyond K = 2 does not sys-
tematically improve the performance. In general, the results
under the SO(3)/SO(3) protocol indicate that additional ro-
tation augmentation when classifying non-perturbed shapes
is not required for our method.

The previous best result published in the literature in our
comparison for the classification of the perturbed real object
scans from the most challenging subset of ScanObjectNN
(see Table 2) is 3D-GFE [8]. We used the open-source
implementations and evaluated the recent related methods,
showing that VN-DGCNN exhibits better robustness to per-
turbations (comparing with the results of the perturbation-

Methods z/z z/ SO(3) SO(3)/ SO(3)

Rotation-sensitive

PointCNN [25] 86.1 14.6 63.7
DGCNN [41] 82.8 17.7 71.8

Rotation-robust

Li et al. [23] 84.3 84.3 84.3
PaRINet [6] 77.8 77.8 78.1
PaRINet + PCA [6] 83.3 83.3 83.3
Yu et al. [48] - 86.6 86.3
VN-DGCNN [10] ⇤ 83.5 83.5 84.2
TetraSphereK=1 84.7 84.7 86.2
TetraSphereK=2 87.3 87.3 84.9
TetraSphereK=4 84.5 84.5 87.1
TetraSphereK=8 86.2 86.2 84.9
TetraSphereK=16 85.4 85.4 85.9

Table 1. Classification acc. (%) on the real-world objects from the
OBJ_BG (easiest) subset of ScanObjectNN under different train/test
settings of rotation augmentation. The overall best results are pre-
sented in bold, and the second-best are underlined. We evaluated
methods marked with ⇤ using their open-source implementation.

Methods z/z z/ SO(3) SO(3)/ SO(3)

Rotation-sensitive

PointCNN [25] 78.5 14.9 51.8
DGCNN [41] 78.1 16.1 63.4

Rotation-robust

3D-GFE [8] 73.5 72.7 73.5
Li et al. [23] ⇤ 74.6 74.6 74.9
PaRINet [6] ⇤ 71.6 71.6 72.2
Yu et al. [48] ⇤ 77.2 77.2 77.4
VN-DGCNN [10] ⇤ 77.9 77.9 78.5
TetraSphereK=1 78.5 78.5 78.7
TetraSphereK=2 78.9 78.9 79.0
TetraSphereK=4 79.2 79.2 79.0
TetraSphereK=8 78.7 78.7 79.0
TetraSphereK=16 78.8 78.8 79.0

Table 2. Classification acc. (%) on the real-world objects from
the PB_T50_RS (hardest) subset of ScanObjectNN under different
train/test settings of rotation augmentation. The overall best results
are presented in bold, and the second-best are underlined. We
evaluated methods marked with ⇤ using their open-source code.

free OBJ_BG test in Table 1) — a property we attribute to
the equivariant feature extraction scheme of the VN frame-
work. With our TetraSphere (built upon VN-DGCNN), the
performance is further boosted thanks to the 4D represen-
tation learning enabled by the TetraTransform layer with
K � 1: TetraSphere achieves state-of-the-art classification
performance.

As shown in Table 3, TetraSphere outperforms equiv-
ariant baselines at the tasks of classifying and segmenting
parts of the synthetic shapes. Our model is only surpassed

5626

ModelNet40 ShapeNet
Methods z/z z/ SO(3) z/z z/ SO(3)

TFN [31] 89.7 89.7 - 78.1
VN-DGCNN [10] 89.5 89.5 81.4 81.4
TetraSphereK=1 89.5 89.5 82.1 82.1
TetraSphereK=2 89.7 89.7 82.3 82.3
TetraSphereK=4 90.0 90.0 82.2 82.2
TetraSphereK=8 90.5 90.5 82.3 82.3
TetraSphereK=16 89.8 89.8 82.3 82.3

Table 3. Comparison of rotation-equivariant methods using syn-
thetic noiseless data. Left: Classification accuracy (%) on the
ModelNet40 shapes. Right: Part segmentation of the ShapeNet
shapes, mIoU (%). The best results are presented in bold, and the
second-best are underlined.

by PaRINet [6] (the complete tables are presented in the
Supplementary Material) and by Yu et al. [48] (only on
ModelNet40), both of which TetraSphere exceeds the per-
formance of on the other two real-data benchmarks (see
Tables 1 and 2), even when PaRINet is aided by PCA. Com-
pared to the proposed equivariant method, the previous state-
of-the-art methods degrade when the effects of real data
occur: noise, occlusion, and outliers.

We also experimentally verify that TetraSphere is O(3)-
invariant by applying random reflections in addition to rota-
tions during inference, as shown in Table 4: the accuracies
of the TetraSphere evaluated on the data augmented with
z-axis rotations and O(3)-transformations are identical.

Furthermore, we perform an ablation study testing the
importance of the 4D representation learned by TetraSpheres
as opposed to the baseline VN-DGCNN operating on the
original 3D point coordinates appended with a fourth, in-
variant, component. For this, we append each input point,
x 2 R3 with its norm, thus making the input 4D, i.e., [x, kxk].
We also compare our model to VN-DGCNN+l0 and VN-
DGCNN+l0([x, kxk]) models, in which the baseline VN-
DGCNN has an additional 0-th (equivariant) VN-layer in-
serted at the beginning, which makes the model have the
same depth as TetraSphere and adds 366 parameters to the
baseline (0.01265%). As presented in Table 4, TetraSphere
outperforms the baseline.
Learned Tetra-selection Even though our proposed equiv-
ariant pooling (14) allows for selecting different steerable
neurons (from the K available ones) for different inputs,
we found that TetraSphere learns to select the same neuron
(i.e., tetra-basis) for all inputs. As we present in the Sup-
plementary Material, our model does so by learning all but
one � parameter of the spherical decision surfaces (see (5))
defining the steerable neuron (6) in the TT layer (13), to be
close to 0. This renders the l2-norms of the 4D activations
of the corresponding steerable neurons negligible, thus mak-
ing TetraSphere always select the steerable neuron with a
non-zero �. This means that one can prune the network after
training, based on the learned parameters of the TT layer,

Methods z/z z/O(3)

VN-DGCNN 82.8± 0.6 (83.5) 82.8± 0.6 (83.5)

VN-DGCNN([x, kxk]) 82.7± 1.6 (84.5) 82.7± 1.6 (84.5)

VN-DGCNN+l0 83.3± 0.8 (83.8) 83.3± 0.8 (83.8)

VN-DGCNN+l0 ([x, kxk]) 82.7± 0.1 (82.8) 82.7± 0.1 (82.8)

TetraSphereK=2 85.5 ± 2.2 (87.3) 85.5 ± 2.2 (87.3)

Table 4. O(3)-test and ablation: Classification acc. (mean and std
over 3 runs with the best result in parentheses, %) on ScanObjectNN
OBJ_BG objects under different train/test transformation settings.

effectively obtaining K = 1 at inference, thus reducing the
computational time.
Complexity analysis Since TetraSphere is predominantly
based on VN-DGCNN, which is in turn based on DGCNN,
its computational complexity is not fundamentally different
from other methods [10]. The parameter difference between
TetraSphere and the baseline VN-DGCNN is negligible: the
former has only one additional TetraTransform layer (see
Figure 2), containing K learnable spheres with 5 parameters
each (less than 0.0002% of the baseline size). The time com-
plexity difference between the two comes from the usage of
4D vectors by TetraSphere and partially from the TetraTrans-
form operations—the application of the steerable neurons
(6). Benchmarked on NVIDIA A100, a forward pass through
VN-DGCNN takes 5.1ms vs. 6.6ms (� = 1.5ms) through
VN-DGCNN operating on 4D vectors ([x, kxk]) vs. 7.9ms
(� = 1.3ms) through our implementation of TetraSphere.

6. Conclusion
In this paper, we proposed the O(3)-invariant TetraSphere
descriptor as an embedding of steerable 3D spherical neu-
rons into 4D vector neurons. To the best of our knowledge,
we use the steerable neurons in an end-to-end approach for
the first time, thereby unveiling their practical utility. TetraS-
phere sets a new state-of-the-art performance on the task of
classifying randomly rotated 3D objects from the challeng-
ing real-world ScanObjectNN dataset, and the best results
among equivariant methods for classifying and segmenting
parts of randomly rotated synthetic shapes from ModelNet40
and ShapeNet, respectively. We look forward to our work
paving the path to geometrically justified and more robust
handling of real-world 3D data.
Acknowledgments This work was supported by the Wallen-
berg AI, Autonomous Systems and Software Program (WASP),
by the Swedish Research Council through a grant for the project
Uncertainty-Aware Transformers for Regression Tasks in Computer
Vision (2022-04266), and the strategic research environment EL-
LIIT. The computations were enabled by resources provided by
the National Academic Infrastructure for Supercomputing in Swe-
den (NAISS) partially funded by the Swedish Research Council
through grant agreement no. 2022-06725.3, and by the Berzelius
resource provided by the Knut and Alice Wallenberg Foundation at
the National Supercomputer Centre.

5627

References
[1] Axel Berg, Magnus Oskarsson, and Mark O’Connor. Points

to patches: Enabling the use of self-attention for 3d shape
recognition. In 2022 26th International Conference on Pattern

Recognition (ICPR), pages 528–534. IEEE, 2022. 2
[2] Georg Bökman, Fredrik Kahl, and Axel Flinth. Zz-net: A

universal rotation equivariant architecture for 2d point clouds.
In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 10976–10985, 2022. 2
[3] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat

Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Manolis
Savva, Shuran Song, Hao Su, et al. Shapenet: An information-
rich 3d model repository. arXiv preprint arXiv:1512.03012,
2015. 2, 6

[4] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng
Wang, and Liang Lin. Clusternet: Deep hierarchical cluster
network with rigorously rotation-invariant representation for
point cloud analysis. In Proceedings of the IEEE/CVF con-

ference on computer vision and pattern recognition, pages
4994–5002, 2019. 2

[5] Jiayi Chen, Yingda Yin, Tolga Birdal, Baoquan Chen,
Leonidas J. Guibas, and He Wang. Projective manifold gra-
dient layer for deep rotation regression. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), pages 6646–6655, 2022. 3
[6] Ronghan Chen and Yang Cong. The Devil is in the Pose:

Ambiguity-free 3D Rotation-invariant Learning via Pose-
aware Convolution. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages
7472–7481, 2022. 1, 7, 8, 2

[7] Gregory S Chirikjian. Engineering applications of noncom-

mutative harmonic analysis: with emphasis on rotation and

motion groups. CRC press, 2000. 3
[8] Yu-Chen Chou, Yen-Po Lin, Yang-Ming Yeh, and Yi-Chang

Lu. 3d-gfe: a three-dimensional geometric-feature extractor
for point cloud data. In 2021 Asia-Pacific Signal and Informa-

tion Processing Association Annual Summit and Conference

(APSIPA ASC), pages 2013–2017, 2021. 1, 2, 7
[9] Taco S Cohen, Mario Geiger, Jonas Köhler, and Max Welling.

Spherical cnns. arXiv preprint arXiv:1801.10130, 2018. 2
[10] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard,

Andrea Tagliasacchi, and Leonidas J Guibas. Vector neurons:
A general framework for SO(3)-equivariant networks. In
Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 12200–12209, 2021. 1, 2, 3, 4, 5, 6,
7, 8

[11] Carlos Esteves, Christine Allen-Blanchette, Ameesh Makadia,
and Kostas Daniilidis. Learning SO(3) Equivariant Represen-
tations with Spherical CNNs. In Proceedings of the European

Conference on Computer Vision (ECCV), 2018. 2
[12] Jin Fang, Dingfu Zhou, Xibin Song, Shengze Jin, Ruigang

Yang, and Liangjun Zhang. Rotpredictor: Unsupervised
canonical viewpoint learning for point cloud classification.
In 2020 International Conference on 3D Vision (3DV), pages
987–996, 2020. 1, 3

[13] Hamidreza Fazlali, Yixuan Xu, Yuan Ren, and Bingbing Liu.
A versatile multi-view framework for lidar-based 3d object

detection with guidance from panoptic segmentation. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), pages 17192–17201, 2022.
1

[14] Fabian Fuchs, Daniel Worrall, Volker Fischer, and Max
Welling. SE(3)-Transformers: 3D Roto-Translation Equivari-
ant Attention Networks. In Advances in Neural Information

Processing Systems, pages 1970–1981. Curran Associates,
Inc., 2020. 2

[15] Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and
Jia Deng. Revisiting point cloud shape classification with a
simple and effective baseline. International Conference on

Machine Learning, 2021. 2
[16] Gosta H Granlund and Anders Moe. Unrestricted recognition

of 3d objects for robotics using multilevel triplet invariants.
AI Magazine, 25(2):51–51, 2004. 2

[17] Ruibin Gu, Qiuxia Wu, Hongbin Xu, Wing W.Y. Ng, and
Zhiyong Wang. Learning efficient rotation representation
for point cloud via local-global aggregation. In 2021 IEEE

International Conference on Multimedia and Expo (ICME),
pages 1–6, 2021. 2

[18] Ruibin Gu, Qiuxia Wu, Yuqiong Li, Wenxiong Kang, Wing
W. Y. Ng, and Zhiyong Wang. Enhanced local and global
learning for rotation-invariant point cloud representation.
IEEE MultiMedia, 29(4):24–37, 2022. 1, 2

[19] Hanjiang Hu, Zuxin Liu, Sharad Chitlangia, Akhil Agnihotri,
and Ding Zhao. Investigating the impact of multi-lidar place-
ment on object detection for autonomous driving. In Proceed-

ings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2550–2559, 2022. 1
[20] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-
variate shift. In International conference on machine learning,
pages 448–456. PMLR, 2015. 4

[21] Seohyun Kim, Jaeyoo Park, and Bohyung Han. Rotation-
invariant local-to-global representation learning for 3d point
cloud. Advances in Neural Information Processing Systems,
33:8174–8185, 2020. 3

[22] Felix Järemo Lawin, Martin Danelljan, Patrik Tosteberg,
Goutam Bhat, Fahad Shahbaz Khan, and Michael Felsberg.
Deep projective 3d semantic segmentation. In International

Conference on Computer Analysis of Images and Patterns,
pages 95–107. Springer, 2017. 2

[23] Feiran Li, Kent Fujiwara, Fumio Okura, and Yasuyuki Mat-
sushita. A closer look at rotation-invariant deep point cloud
analysis. In Proceedings of the IEEE/CVF International Con-

ference on Computer Vision (ICCV), pages 16218–16227,
2021. 1, 3, 7, 2

[24] Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu,
Daniel Cohen-Or, and Pheng-Ann Heng. A rotation-invariant
framework for deep point cloud analysis. IEEE Transactions

on Visualization and Computer Graphics, 2021. 1, 2
[25] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and

Baoquan Chen. PointCNN: Convolution on x-transformed
points. Advances in neural information processing systems,
31:820–830, 2018. 2, 7

[26] Shitong Luo, Jiahan Li, Jiaqi Guan, Yufeng Su, Chaoran
Cheng, Jian Peng, and Jianzhu Ma. Equivariant point cloud

5628

analysis via learning orientations for message passing. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 18932–18941, 2022. 2
[27] Pavlo Melnyk, Michael Felsberg, and Mårten Wadenbäck.

Embed Me if You Can: A Geometric Perceptron. In Proceed-

ings of the IEEE/CVF International Conference on Computer

Vision (ICCV), pages 1276–1284, 2021. 2, 3, 4, 1
[28] Pavlo Melnyk, Michael Felsberg, and Mårten Wadenbäck.

Steerable 3D Spherical Neurons. In Proceedings of the 39th

International Conference on Machine Learning, pages 15330–
15339. PMLR, 2022. 1, 2, 3, 4, 7

[29] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, pages
8024–8035, 2019. 7

[30] Christian Perwass, Vladimir Banarer, and Gerald Sommer.
Spherical decision surfaces using conformal modelling. In
Joint Pattern Recognition Symposium, pages 9–16. Springer,
2003. 2, 3, 4

[31] Adrien Poulenard and Leonidas J. Guibas. A functional ap-
proach to rotation equivariant non-linearities for tensor field
networks. In 2021 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 13169–13178,
2021. 2, 8

[32] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 652–660,
2017. 1, 2, 3, 5, 6

[33] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. Advances in neural information

processing systems, 30, 2017. 1, 2
[34] Corentin Sautier, Gilles Puy, Spyros Gidaris, Alexandre

Boulch, Andrei Bursuc, and Renaud Marlet. Image-to-lidar
self-supervised distillation for autonomous driving data. In
Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition (CVPR), pages 9891–9901,
2022. 1

[35] Wen Shen, Binbin Zhang, Shikun Huang, Zhihua Wei, and
Quanshi Zhang. 3d-rotation-equivariant quaternion neural net-
works. In European Conference on Computer Vision, pages
531–547. Springer, 2020. 2

[36] Riccardo Spezialetti, Federico Stella, Marlon Marcon, Lu-
ciano Silva, Samuele Salti, and Luigi Di Stefano. Learning to
orient surfaces by self-supervised spherical cnns. Advances in

Neural information processing systems, 33:5381–5392, 2020.
3

[37] Weiwei Sun, Andrea Tagliasacchi, Boyang Deng, Sara Sabour,
Soroosh Yazdani, Geoffrey E Hinton, and Kwang Moo Yi.
Canonical capsules: Self-supervised capsules in canonical
pose. In Advances in Neural Information Processing Systems,
pages 24993–25005. Curran Associates, Inc., 2021. 1, 3

[38] Nathaniel Thomas, Tess Smidt, Steven Kearnes, Lusann Yang,
Li Li, Kai Kohlhoff, and Patrick Riley. Tensor field networks:

Rotation-and translation-equivariant neural networks for 3D
point clouds. arXiv preprint arXiv:1802.08219, 2018. 1, 2

[39] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Duc Thanh Nguyen, and Sai-Kit Yeung. Revisiting point
cloud classification: A new benchmark dataset and classifica-
tion model on real-world data. In International Conference

on Computer Vision (ICCV), 2019. 2, 6
[40] Luc Van Gool, Theo Moons, Eric Pauwels, and André Oost-

erlinck. Vision and Lie’s approach to invariance. Image and

vision computing, 13(4):259–277, 1995. 1
[41] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic
Graph CNN for Learning on Point Clouds. ACM Trans.

Graph., 38(5), 2019. 3, 7, 2
[42] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,

Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. Acm Transactions On

Graphics (tog), 38(5):1–12, 2019. 1, 2, 4, 5
[43] Maurice Weiler, Mario Geiger, Max Welling, Wouter

Boomsma, and Taco S Cohen. 3D steerable CNNs: Learn-
ing rotationally equivariant features in volumetric data. In
Advances in Neural Information Processing Systems, pages
10381–10392, 2018. 1

[44] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d shapenets:
A deep representation for volumetric shapes. In Proceedings

of the IEEE conference on computer vision and pattern recog-

nition, pages 1912–1920, 2015. 2, 6
[45] Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and

Weidong Cai. Walk in the Cloud: Learning Curves for Point
Clouds Shape Analysis. In Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pages
915–924, 2021. 2

[46] Zelin Xiao, Hongxin Lin, Renjie Li, Lishuai Geng, Hongyang
Chao, and Shengyong Ding. Endowing deep 3d models with
rotation invariance based on principal component analysis.
In 2020 IEEE International Conference on Multimedia and

Expo (ICME), pages 1–6, 2020. 3
[47] Jianyun Xu, Xin Tang, Yushi Zhu, Jie Sun, and Shiliang

Pu. SGMNet: Learning rotation-invariant point cloud rep-
resentations via sorted Gram matrix. In Proceedings of the

IEEE/CVF International Conference on Computer Vision,
pages 10468–10477, 2021. 1, 2, 6

[48] Jianhui Yu, Chaoyi Zhang, and Weidong Cai. Rethinking
rotation invariance with point cloud registration. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, pages
3313–3321, 2023. 3, 6, 7, 8, 1, 2

[49] Junming Zhang, Ming-Yuan Yu, Ram Vasudevan, and
Matthew Johnson-Roberson. Learning rotation-invariant rep-
resentations of point clouds using aligned edge convolutional
neural networks. In 2020 International Conference on 3D

Vision (3DV), pages 200–209. IEEE, 2020. 2
[50] Zhiyuan Zhang, Binh-Son Hua, David W Rosen, and Sai-Kit

Yeung. Rotation invariant convolutions for 3d point clouds
deep learning. In 2019 International Conference on 3D Vision

(3DV), pages 204–213. IEEE, 2019. 2
[51] Chen Zhao, Jiaqi Yang, Xin Xiong, Angfan Zhu, Zhiguo

Cao, and Xin Li. Rotation invariant point cloud classification:

5629

Where local geometry meets global topology. arXiv preprint

arXiv:1911.00195, 2019. 2, 6
[52] Yongheng Zhao, Tolga Birdal, Jan Eric Lenssen, Emanuele

Menegatti, Leonidas Guibas, and Federico Tombari. Quater-
nion equivariant capsule networks for 3d point clouds. In Eu-

ropean Conference on Computer Vision, pages 1–19. Springer,
2020. 2

[53] Yi Zhou, Connelly Barnes, Jingwan Lu, Jimei Yang, and Hao
Li. On the continuity of rotation representations in neural
networks. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5745–5753,
2019. 3

5630

