
Snap Video: Scaled Spatiotemporal Transformers for Text-to-Video Synthesis

Willi Menapace1,2,* Aliaksandr Siarohin1 Ivan Skorokhodov1 Ekaterina Deyneka1

Tsai-Shien Chen1,3,* Anil Kag1 Yuwei Fang1 Aleksei Stoliar1 Elisa Ricci2,4

Jian Ren1 Sergey Tulyakov1

Snap Inc.1 University of Trento2 UC Merced3 Fondazione Bruno Kessler4

snap-research.github.io/snapvideo

"Atop dramatic cliffs, two warriors engage in a sword fight. [...]"

"Dust fills the air as off-road vehicles tear through a vast desert landscape. [...]"

"[...] a movie set where an otter serves as a film director. [...] raised paws shouting 'Action!' [...] "

"[...] corgi dog riding a bike in Times Square. It is wearing sunglasses and a beach hat."

"A cowboy panda riding on the back of a lion, hand-held camera."

"In the vastness of space, starships engage in a cosmic clash. [...]"

"In an empty parking lot, film a professional car drifting exhibition. [...]"

"[...] a cat donned in a chef's hat expertly kneads dough [...]"

Figure 1. Samples produced by the proposed text-to-video generation method for a selection of prompts. Thanks to joint spatiotemporal
video modeling, our generator can synthesize temporally coherent videos with large motion (left) while retaining the semantic control
capabilities typical of large-scale text-to-video generators (right). See the Website for additional samples.

Abstract

Contemporary models for generating images show re-

markable quality and versatility. Swayed by these advan-

tages, the research community repurposes them to generate

videos. Since video content is highly redundant, we argue

that naively bringing advances of image models to the video

generation domain reduces motion fidelity, visual quality

and impairs scalability. In this work, we build Snap Video,

a video-first model that systematically addresses these chal-

lenges. To do that, we first extend the EDM framework to

take into account spatially and temporally redundant pix-

els and naturally support video generation. Second, we

show that a U-Net—a workhorse behind image genera-

tion—scales poorly when generating videos, requiring sig-

nificant computational overhead. Hence, we propose a new

transformer-based architecture that trains 3.31 times faster

than U-Nets (and is ⇠4.5 faster at inference). This allows

us to efficiently train a text-to-video model with billions of

parameters for the first time, reach state-of-the-art results

on a number of benchmarks, and generate videos with sub-

stantially higher quality, temporal consistency, and motion

complexity. The user studies showed that our model was

favored by a large margin over the most recent methods.

1. Introduction
Creating and sharing visual content is one of the key ways
for people to express themselves in the digital world. Ac-
cessible to only professionals in the past, the capability to
create [30, 40, 43, 69] and edit [6, 37, 42] images with stun-
ning quality and realism was unlocked to everyone by the
advent of large text-to-image models and their variations.

Fueled by this progress, large-scale text-to-video mod-
els [4, 13, 21, 48, 62] are rapidly advancing too. Cur-
rent large-scale diffusion-based video generation frame-
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works are strongly rooted into their image counterparts
[4, 13]. The availability of consolidated image generation
architectures such as U-Nets [41] with publicly-available
image-pretrained models [40] made them a logical founda-
tion onto which to build large-scale video generators with
the main architectural modifications focusing on the in-
sertion of ad-hoc layers to capture temporal dependencies
[4, 13, 21, 48, 62]. Similarly, training is performed un-
der image-based diffusion frameworks with the model be-
ing applied both to videos and to a separate set of images to
improve the diversity of the results [13, 21, 22, 48].

We argue that such an approach is suboptimal under mul-
tiple aspects which we systematically address in this work.
First, image and video modalities present intrinsic differ-
ences given by the similarity of content in successive video
frames [7, 13]. By analogy, image and video compression
algorithms are based on vastly different approaches [33]. To
address this issue, we rewrite the EDM [25] framework with
a focus on high-resolution videos. Differently from past
work where videos were treated as a sequence of images,
we perform joint video-image training by treating images
as high frame-rate videos to avoid modality mismatches in-
troduced by the absence of the temporal dimension within
purely image-based training. Second, the widely adopted
U-Net [41] architecture is required to fully processes each
video frame. This increases computational overhead com-
pared to purely text-to-image models, posing a very practi-
cal limit on model scalability. The latter is a critical factor in
obtaining high-quality of results [13, 21]. Extending U-Net-
based architectures to naturally support spatial and temporal
dimensions requires volumetric attention operations, which
have prohibitive computational demands. Inability to do so
affects the outputs, resulting in dynamic images or motion
artifacts being generated instead of videos with coherent
and diverse actions.

Following our compression analogy, we propose to
leverage repetition between frames and introduce a scal-
able transformer architecture that treats spatial and tem-
poral dimensions as a single, compressed, 1D latent vec-
tor. This highly compressed representation allows us to per-
form spatio-temporal computation jointly and enables mod-
elling of complex motions. Our architecture is inspired by
FIT [8], which we scale to billions of parameters for the first
time. Compared to U-Nets, our model features a significant
3.31⇥ reduction in training time and 4.49⇥ reduction in in-
ference time while achieving higher generation quality.

We evaluate Snap Video on the widely-adopted UCF101
[55] and MSR-VTT [65] datasets. Our generator shows
state-of-the-art performance across the range of bench-
marks with particular regard to the quality of the gener-
ated motion. Most interestingly, we performed a number
of user studies against the most recent open- and close-
source methods and found that according to the participants

of the study our model features photorealism comparable
to Gen-2 [11], while being significantly better than Pika
[1] and Floor33 [17]. Most excitedly, the preference of
user-study participants favoured Snap Video by a large mar-
gin when text alignment and motion quality were assessed.
Compared to Gen-2 [11] on prompt-video alignment our
model was preferred in 81% of cases (80% against Pika [1],
81% against Floor33 [17]), generated most dynamic videos
with most amount of motion (96% against Gen2 [11], 89%
against Pika [1], 88% against Floor33 [17]) and had the best
motion quality (79% against Gen-2 [11], 71% against Pika
[1], 79% against Floor33 [17]).

2. Related Work
Video Generation Video generation is a challenging and
long-studied task. Due to its complexity, a large number
of works focus on modeling narrow domains [5, 9, 12, 28,
35, 44, 47, 49, 56, 58, 59, 66, 70, 71] and adopt adversar-
ial training [5, 9, 28, 44, 47, 49, 58, 59, 71] or autoregres-
sive generation techniques [12, 35, 56, 66, 70]. To address
the narrow domain limitation, the task of text-to-video gen-
eration was proposed [34] and both autoregressive models
[23, 34, 61, 63, 64] and GANs [29] emerged.

The recent success of diffusion models in the context
of text-to-image generation [3, 40, 43] fostered tremendous
progress in the task [2, 4, 13, 16, 17, 21, 22, 32, 48, 62,
67, 72]. ImagenVideo [21] and Make-A-Video [48] pro-
pose a deep cascade of temporal and spatial upsamplers to
generate videos and jointly train their models on image and
video datasets. PYoCo [13] introduces a correlated noise
model to capture similarities between video frames. Video
LDM [4] adopts a latent diffusion paradigm where a pre-
trained latent image generator and latent decoder are fine-
tuned to generate temporally coherent videos. AnimateDiff
[16] freezes a pre-trained latent image generator and trains
only a newly inserted motion modeling module. These
works employ U-Nets with separable spatial and tempo-
ral computation which poses a limitation on motion mod-
eling capabilities. VideoFactory [62] improves upon this
paradigm by proposing a Swapped Spatiotemporal Cross-
Attention that improves interactions between the spatial and
temporal modalities along 3D windows.

Differently from this corpus of works which adapts the
U-Net [41] architecture to the video generation task, we
show that employing transformer-based FIT [8] architec-
tures results in significant training time savings, scalability
improvements, and performance increase thanks to their
learnable compressed video representation. In particular,
we show that the global joint spatiotemporal modeling
strategy enabled by our compressed video representation
results in significant improvements in temporal consistency
and motion modeling capabilities.
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High-Resolution Generation Different approaches have
been proposed to enable the generation of high-resolution
outputs. Cascaded diffusion models [3, 13, 21, 43, 48] adopt
a set of independent diffusion models designed to succes-
sively upsample the results of the previous step. Latent dif-
fusion models [2, 4, 17, 40, 72] make use of a pretrained
autoencoder to encode the input into a low-dimensional set
of latent vectors and learn a diffusion model on this latent
representation.

A different family of methods generates high-resolution
outputs end-to-end without employing cascades of models
or latent diffusion. Simple Diffusion [24] and Chen [7]
directly generate high-resolution images by adapting the
noise schedule of the diffusion process. f-DM [14] and
RDM [57] design a diffusion process that seamlessly tran-
sitions between different resolutions. MDM [15] proposes
a strategy where a single model is trained to simultaneously
denoise inputs at progressively higher resolutions.

In this work, we adopt a two-stage cascaded model out
of two considerations: (i) it avoids temporal inconsistencies
in the forms of flickering of high-frequency details that may
be introduced by latent autoencoders [4], (ii) it increases
model capacity with respect to an end-to-end model by
creating two specialized models, one for the low resolution
focusing on motion modeling and scene structure, and one
for the high-resolution, focusing on high-frequency details.

Diffusion Frameworks Diffusion generative models are
a set of techniques modeling generation as a pair of pro-
cesses: a forward process progressively destructing a sam-
ple with noise, and a reverse process modeling generation
as the progressive denoising of a sample. Different formula-
tions of diffusion models have been proposed in the litera-
ture. Denoising Diffusion Probabilistic Models (DDPMs)
[20, 50] formulate the forward and backward process as
Markov chains. Score-based Generative Models (SGMs)
[51, 52] model the score of the probability density func-
tion of a series of data distributions perturbed with increas-
ing levels of noise, i.e. the direction of largest increase
in the data log probability density function. An avenue
of works [53, 54] generalizes DDPMs and SGMs to infi-
nite noise levels through Stochastic Differential Equations
(SDEs). In this work, we adopt the SGM framework of
EDM [25] which we reformulate for the generation of high-
resolution videos.

3. Method
We propose the generation of high-resolution videos by
rewriting the EDM [25] diffusion framework for high-
dimensional inputs and proposing an efficient transformer
architecture based on FITs [8] which we scale to billions of
parameters and tens of thousands input patches. Sec. 3.1
provides an introduction to the EDM framework, Sec 3.2

highlights the challenges of applying diffusion frameworks
to high dimensional inputs and proposes a revisited EDM-
based diffusion framework. Sec. 3.3 proposes a method to
reduce the gap between image and video modalities for joint
training. Finally, Sec. 3.4 describes our scalable video gen-
eration architecture, while Sec. 3.5 and Sec. 3.6 respectively
describe the training and inference procedures.

3.1. Introduction to EDM
Diffusion models have achieved remarkable success in im-
age and video generation. Among the proposed frame-
works, Karras et al. [25] provide a unified view of common
diffusion frameworks and formulate EDM. EDM defines a
variance-exploding forward diffusion process p(x�|x) ⇠
N (x,�2I), where � 2 [�min,�max] represents the diffu-
sion timestep coinciding with the standard deviation of the
applied noise, and x� represents the data at the current
noise level. A denoiser function D✓ is learned to model
the reverse process using the denoising objective:

L(D✓) = E�,x,✏

h
�(�)

��D✓(x�)� x
��2
2

i
, (1)

where � is the loss weighting function, x ⇠ pdata is a data
sample, ✏ is gaussian noise, and � ⇠ ptrain is sampled from
a training distribution. D✓(x�) is defined as:

D✓(x�) = cout(�)F✓ (cin(�)x�) + cskip(�)x� , (2)

where F✓ is a neural network, and cout, cskip and cin repre-
sent scaling functions. In particular, the denoising objective
L(F✓) can equivalently be expressed in terms of F✓ as:

L(F✓) = E�,x,✏

h
w(�)

��F✓(cin(�)x�)� cnrm(�)Ftgt
��2
2

i
, (3)

where Ftgt represents the training target, cnrm is a normal-
ization factor, and w is a weighting function. These forms,
derived in Appx. E, are presented in Tab. 1.

A second order Runge-Kutta sampler is proposed to re-
verse the diffusion process and produce sample x starting
from gaussian noise x�max ⇠ N (0,�2

maxI).

3.2. EDM for High-Resolution Video Generation
EDM is originally proposed as an image generation frame-
work and its parameters are optimized for 64⇥ 64px image
generation. Alterations in spatial resolution or the intro-
duction of videos with shared content between frames al-
low the denoising network to trivially recover a noisy frame
in the original resolution with higher signal-to-noise-ratio
(SNR), which the original framework was designed to see
at lower noise levels. To see why, consider a noisy video
x� 2 RT⇥s·H⇥s·W ⇠ N (x,�2I) where T is the num-
ber of frames and s is an upsampling factor. We build the
corresponding clean and noisy frames at original resolution
x̃, x̃� 2 R1⇥H⇥W by averaging values in each T ⇥ s ⇥ s

block of pixels. As a consequence of averaging, the noise
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EDM [25] Our

Training and Losses
Forw. process x� x/�in + �✏ x/�in + �✏

Training target Ftgt �x� �2
data✏+

�2
data(�in�1)

�in�
x - �x+ �2

data✏

Eff. loss weigh. w(�) 1 (�2 + �2
data)

2/(�2 +
�2

data
�in

)2

Loss weigh. �(�) 1/�2
data + 1/�2 1/�2

data + 1/�2

Network Parametrization
Input scaling cin(�) 1/

p
�2

data + �2 1/
p
�2

data/�
2
in + �2

Output scaling cout(�)
��2

datap
�2+�2

data

��in��data

p
�2+�2

data
�2

data+�in�2

Skip scaling cskip(�)
�2

data
�2+�2

data

�in�
2
data

�in�2+�2
data

Target scaling cnrm(�) 1/�data
p
�2 + �2

data 1/�data
p
�2 + �2

data

Table 1. Definitions of functions in Eq. (1), Eq. (2) and Eq. (3)
for the EDM and our proposed diffusion framework as derived in
Appx. E and Appx. F, where we highlight the terms induced by
the input scaling factor �in. Our framework is equivalent to EDM
for �in = 1 but avoids the unstable term �2

data(�in�1)

�in�
x induced by

�in 6= 1 in Ftgt. This form highlights that the train target and loss
weight match the v-prediction [45] framework for �data = 1. All
other framework parameters are unaltered with respect to EDM.

variance is reduced by a factor Ts2, i.e. x̃� ⇠ N (x̃, �2

Ts2
I),

thus x̃� has an increased signal-to-noise-ratio with respect
to x� (see Fig. 2): SNRx̃� = Ts

2
SNRx� . If pixels

in each block share similar content, a typical situation in
high-resolution videos, then the information in the averaged
frame is useful for recovering x and can be exploited at
training time by the denoiser function. This creates a train-
inference mismatch during the initial sampling steps as the
average frame does not yet contain a well-formed signal,
yet the denoiser is reliant on its presence. Thus, for best
performance, any alteration to T or s should instead main-
tain the same signal-to-noise ratio at the original resolution
for which the diffusion framework was designed.

To restore the optimal SNR at the original resolution, the
magnitude of the input signal can be reduced [7] by a cor-
responding factor �in = s

p
T as illustrated in Fig. 2. Con-

sequently, we redefine the forward process as p(x�|x) ⇠
N (x/�in,�2I).

We rewrite the EDM framework to introduce the in-
put scaling factor in Appx. F and highlight the changes in
Tab. 1. We notice that a naive introduction of the scaling
factor would alter the training target Ftgt in a way that makes
the objective explode for small noise values (see Appx. E).
We thus leverage the training objective expressed in the
form of Eq. (3) to rewrite the EDM process in a way that
ensures Ftgt remains unchanged, the effective loss weight
w(�) is such that it keeps the loss weight �(�) unchanged,
cin(�) and cnrm(�) normalize the input and training target
to have unit variance, and the framework is equivalent to the
original EDM formulation for �in = 1 (see Appx. F).

Figure 2. Analysis of Signal-to-Noise Ratio (SNR). Top: noise
� is applied to an image. Middle: the same noise � is applied to
a 16-frames-long video x without scaling. A clean image can be
easily restored by simply taking average, indicating an increased
SNR. Bottom: to maintain the original SNR, we scale down the
16 frames by �in before noise application. Averaging is not able
to restore the images, indicating the SNR is maintained as x̃+�✏.

Finally, we modify the sampler according to the newly
defined forward process that requires the signal component
in x� to be scaled by �in. This is achieved by dividing the
D✓(x�) by �in and multiplying the final denoised sample
x0 by �in to restore the signal magnitude.

3.3. Image-Video Modality Matching
Due to the limited amount of captioned video data with
respect to images, joint image-video training is widely
adopted [13, 21, 22, 48] with the same diffusion process
typically applied to both modalities. However, as shown
in Sec. 3.2, the presence of T frames in videos calls for a
different process with respect to an image with the same
resolution. A possibility would be to adopt different input
scaling factors for the two modalities. We argue that this
solution is undesirable in that it increases the complexity
of the framework and image training would not foster the
denoising model to learn temporal reasoning, a fundamen-
tal capability of a video generator. To sidestep these issues
while using a unified diffusion process, we match the image
and video modalities by treating images as T frames videos
with infinite frame-rate and introduce a variable frame-rate
training procedure blending the gap between the image and
video modalities.

3.4. Scalable Video Generator
U-Nets [41] have shown success in video generation where
they are typically augmented with temporal attention or
convolutions for modeling the temporal dimension [4, 13,
21, 22, 48]. However, such an approach requires a full U-
Net forward pass for each of the T video frames, rapidly be-
coming prohibitively expensive (see Fig. 3a). These factors
pose a practical limit on model scalability—a primary factor
in achieving high generation quality [13, 17, 21, 48]—and
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Figure 3. (a-left) U-Net-based text-to-image architectures are adapted to do video generation by inserting temporal layers applied sequen-
tially with spatial layers, creating separable spatiotemporal blocks. Spatial computation is repeated for each frame independently, limiting
scalability. (a-right) Our scalable transformer-based model jointly performs spatial and temporal computation on a learnable compressed
video representation for improved motion modeling and scalability. (b) The proposed Snap Video FIT architecture. Given a noisy input
video x� , the model estimates the denoised video x̂� by recurrent application of FIT blocks. Each block reads information from the patch
tokens into a small set of latent tokens on which computation is performed. The results are written to the patch tokens. Conditioning
information in the form of text embeddings, noise level �, frame-rate ⌫ and resolution r is provided through an additional read operation.

similarly limit possibilities for joint spatio-temporal mod-
eling [62]. We argue that treating spatial and temporal
modeling in a separable way [4, 13, 21, 48] causes mo-
tion artifacts, temporal inconsistencies or generation of dy-

namic images rather than videos with vivid motion. Video
frames, however, contain spatially and temporally redun-
dant content that is amenable to compression [33]. We
argue that learning and operating on a compressed video
representation and jointly modeling the spatial and tempo-
ral dimensions are necessary steps to achieve the scalability
and motion-modeling capabilities required for high-quality
video generation.

FITs [8] are efficient transformer-based architectures
that have recently been proposed for high-resolution image
synthesis and video generation. Their main idea, summa-
rized in Fig. 3 is that of learning a compressed representa-
tion of their input through a set of learnable latent tokens
and of focusing computation on this learnable latent space,
allowing input dimensionality to grow with little perfor-
mance penalty. First, FITs perform patchification of the in-
put and produce a sequence of patch tokens which are later
divided into groups. A set of latent tokens is then instan-
tiated and a sequence of computational blocks is applied.
Each block first performs a cross attention “read” opera-
tion between latent tokens and conditioning signals such as
the diffusion timestep, then an additional groupwise “read”
cross attention operation between latent and patch tokens of
corresponding groups to compress patch information, ap-
plies a series of self attention operations to the latent tokens,
and performs a groupwise “write” cross attention operation
that decompresses information in the latent tokens to up-
date the patch tokens. Finally, the patch tokens are pro-

jected back to the pixel space to form the output. Self con-
ditioning is applied on the set of latent tokens to preserve
the compressed video representation computed in previous
sampling steps.

While promising, these architectures have not yet been
scaled to the billion-parameters size of state-of-the-art U-
Net-based video generators, nor they have been applied to
high-resolution video generation. In the following, we high-
light the architectural considerations necessary to achieve
these goals. Temporal modeling is a fundamental aspect of a
high-quality video generator. FITs produce patch tokens by
considering three dimensional patches of size Tp⇥Hp⇥Wp

spanning both the spatial and temporal dimensions. We
find values of Tp > 1 to limit temporal modeling perfor-
mance, so we consider patches spanning the spatial dimen-
sion only. In addition, similarly to patches, FITs group
patch tokens into groups spanning both the temporal and
spatial dimensions, and perform cross attention operations
group by group. We observe that the temporal size of each
group should be configured so that each group covers all
T video frames for best temporal modeling. Furthermore,
videos contain more information with respect to images due
to the presence of the temporal dimension, thus we increase
the number of latent tokens representing the size of the
compressed space in which joint spatiotemporal computa-
tion is performed. Finally, FITs make use of local layers
which perform self attention operations on patch tokens cor-
responding to the same group. We find this operation to be
computationally expensive for large amounts of patch to-
kens (147.456 for our largest resolution) and replace it with
a feed forward module after each cross attention “read” or
“write” operation.
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Our model makes use of conditioning information repre-
sented by a sequence of conditioning tokens to control the
generation process. In addition to the token representing
the current �, to enable text conditioning, we introduce a
T5-11B [39] text encoder extracting text embeddings from
the input text. To support variable video framerates and
large differences in resolution and aspect ratios in the train-
ing data, we concatenate additional tokens representing the
framerate and original resolution of the current input.

To generate high-resolution outputs, we implement a
model cascade consisting of a first-stage model producing
36⇥64px videos and a second-stage upsampling model pro-
ducing 288 ⇥ 512px videos. To improve upsampling qual-
ity, we corrupt the second-stage low-resolution inputs with
a variable level of noise during training [21, 43] and dur-
ing inference apply a level of noise to the first-stage outputs
obtained by hyperparameter search.

We present detailed model hyperparameters in Appx. B.

3.5. Training
We train Snap Video using the LAMB [68] optimizer with
a learning rate of 5e�3, a cosine learning schedule and a
total batch size of 2048 videos and 2048 images, achiev-
able thanks to our scalable video generator architecture. We
train the first-stage model over 550k steps and finetune the
second-stage model on high-resolution videos starting from
the first-stage model weights for 370k iterations. Following
the observations in Sec 3.2, we pose �in = s

p
T . Con-

sidering videos with T = 16 frames and the original 64px
resolution for which EDM was designed, we set �in = 4 for
the first-stage and �in = 32 for the second-stage model.

We present training details and parameters in Appx. C.

3.6. Inference
We produce video samples from gaussian noise and user-
provided conditioning information using the deterministic
sampler of [25] and our two-stage cascade. We use 256
sampling steps for the first-stage and 40 for the second-
stage model, and employ classifier free guidance [19] to
improve text-video alignment (see Appx. D.1) unless oth-
erwise specified. We find dynamic thresholding [43] and
oscillating guidance [21] to consistently improve quality.

4. Evaluation
In this section, we perform evaluation of Snap Video against
baselines and validate our design choices. Sec. 4.1 intro-
duces the employed datasets, Sec. 4.2 defines the evaluation
protocol, Sec. 4.3 shows ablations of our diffusion frame-
work and architectural choices, Sec. 4.4 quantitatively com-
pares our method to state-of-the-art large-scale video gener-
ators and Sec. 4.5 performs qualitative evaluation. We com-
plement evaluation by showcasing samples in the Appendix

and Website.

FID # FVD # CLIPSIM " Train Thr. # Inf. Thr. #

U-Net 85M [10] 8.21 45.94 0.2319 133.2 49.6
U-Net 284M [10] 4.90 23.76 0.2391 230.3 105.1
Snap Video FIT 500M 3.07 27.79 0.2459 69.5 23.4
Snap Video FIT 3.9B 2.51 12.31 0.2579 526.0 130.4

Table 2. Performance of different architectures and model sizes
on our internal dataset in 64⇥36px resolution. We observe strong
performance gains with scaling and note that FITs present better
performance with improved speed with respect to U-Nets. Train
and inference throughputs in ms/video/GPU.

�data �in Imgs. as Videos FID # FVD # CLIPSIM "

(i) 0.5 1.0 X 6.58 39.95 0.2370
(ii) 0.5 4.0 X 4.03 31.00 0.2449

(iv) 1.0 2.0 X 4.45 34.89 0.2428

(iii) 1.0 1/4.0 7 3.50 24.88 0.2469

Ours 1.0 4.0 X 3.07 27.79 0.2459

Table 3. Ablation of different diffusion process configurations
varying �data, input scaling �in, and treatment of images as
infinite-framerate videos, evaluated on our internal dataset in
64⇥ 36px resolution.

4.1. Datasets
We train our models on an internal dataset consisting of
1.265M images and 238k hours of videos, each with a cor-
responding text caption. Due to the difficulty in acquiring
high-quality captions for videos, we develop a video cap-
tioning model that we use to produce synthetic video cap-
tions for the portion of videos in the dataset missing such
annotation.

We make use of the following datasets for evaluation
which are never observed during training:
UCF-101 [55] is a video dataset containing 13.320
320⇥ 240px Youtube videos from 101 action categories.
MSR-VTT [65] is a dataset containing 10.000 320⇥240px
web-crawled videos, each manually annotated with 20 text
captions. The test set contains 2.990 videos and 59.800
corresponding captions.

4.2. Evaluation Protocol
To validate the choices operated on the diffusion framework
and on model architecture, present method ablations per-
formed in 64 ⇥ 36px resolution using the first-stage model
only, and compute FID [18], FVD [60] and CLIPSIM [63]
metrics against the test set of our internal dataset on 50k
generated videos.

To evaluate our method against baselines, we follow the
protocols highlighted in [4, 13, 32, 48, 62, 72] for zero-
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shot evaluation on the UCF-101 [55] and MSR-VTT [65]
datasets. We generate 16 frames videos in 512 ⇥ 288px
resolution at 24fps for all settings. We evaluate both at the
native 512⇥ 288px resolution with 16:9 aspect ratio and in
the 288 ⇥ 288px square aspect ratio typically employed on
these benchmarks. We note that the evaluation protocols of
[4, 13, 32, 48, 62, 72] present different choices regarding
the number of generated samples, distribution of class la-
bels, choice of text prompts. We make use of the following
evaluation parameters:
Zero-shot UCF-101 [55] We generate 10.000 videos [4, 62]
sampling classes with the same distribution as the original
dataset. We produce a text prompt for each class label [13]
and compute FVD [60] and Inception Score [46].
Zero-shot MSR-VTT [65] We generate a video sample for
each of the 59.800 test prompts [13, 48] and compute CLIP-
FID [27] and CLIPSIM [63].

To provide a more complete performance assessment and
compare against state-of-the-art closed-source methods not
reporting results for these benchmarks, we perform a user
study evaluating photorealism, video-text-alignment and,
most importantly, the quantity and quality of the generated
motion, important characteristics of a video generator that
may signal the generation of dynamic images, i.e. videos
with dim motion, or motion artifacts rather than videos with
vivid and high-quality motion.

4.3. Ablations
To evaluate the proposed FIT architecture, we consider the
U-Net of [10], which we adapt to the video generation
setting by interleaving temporal attention operations. We
consider two U-Net variants of different capacities and a
smaller variant of our FIT to evaluate the scalability of both
architectures. We detail the architectures in Appx. B and
show results in Tab. 2.

Our 500M parameters FIT trains 3.31⇥ faster than
the baseline 284M parameters U-Net, performs inference
4.49⇥ faster and surpasses it in terms of FID and CLIPSIM.
In addition, both FITs and U-Nets show strong performance
gains with scaling. Our largest FIT scales to 3.9B param-
eters with only a 1.24⇥ increase in inference time with re-
spect to the 284M U-Net.

To evaluate the choices operated on our diffusion frame-
work, we ablate different configurations of the diffusion
process using our 500M FIT architecture. We produce the
following variations: (i) the original EDM framework, (ii)
our scaled diffusion framework with EDM �data, (iii) our
framework with a reduced value of �in, (iv) our framework
with images not treated as infinite-frame-rate videos. Our
framework improves over EDM under all metrics (i) and
shows benefits in setting �data = 1, an effect that we at-
tribute to the creation of a training target and loss weight-
ing matching the widely used v-prediction formulation of

FVD # FID # IS "

CogVideo [23] (Chinese) 751.3 - 23.55
CogVideo [23] (English) 701.6 - 25.27
MagicVideo [72] 655 - -
LVDM [17] 641.8 - -
Video LDM [4] 550.6 - 33.45
VideoFactory [62] 410.0 - -
Make-A-Video [48] 367.2 - 33.00
PYoCo [13] 355.2 - 47.46

Snap Video (288⇥ 288 px) 260.1 39.0 38.89
Snap Video (512⇥ 288 px) 200.2 28.1 38.89

Table 4. Zero-shot evaluation results on UCF101 [55].

CLIP-FID # FVD # CLIPSIM "

NUWA [64] (Chinese) 47.68 - 0.2439
CogVideo [23] (Chinese) 24.78 - 0.2614
CogVideo [23] (English) 23.59 - 0.2631
MagicVideo [72] - 998 -
LVDM [17] - - 0.2381
Latent-Shift [2] 15.23 - 0.2773
Video LDM [4] - - 0.2929
VideoFactory [62] - - 0.3005
Make-A-Video [48] 13.17 - 0.3049
PYoCo [13] 9.73 - -

Snap Video (288⇥ 288 px) 8.48 110.4 0.2793
Snap Video (512⇥ 288 px) 9.35 104.0 0.2793

Table 5. Zero-shot evaluation results on MSR-VTT [65].

Salimans et al. [45] (see Tab. 1). Using �in < s
p
T (see

Sec. 3.2) impairs performance (iii). Finally, treating images
as infinite-frame-rate videos consistently improves FID.

4.4. Quantitative Evaluation
We perform comparison of Snap Video against baselines on
the UCF101 [55], and MSR-VTT [65] datasets respectively
in Tab. 4 and Tab. 5. FID and FVD video quality metrics
show improvements over the baselines which we attribute to
the employed diffusion framework and joint spatiotemporal
modeling performed by our architecture. On UCF101, our
method produces the second-best IS of 38.89, demonstrat-
ing good video-text alignment. While our method surpasses
Make-A-Video [48] on UCF101, we note that it produces a
lower CLIPSIM score on MSR-VTT. We attribute this be-
havior to the use of T5 [39] text embeddings in place of
the commonly used CLIP [38] embeddings which were ob-
served [43] to produce higher text-image alignment despite
similar CLIPSIM.

To provide a comprehensive evaluation we run a user
study to evaluate photorealism, video-text alignment, quan-
tity of motion and quality of motion, important aspects of a
video generator. Three publicly-accessible state-of-the-art
video generators are considered: Gen-2 [11], PikaLabs [1]
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"A teddy bear running in New York City."

"A golden retriever eating ice cream on a beautiful tropical beach at sunset, high resolution"

"A huge dinosaur skeleton is walking in a golden wheat field on a bright sunny day."

"An astronaut cooking with a pan and fire in the kitchen, high definition, 4k."

Figure 4. Qualitative results comparing Snap Video to state-of-the-art video generators on publicly available samples. While baseline
methods present motion artifacts (top-left, top-right, bottom-right) or produce dynamic images (bottom-left), our method produces more
temporally coherent motion. Best viewed in the Website.

Photorealism Video-Text Align. Mot. Quant. Mot. Qual.

Gen-2 [11] 44.3 81.0 96.0 78.7
PikaLab [1] 61.5 80.3 89.2 70.5
Floor33 [17] 76.3 80.9 88.0 79.1

Table 6. User study on photorealism, video-text alignment, motion
quantity and quality against publicly-accessible video generators
on 65 dynamic scene prompts. % of votes in favor of our method.

and Floor33 [17]. We filter a set of 65 prompts from [31]
describing scenes with vivid motions, and generate a video
for each method with default options. We ask the partic-
ipants to express preference between paired samples from
Snap Video and each baseline, gathering votes from 5 users
for each sample. Results are shown in Tab. 6 and video
samples provided along with the employed prompt list in
Appx. D.2 and in the Website. Our method produces results
with photorealism comparable to Gen-2, while surpassing
PikaLab and Floor33, and outperforms all baselines with
respect to video-text alignment. Most importantly, we note
that baselines often produce dynamic images, i.e. videos
with dim motion, or videos with motion artifacts, a find-
ing we attribute to the challenges in modeling large motion.
In contrast, our method, thanks to the joint spatiotemporal
modeling approach, produces vivid and high-quality motion
as shown by the motion metrics.

4.5. Qualitative Evaluation
In this section, we perform qualitative evaluation of our
framework. In Fig. 4, Appx. D.3 and the Website, we
present qualitative results comparing our method to state-

of-the-art generators [4, 13, 21, 48] on samples publicly
released by the authors. While such prompts might have
been selected to highlight strengths of the baselines, our
method produces more photorealistic samples aligned to the
text descriptions. Most importantly, our samples present
vivid and high-quality motion avoiding flickering artifacts
that are present in the baselines due to temporal inconsis-
tencies. We accompany qualitative evaluation with a user
study performed on the same set of samples in Appx. D.2.

5. Conclusions

In this work, we highlight the shortcomings of diffusion
processes and architectures commonly used in text-to-video
generation, and systematically address them by treating
videos as first-class citizens. First, we propose a mod-
ification to the EDM [25] diffusion framework for the
generation of high-resolution videos and treat images as
high frame-rate videos to avoid image-video modality mis-
matches. Second, we replace U-Nets [41] with efficient
transformer-based FITs [8] which we scale to billions of
parameters. Thanks to their learnable compressed represen-
tation of videos, they significantly improve training times,
scalability and performance with particular regards to tem-
poral consistency and motion modeling capabilities due to
the joint spatiotemporal modeling on the compressed rep-
resentation. When evaluated on UCF101 [55] and MSR-
VTT [65] and in user studies, Snap Video attains state-of-
the-art performance with particular regard to the quality of
the modeled motion.
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Zhang, Huiwen Chang, Alexander G. Hauptmann, Ming-
Hsuan Yang, Yuan Hao, Irfan Essa, and Lu Jiang. Magvit:
Masked generative video transformer. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), 2023. 2
[71] Sihyun Yu, Jihoon Tack, Sangwoo Mo, Hyunsu Kim, Junho

Kim, Jung-Woo Ha, and Jinwoo Shin. Generating videos
with dynamics-aware implicit generative adversarial net-
works. In International Conference on Learning Represen-

tations (ICLR), 2022. 2
[72] Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv,

Yizhe Zhu, and Jiashi Feng. Magicvideo: Efficient video
generation with latent diffusion models. arXiv, 2023. 2, 3,
6, 7

7048


