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Figure 1. Given a set of RGB portrait images captured by a monocular camera, our method can learn a photorealistic representation in
neural implicit fields, and transfer it to artistic ones with underlying 3D structures changed. Multiple stylized results can be rendered from
arbitrary novel viewpoints with consistent geometry and texture.

Abstract

Visual content creation has aroused a surge of interest
given its applications in mobile photography and AR/VR.
Portrait style transfer and 3D recovery from monocular im-
ages as two representative tasks have so far evolved inde-
pendently. In this paper, we make a connection between
the two, and tackle the challenging task of 3D portrait styl-
ization – modeling high-fidelity 3D stylized avatars from
captured 2D portrait images. However, naively combin-
ing the techniques from the two isolated areas may suf-
fer from either inadequate stylization or absence of 3D as-
sets. To this end, we propose 3DToonify, a new framework
that introduces a progressive training scheme to achieve
3D style adaption on spatial neural representation (SNR).
SNR is constructed with implicit fields and they are dy-
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namically optimized by the progressive training scheme,
which consists of three stages: guided prior learning, de-
formable geometry adaption and explicit texture adaption.
In this way, stylized geometry and texture are learned in
SNR in an explicit and structured way with only a single
stylized exemplar needed. Moreover, our method obtains
style-adaptive underlying structures (i.e., deformable ge-
ometry and exaggerated texture) and view-consistent styl-
ized avatar rendering from arbitrary novel viewpoints. Both
qualitative and quantitative experiments have been con-
ducted to demonstrate the effectiveness and superiority of
our method for automatically generating exemplar-guided
3D stylized avatars.

1. Introduction
Portrait style transfer [30, 53] aims to transform real face
images into artistic 2D portraits in desired visual styles
while maintaining personal identity. However, given a se-
quence of portrait images captured from different view-
points, existing portrait style transfer methods are typically
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only effective for limited forward-facing photos and fails to
maintain view consistency in 3D space. Essentially, exist-
ing methods only learn a style transfer between 2D features,
and have no sense to 3D representations built on real-world
objects. What if we can construct and stylize underlying
3D structures from captured 2D portrait images? See Fig-
ure 1 for an example. When stylized with 3D structures
(i.e., geometry and texture), we can easily render view-free
stylized portraits with 3D consistency and robust artistic re-
sults. This capacity will extremely facilitate the 3D content
creation process which often requires large amounts of time
and special expertise, and make it accessible to a variety
of novice users. As shown in Figure 1, this paper aims to
address the challenging task of generating high-fidelity 3D
avatar from a portrait video by following the style of a given
exemplar image. We refer this task as 3D portrait stylization
– a marriage between portrait style transfer and 3D recovery
from monocular images.

The naı̈ve solution to the task mentioned above is di-
rectly combining existing methods of 2D portrait styliza-
tion with 3D reconstruction, i.e., learning 3D representa-
tions such as voxels [36], primitives [26] or occupancy
fields [31] directly from stylized portrait images. How-
ever, it is less effective due to the biased image manifold
built by 2D portrait stylization, making the representation
learning be ill-posed with highly-biased visible views. Re-
cently, neural radiance field (NeRF) [4, 18, 32, 33, 40, 49]
has made great progress due to its advanced ability to
achieve photo-realistic novel view synthesis with sparse in-
put views. Some previous attempts [8, 34, 35, 48, 58] also
combine NeRF with image-based [11] or text-driven [42]
neural style transfer to generate novel views of stylized 3D
scenes or avatars. Recently, a series of new works have
started to focus on 3D stylized avatar generation. Some
methods [7, 15, 23, 25, 27, 41, 50, 56] exploit the great
potential of 2D text-to-image diffusion models [44–46] to
generate 3D cartoonish avatars according to a given text
prompt. Others [2, 51, 55, 57] build on 3D generative mod-
els [6, 38] to bridge the gap between the real space and the
target domain, and generate avatars with certain styles un-
der a sampled latent vector. However, all these methods
either can not achieve high-fidelity personalized 3D portrait
stylization with user-specific identities and styles, or fail to
generate fine-grained full-head avatars that support view-
consistent rendering from arbitrary viewpoints.

To address the aforementioned challenges, we draw in-
spiration from domain adaption on 2D features [10, 30],
and introduce a progressive training scheme to achieve 3D
style adaption on spatial neural representation (SNR). The
key insights of this design are twofold. First, it is hard to
directly learn an accurate 3D representation field from styl-
ized portraits with few-shot inconsistent 2D views, but eas-
ier to learn a photorealistic field as a prior and adapt it to

target style fields with transfer learning. Second, learning
spatial representation with disentangled surface and texture
allows for flexible geometry deformation and texture adap-
tion, leading to more diverse and fine-grained style editing.
To this end, we construct SNR with neural implicit fields
and dynamically optimize its subfields with a progressive
training scheme. This scheme includes the following three
stages: prior learning to obtain an accurate human recon-
struction, geometry adaption to produce inherently exag-
gerated deformation, and texture adaption to realize artistic
albedo decomposition. Eventually, the 2D portraits are con-
verted to stylized SNR, and explicit 3D assets can be easily
extracted with disentangled 3D structures. In summary, our
contributions are threefold:
• We present a new method that adopts neural implicit

fields to address the challenging task of generating high-
fidelity 3D avatar from a portrait video by following the
style of a given exemplar image. Stylized results can be
rendered under arbitrary novel viewpoints with consistent
geometry and texture.

• We introduce an elegant network of spatial neural repre-
sentation to model common attributes over the 3D space.
This design allows for disentangled geometry and tex-
ture adaption, achieving more flexible and fine-grained
3D stylization results.

• We propose a novel progressive training scheme of 3D
style adaption. Cooperated with the delicately-designed
spatial neural network, it enables learning realistic 3D
cartoon avatars with deformed geometry and stylized tex-
ture.

2. Related Work

2D Portrait Stylization. In the deep neural network based
portrait stylization, there are two types of approaches, i.e.,
image-to-image translation and StyleGAN based transla-
tion. Methods [21, 24] conduct face-to-cartoon translation
by adopting the framework of cycleGAN [60]. Neverthe-
less, training such methods requires extensive data and may
still generate unstable results. StyleGAN [16, 17] has be-
come a popular alternative for portrait stylization due to its
strong capacity for latent inversion and style control. [30]
proposes a calibration framework to adapt the original train-
ing distribution for fine-grained translation. [53] leverages
the mid- and high-resolution layers of StyleGAN to ren-
der high-quality artistic portraits based on the multi-scale
content features to better preserve details. Although high-
quality results have been shown, these methods cannot han-
dle extreme face angle while maintaining cross-view con-
sistency.
Neural Implicit Fields. Recently, neural implicit functions
have emerged as an effective representation to model con-
ventional 3D scenes due to its continuous nature. This rep-
resentation has been successfully adopted to shape model-
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Figure 2. An overview of the proposed framework. Our method first learns a photorealistic field built-upon spatial neural representation
(SNR) using dense input views, then transfers this prior representation to artistic ones with few-shot stylized views by adapting underlying
3D structures. SNR is constructed by a geometry field for SDF surface, an appearance field for observed color, and a texture field for
albedo color, respectively. The progressive training scheme is adopted to enable SNR to learn about stylized geometry and texture in an
explicit and structured manner.

ing [12, 39], novel view synthesis [29, 32] and multi-view
3D reconstruction [49, 54]. The method of Neural Radi-
ance Fields (NeRF) [32], in particular, has attracted signifi-
cant attention for its ability to achieve photo-realistic novel
view synthesis results by utilizing neural implicit functions
together with volume rendering. A number of variants have
been developed thereafter to fit with different scenarios and
requirements, including quality improvement [4], fast ren-
dering [33], dynamic scene capture [40] and generative
models [5]. However, NeRF’s estimated volume density
does not admit accurate surface reconstruction, the recov-
ered 3D geometry is far from satisfactory and can hardly
be extracted as explicit materials. Recent works tackle the
issue by combining implicit surface functions. [37] repre-
sents the surface by occupancy values and shrink the sample
region of volume rendering during the optimization. [49]
introduces signed distance functions (SDF) to represent the
scene and can directly extract the surface as the zero-level
set of the SDF with better accuracy.

3D Avatar Stylization. 3D avatar stylization aims to gen-
erate stylized 3D avatars whose rendered images captured
from different viewpoints match the specific style. Early
methods are either mesh-driven [13] or rely on explicit
parameterization [47]. More recently, [35, 48] exploit
the flexibility of neural radiance field and propose a text-
guided stylization approach that manipulates the recon-
structed scenes with input text prompts. However, due to
the limited expressiveness of natural languages, they can not
generate highly-detailed results with arbitrary user-specific
styles. Another stream of methods [2, 19, 20, 57] using
3D generative models [6, 38] have extended avatar styliza-
tion to 3D-aware domain adaption. However, inherited from

their predecessors, these methods can not synthesize full-
head avatars in 360◦, and perform badly with real-world
out-of-domain data. In contrast, our method utilizes the im-
plicit representation to model high-fidelity 3D avatars from
captured portrait videos, which allows for superior view
consistency and stable stylization.

3. Method Description
Given the short portrait video of a person captured with a
monocular camera, we aim to generate the high-fidelity 3D
stylized avatar of the person. The person stands still when
recording the video. We denote the split frames of the video
as {Ii|i = 1, . . . , N}, where i is the frame index, N is the
number of frames. For each frame, we use COLMAP to
obtain the calibrated camera and the method proposed in
[28] to extract the foreground human mask.

The overview of the proposed framework is illustrated in
Figure 2. 3DToonify aims to learn the stylized human neu-
ral field by adapting 3D structures in a progressive training
scheme. This scheme is built upon a spatial neural repre-
sentation, which utilizes disentangled implicit fields to cap-
ture the underlying 3D structures such as geometry and tex-
ture (Section 3.1). We first leverage the geometric guidance
from a multi-view stereo to learn a robust photorealistic rep-
resentation, acting as a source prior (Section 3.2). Then
this prior representation is adapted to the style domain with
adaptive geometry deformation (Section 3.3.1) and decom-
posed albedo colors (Section 3.3.2). In this way, the stylized
human avatar field can be constructed by SNR with trans-
formed underlying structures, thus allowing for fully styl-
ized results and 3D consistent rendering in arbitrary view-
points.
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3.1. Spatial neural representation

The proposed spatial neural representation (SNR) is based
on neural radiance field (NeRF) [32], which can be seen as
a continuous 5D function that maps a 3D position x and a
viewing direction v to an emitted color c = (r, g, b) and a
volume density σ. NeRF is approximated by a multi-layer
perceptron (MLP) Fθ : (x,v) → c, σ. SNR consists of
three MLPs Fgeo, Fapp and Ftex, representing the decom-
posed fields of geometry, the observed appearance color and
the albedo texture color, respectively.

Geometry field learns a function Fgeo : R3 → R that
maps a spatial point x ∈ R3 to its signed distance value
G to the object surface. It constructs the underlying ob-
ject surface by encoding a signed distance function (SDF)
of only location x. In order to be compatible with the ren-
dering procedure of the radiance field, a probability func-
tion ψ(.) proposed by [49] is used to calculate the point
weight w from the signed distance value G, where ψ(.)
denotes an unbiased and occlusion-aware approximation.
With this implicit SDF representation, the explicit object
surface S can be easily extracted by the zero level-set of the
SDF : S = {x ∈ R3|G(x) = 0}.

Appearance field learns a function Fapp : R3×S2 → R3

to encode the observed colors capp associated with the point
x ∈ R3 and the view direction v ∈ S2. The feature vec-
tors F (x) derived from Fgeo are also concatenated as the
inputs. To better approximate the appearance colors of the
object captured in read-world scenes, Fapp is introduced as
a function of both location and viewing direction, thus al-
lowing learning view-dependent RGB colors for multi-view
images. Notably, the learned representation in Fapp could
be degraded into reflection components s, which are caused
by illumination and vary with view directions. It will be
adaptively changed in the later training stage (see the de-
tailed discussion in Section 3.3.2).

Texture field learns a function Ftex : R3 → R to encode
the albedo color for the texture atlas ctex associated with
only the spatial location x. Similar to Fapp, feature vectors
derived from Fgeo are concatenated as inputs. We encour-
age the texture representation to be multi-view consistent by
restricting Ftex being a function of only x, while allowing
the final color c = s ◦ ctex to be view-dependent to sat-
isfy different view observations, where ◦ denotes element-
wise multiplication. With the nature of view-independent
representation of Ftex, explicit textures can be obtained by
accumulating the volume albedo colors.

The proposed geometry field and texture field are formu-
lated in a view-independent function, once being effectively
learned, they can express spatial attributes shared by the en-
tire 3D space. This enables editable 3D structures with only
few-shot stylized views needed in the later adaption pro-
cess.

Figure 3. Visualized results in stage I, II, III.

3.2. MVS guided prior learning

In this module, we learn the photorealistic representation
as a prior for the later 3D style adaption. Due to the com-
plexity of real-world captures caused by illumination, ob-
ject materials, etc., the reconstructed results can easily suf-
fer from noisy surfaces and irregular holes. Observing that
the geometry directly extracted by multi-view stereo (MVS)
methods are generally accurate with only local noises, we
propose to integrate the depth information estimated by
MVS as a geometric guidance for surface reconstruction.
Accumulated depth guidance. Volume rendering has
been proven effective to enable robust supervision using 2D
image observations. Following this, we render the depth
map with K points along the emitted ray and use the cor-
responding 2D depth value for supervision. The ray can be
parametrized as r(i) = o + div, where o is the center of
the camera and v is the direction of the ray. The depth D̂(r)
from the geometry field can be computed by:

D̂(r) =

K∑
i=1

(Tiαidi), (1)

where Ti is the accumulated transmittance defined by
Πi+1

j=1(1 − αj), and αj denotes the discrete opacity value

computed by αj = max(Φs(si)−Φs(si+1)
Φs(si)

, 0), in which Φ

is the cumulative distribution of logistic distribution. More
details about conversion from the SDF distance to the opac-
ity can be found in NeuS [49]. For a batched training ray
r ∈ R, the accumulated depth loss can be formulated as:

Ldepth =
∑
r∈R

||M(r)(D̂(r)−D(r))||1, (2)

where M(r) ∈ {0, 1} is the object mask value and D(r) is
the supervised depth value.
Depth-sampled surface guidance. Except for the depth
constraint on spatial accumulated points, we also leverage
points sampled from the depth image ID to guide the con-
struction of the SDF surface. The surface loss encourages
these sampled 3D points being close to the object surface
and Lsur can be formulated as:

Lsur =
∑

xd∈ID

||Fgeo(xd)||1. (3)
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Training. Given a set of portrait images and their camera
parameters, we train the architecture with the geometry field
and the appearance field using the following loss function:

Lprior = Lcolor + λmvsLmvs + λmaskLmask + λregLreg,
(4)

where λ denotes the weight of each corresponding loss. The
MVS guided loss is computed as Lmvs = Ldepth + Lsur.
The color reconstruction loss Lcolor is calculated as the dis-
tance between the accumulated color Ĉ(r) and the observed
color C(r) of I :

Lcolor =
∑
r∈R

||M(r)(Ĉ(r)− C(r))||1, (5)

where Ĉ(r) can be computed by
∑K

i=1(Tiαici), and ci de-
notes the volumetric color produced by the appearance field
Fapp. To focus on human reconstruction, we also define a
mask term with the binary cross entropy loss:

Lmask = BCE(M̂(r),M(r)), (6)

where M̂(r) =
∑K

i=1(Tiαi) is the density accumulation
along the ray. The Eikonal loss [12] used to regularize the
SDF values is defined as

Lreg =
∑
k

||∇pk
Fgeo(xk)− 1||22. (7)

Visualized results of this stage are shown in Figure 3
(a). Not only the radiance field with accumulated color is
learned, but also the inherent geometry can be accurately
decomposed. The high-quality reconstruction learned in
this stage also paves the way for the next stage of style adap-
tion with few-shot 2D stylized portraits.

3.3. Spatial representation adaption

With the constructed photorealistic representation, we then
transform it to the style domain by progressively adapting
the underlying 3D structures. We first adaptively learn the
faithful deformed geometry without the interference of the
albedo texture module, and then decompose albedo colors
from observed ones with fixed geometric structures. This
enables effective 3D structure disentanglement with more
accurate surface and clearer texture.

3.3.1 Geometry adaption
In this stage, we utilize a number of stylized 2D portrait im-
ages It derived from exsting 2D portrait stylization meth-
ods [30, 53] to fine-tune the geometry field Fgeo and the
appearance field Fapp. The spatial-shared geometry will
be adaptively transformed in Fgeo and the observed colors
varying with views will be modeled in Fapp, enabling the
network focusing on geometry adaption. During training,
the pixel color of It is used as the observed color to guide
the accumulated volume colors:

Lcolor =
∑
r∈R

||M(r)(C(r)− Ct(r))||1, (8)

where C(r) is computed by the volumetric color from Fapp

and the converted opacity from Fgeo. The total training loss
is formulated as:

Lgeo = Lcolor + λmaskLmask + λregLreg. (9)

As shown in Figure 3 (b), the spatial deformed geom-
etry can be extracted from Fgeo. However, rendering re-
sults are 3D-inconsistent with obvious artifacts in side-
view renderings, since only few-shot 2D stylizations of the
frontal views are provided for style adaption and the view-
dependent function Fapp trivially fits these views.

3.3.2 Albedo texture adaption and optimization
In this stage, we aim to learn the spatial-shared texture field
Ftex by decomposing the albedo colors from the appearance
ones. Specifically, we insert Ftex as a view-independent
texture field and jointly optimize Ftex and Fapp. In this
way, view-consistent colors can be effectively decomposed
from the total appearance and the remaining components in
Fapp are regarded as view-dependent reflections. The final
color are computed by c̃i = s ◦ c′i, where c′i is the albedo
color from Ftex and s is the degraded reflection from Fapp

for spatial points. Then we can obtain the final accumulated
color by

C̃(r) =

K∑
i=1

(Tiαic̃i). (10)

To further ensure effective albedo color decomposition, a
discriminator D is introduced to encourage C̃(r) satisfying
the approximate distribution of palette colors of It. With κ
as a posterize filter, the patch color κ(Ct(p)) of It is fed into
D as a real sample, and the reconstructed color C̃(p) from
Ftex is fed intoD as a fake sample, where p is the set of rays
for image pixels in a patch. We define the discrimination
loss Lds to penalize for distance between the distribution of
C(p) and C̃(p) as:

Lds =Ep∼{Ii
t}[log(D(κ(Ct(p)))]+

Ep∼{Ii
t}[log(1−D(C̃(p)))].

(11)

To keep the learned geometry stay faithful to the given style,
we fix Fgeo and train {Fapp, Ftex} with the training loss as
follows:

Ltex = Lcolor+λmaskLmask+λregLreg+λdsLds, (12)

where Lcolor denotes the distance between the final accu-
mulated color C̃(r) and the observed stylized color Ct(r):

Lcolor =
∑
r∈R

||M(r)(C̃(r)− Ct(r))||1. (13)
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Figure 4. Stylized results in novel views and corresponding exported meshes.

We show rendering results of this stage in Figure 3 (c),
demonstrating their 3D consistency in multi-view setting.
Thanks to the spatial-shared colors learned in the view-
independent Ftex, the albedo texture can be seamlessly ex-
tracted and further enhanced in an explicit manner.

4. Experimental Results
Implementation details. Our network architecture consists
of three modules: the signed distance function Fgeo, the ap-
pearance function Fapp and the texture function Ftex, which
are modeled by three MLPs with 8, 6, 6 hidden layers, re-
spectively. Positional encoding [32] and sphere initializa-
tion [3] are also applied similar to [49]. For the depth pri-
ors, we adopt the OpenMVS method [1] to extract estimated
depth maps from the input video. For the 2D style transla-
tor, we adopt DCT-Net [30] and VToonify [53] to produce
target stylized images and preserve forward/backward fac-
ing results whose absolute yaw angle is less than 0.2 radian
for supervision. We use the Adam optimizer [22] with the
learning rate of 2.5e-5 to train our models and sample 512
rays for each batch. The loss weights are shared by three
stages with λmask, λmvs, λreg, λds set to {0.5, 0.5, 0.1, 1}.
Stage I, II and III are trained for 300k, 200k and 50k it-
erations, respectively, taking around 20 hours in total on a
single NVIDIA Teasla-V100 GPU.
Datasets. We create a 360◦ captured portrait dataset called
Portrait360 to evaluate our approach. This dataset contains
14 static portrait videos captured by rotating the camera
around the human head. All videos have a length between
20 to 30 seconds and are split to 300 frames as source train-
ing data.

4.1. 3D portrait stylization

Performance on view consistent rendering. Given a short
portrait video captured by a monocular camera, our model
learns a stylized 3D representation from 2D portrait frames.
Stylized portrait images can be generated from arbitrary
novel viewpoints following exemplar styles, while ensuring
facial identity of the person and 3D consistency between
different views. Note that the synthesized images in this
part are produced directly by volume rendering on implicit
functions, without any explicit style enhancement applied
for the results. Our stylized avatars rendered in novel view-
points and their corresponding exported meshes are shown
in Figure 4, more results can be found in the supplementary.
Comparison with 3D avatar stylization methods. In this
section, we compare our method with two 3D avatar styl-
ization methods, DeformToon3D [57] and NeRF-Art [48],
which represent the state-of-the-art techniques in 3D-aware
generative toonification and text-guided NeRF stylization,
respectively.
Qualitative comparison. Here we adapt VToonify [53]
to generate target stylized images with selected exemplars
to train our model. For DeformToon3D [57], we use the
author-provided code and train the model using data gen-
erated with the same exemplars by DualStyleGAN [52],
which is also the 2D generator used in VToonify. Here we
directly generate its real-space and style-space results un-
der the same sampled instance code, since the additional
PTI [43] process will cause accumulated fidelity errors, es-
pecially on arbitrary real faces. For NeRF-Art [48], as it
does not support using a single exemplar image for style
guidance, we use Mini-GPT4 [59] to generate style de-
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InputDeformToon3D OursNeRF-ArtInput

front          side         upward        back front           side          upward        back front             side          upward          back 

Figure 5. Qualitative comparison with 3D avatar stylization methods. We directly compare the generated real-space and style-space
results of DeformToon3D to alleviate the fidelity loss in the additional PTI process. The models of NeRF-Art and Ours are trained on our
Portrait360 dataset. Four views are selected for comparison.

Input VToonify Ours-V DCT-Net Ours-DInput

Figure 6. Qualitative comparison with 2D portrait stylization
methods on view consistent rendering. For a more prominent
video comparison, please refer to the supplementary video.

scriptions corresponding to each target image. The input
text prompts used in this section are shown in the supple-
mentary. We demonstrate qualitative comparison of the
three methods in Figure 5. DeformToon3D only focuses
on frontal views and fails to generate plausible renderings
under large angles. Besides, it tends to synthesize overly
exaggerated results and fail to maintain the facial charac-
teristics (e.g., hairstyles) of the original image. NeRF-Art
only generates results with undesired stylized texture and
weakly-changed underlying structures. On the contrary, our
method can generate fine-grained full-head stylized avatars
with view-consistent renderings and exaggerated styles.
Quantitative comparison. For quantitative comparison,
we measure the quality of multi-view stylized renderings of
all methods by calculating the Frechet Inception Distance
(FID) [14] value for the training cartoon exemplar dataset.
A lower FID score indicates that the distribution of the gen-
erated images is more similar to that of real 2D cartoon
faces. we also evaluate the fidelity of all methods in 3D

Table 1. Quantitative comparison with 3D avatar stylization meth-
ods on FID and IP. ↑, ↓ denote if higher or lower is better.

Method DeformToon3D NeRF-Art Ours

FID ↓ 66.5 78.8 57.6
IP ↑ 0.551 0.671 0.678

style adaption using the identity preservation (IP) metric,
which is calculated as the Arcface [9] feature similarity be-
tween the input image and the stylized result. As shown
in Table 1, our method outperforms the other two methods
in both FID and identity preservation, which showcases our
ability of generating high-quality stylized results while be-
ing faithful to the original human identity.
Comparison with 2D portrait stylization methods. In
this section, we compare our method with two state-of-
the-art 2D portrait stylization methods, VToonify [53] and
DCT-Net [30], to further demonstrate our ability of gen-
erating 3D-consistent and high-quality stylized results for
arbitrary views.
Qualitative comparison. Due to the incapability of 2D por-
trait stylization methods to synthesize novel view results,
we only make comparison under reconstructed views cap-
tured in the input video. For both VToonify and DCT-Net,
frames are directly input into the trained/finetuned mod-
els released by authors to obtain the corresponding styl-
ized images. Then we select their forward/backward results
as sparse view supervision to train our models (denoted as
ours-V and ours-D, respectively). As illustrated in Figure 6,
VToonify and DCT-Net fail to synthesize exaggerated ge-
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Table 2. Comparison of FID and 3D validity with 2D portrait styl-
ization methods.

Method DCT-Net Ours-D VToonify Ours-V

FID ↓ 126.1 94.7 86.9 57.6
3D validity ↑ 0.54 1.00 0.62 1.00

Table 3. Ablation of the progressive training scheme. Results ver-
ify the effectiveness of the proposed module in each stage.

Variants w/o Prior w/o GA w/o TA w/o PSA full model

FID ↓ 98.7 105.2 96.7 96.2 94.7

ometry effects in challenging viewpoints (e.g., side faces)
and are unable to maintain 3D view consistency. Note that
these extreme view results are not used as supervision in
our style adaption process. On the contrary, our method can
easily render style-faithful and robust results in a 3D con-
sistent manner. This showcases the importance of learning
underlying 3D structures in maintaining view-consistency
of the stylized avatar.
Quantitative comparison. We also measure the quality
of our rendering results against VToonify [53] and DCT-
Net [30] using FID [14]. We use data from our Portrait360
dataset as source images and remove failure cases of the 2D
methods. As shown in Table 2, both of our models produce
better results with lower FID values compared with origi-
nal 2D methods. To further evaluate the stylization ability
of handling views from the entire 3D space, we propose to
calculate 3D validity by computing the conversion rate of
successfully stylized results to the whole dataset. 2D meth-
ods rely on detected facial landmarks and failed conversions
can be automatically recognized. Compared to 2D methods,
our method could handle more challenging poses in the en-
tire 3D space with higher 3D validity.

4.2. Ablation study
In addition to visualized results in Figure 3, we verify the
effectiveness of the proposed module in each stage by eval-
uating the performance of corresponding variants of our
method. The qualitative and quantitative results are shown
in Figure 7 and Table 3, respectively.
MVS guided prior learning. We train a model without
photorealistic prior learning and directly learn the spatial
neural representation from stylized portrait images. It is
confusing for inverse rendering to produce valid geometry
and texture with unreal 3D-inconsistent stylized observa-
tions, as shown in Figure 7 (b). This indicates that the re-
construction prior is crucial for generating plausible under-
lying structures in 3D style adaption. The design of MVS
guidance also helps to reconstruct more robust surface with-
out holes brought by illumination noise in complicated real-
world scenes (see Figure 7 (g)).
Progressive structure adaption (PSA). By removing PSA
proposed in Section 3.3, we jointly learn the geometry and
texture adaption with the full SNR network. Results in

  (a) Full model    (b) w/o Prior      (c) w/o PSA        (d) w/o GA       (e) w/o TA

(g) w/o MVS

 (f) + SE

Figure 7. Effects of the proposed prior learning (Prior), pro-
gressive structure adaption (PSA), geometry adaption (GA), tex-
ture adaption (TA), style enhancement (SE) and MVS guidance
(MVS).

Figure 7 (c) show that simultaneously training Fgeo and
Ftex disrupts the disentanglement of each other. Progres-
sive adaption brings more accurate surfaces and seamless
textures.
Geometry and texture adaption. Figure 7 (d, e) verify the
necessity of geometry adaption (GA) and texture adaption
(TA), respectively. In contrast to explicit texture styliza-
tion, GA enables the internal surface to be deformed adap-
tively, thus making 3D portraits be fully stylized. Without
TA, inferred vertex colors from the appearance field suffers
noticeable artifacts, due to the inconsistent observed colors
from different views. TA introduces an extra texture field
that automatically decomposes albedo colors shared in 3D
space, thus alleviating the texture seaming issue. Besides,
we explore adding additional style enhancement (SE) on the
explicit texture map extracted from the texture field, which
further brings more vivid stylization effects (Figure 7 (f)).
We also show the impact of the number of stylized frames
used for adaption stages in the supplemental material.

5. Conclusion
In this paper, we handled the challenging and on-going task
of synthesizing the high-fidelity stylized 3D avatar from
a portrait video under the guidance of a single style im-
age. We showed that the naı̈ve combination of portrait style
transfer and 3D reconstruction techniques does not work
well in this task, and proposed a novel framework called
3DToonify that learns 3D style adaption based on spatial
neural representations (SNR). We introduced a delicately-
designed spatial neural network for disentangled geometry
and texture adaption. We also came up with a novel pro-
gressive training scheme suitable for the SNR to accurately
capture the underlying stylized 3D structures. Both qualita-
tive and quantitative experimental results demonstrated that
our method enables fine-grained 3D avatar stylization with
view consistency and diverse exaggerated results.
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