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Abstract

iToF is a prevalent, cost-effective technology for 3D per-

ception. While its reliance on multi-measurement com-

monly leads to reduced performance in dynamic environ-

ments. Based on the analysis of the physical iToF imag-

ing process, we propose the iToF flow, composed of cross-

mode transformation and uni-mode photometric correction,

to model the variation of measurements caused by differ-

ent measurement modes and 3D motion, respectively. We

propose a local linear transform (LLT) based cross-mode

transfer module (LCTM) for mode-varying and pixel shift

compensation of cross-mode flow, and uni-mode photomet-

ric correct module (UPCM) for estimating the depth-wise

motion caused photometric residual of uni-mode flow. The

iToF flow-based depth extraction network is proposed which

could facilitate the estimation of the 4-phase measure-

ments at each individual time for high framerate and ac-

curate depth estimation. Extensive experiments, including

both simulation and real-world experiments, are conducted

to demonstrate the effectiveness of the proposed methods.

Compared with the SOTA method, our approach reduces the

computation time by 75% while improving the performance

by 38%. The code and database are available at https://

github.com/ComputationalPerceptionLab/iToF_

flow.

1. Introduction
Time of flight (ToF) imaging is a cornerstone technol-

ogy for depth imaging, renowned for its broad application

across numerous fields [17, 20, 36, 38]. The basic prin-

ciple of ToF is to estimate the time difference between

emitting and receiving signals to retrieve depth informa-

tion [22]. Commonly, ToF imaging technology can be cat-

egorized into direct-ToF (dToF) imaging and indirect-ToF

(iToF) imaging. In dToF imaging, single photon avalanche

diodes (SPAD) or avalanche photodiode arrays (APD) are

commonly utilized and the time delay can be directly mea-

sured [35]. However, the dToF system is constrained by

two main limitations, i.e. high hardware costs and low spa-
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Figure 1. Overview of the proposed iToF flow-based high frame

rate depth reconstruction. (a) Captured alternating iToF measure-

ments, (b) iToF flow-based propagation of full-mode measure-

ments, and reconstructed depths.

tial resolution. In iToF imaging with amplitude-modulated

continuous wave (AMCW), depth information is encoded

in multiple modes (e.g., 4 modes with 90◦ phase shifts re-

spectively), which correspond to the cross-correlation in-

tegrals of the receiving and emitting signal with different

phase shifts [22]. The indirect working principle allows for

lower hardware costs and higher spatial resolution [38].

Nevertheless, the reliance on multiple measurements

leads to errors in the depth estimation of dynamic scenes

and limited framerate of depth imaging. To overcome the

problem, manually designed constraint rules and supple-

mentary information were proposed to correct pixel val-

ues for specific motion scenes [5, 10, 21, 29]. Besides,

motion compensation methods based on optical flow esti-

mation were also proposed for iToF measurements align-

ment [11, 28]. However, the realistic 3D motion can not be

represented losslessly with 2D optical flow (OF) [33]. Such

a dilemma can be tackled with an explicit 3D motion com-

pensation (e.g. scene flow [33]) on the iToF measurement

while overcoming the photometric inconsistencies caused

by 3D motion and different modes. However, direct estima-

tion of scene flow usually relies on explicit 3D reconstruc-

tion [32,33], and the 3D motion estimation is also highly ill-

posed and computationally complex. Besides, photometric

inconsistency due to different modes of iToF measurements

also exacerbates the ill-posedness of OF estimation.
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Based on the analysis of the iToF imaging process, we

propose iToF-flow to model the variation caused by the

3D motion and alternation of measurement mode, and de-

velop an iToF-flow-based depth extraction neural network

for high frame rate depth estimation. Specifically, from a

physics-inspired perspective, as shown in Fig. 1, we decom-

pose the variation of iToF measurements into cross-mode

flow, which models the photometric variation and pixel shift

among different modes, and the uni-mode flow, which mod-

els the photometric residuals caused by depth-wise motion

of the same mode. As for the cross-mode flow, we ob-

serve the motion-insensitive local linear transformation be-

tween different modes of the measurements and propose

the LLT-based cross-mode transfer module (LCTM). As for

uni-mode flow, we derive the depth-dependent photometric

residual formulation and propose the uni-mode photometric

compensation module (UPCM). With the end-to-end pro-

cessing, the 3D motion is separated into the 2D plane of OF

due to space shift and luminance residuals due to depth-wise

motion, which can be extracted sequentially and separately.

Compared with other methods, the advantages in runtime

and accuracy of our method are demonstrated with exten-

sive experiments. In all, our contributions are concluded as:

• We propose an iToF flow model, composed of cross-

mode flow and uni-mode flow, to comprehensively

model the variation of measurements caused by dif-

ferent demodulation and 3D motion in iToF imaging.

• We build an iToF flow-based depth extraction network

based upon LCTM and UPCM, for high-frame-rate

and accurate depth imaging from iToF measurements.

• We provide an extension database with different mod-

ulation parameters and scenes to augment the existing

iToF databases [27, 28].
• Extensive experiments with simulation and real-world

data are conducted and demonstrate the effectiveness

of the proposed method.

2. Related Work

iToF for Time-varying Scene. Depth estimation of iToF

depends on multiple exposure measurements [22]. Scene

and camera motions can induce misalignment between

measurements, resulting in errors in depth estimation. Mod-

eling motion-induced pixel misalignment as a noisy time se-

ries, Kalman filtering was employed to mitigate the effects

of transverse motion [29]. Jan et al. [30] proposed a model-

based tracking approach using iToF raw measurement to ob-

tain a 10× higher depth frame rate. Chen et al. [5] proposed

an alignment method based on extra data from a highly dy-

namic sensor using a short exposure. Gao et al. [10] pro-

posed finer categorizations of motion-introduced errors and

designed different correction methods respectively based on

the neighboring pixel. Lee et al. [21] designed rules for de-

tecting moving regions with regular electric charge relations

and proposed a replacement method with adjacent pixels.

Database Type GT Size Motion

FLAT [11] Syn. Yes 1.2k Yes
CB-ToF [27] Syn. Yes 21.4k No

CB-ToF-Extension [28] Syn. Yes 2.1k Yes
MF-ToF [12] Syn. Yes 155k No

Ours Syn. Yes 2k Yes

Table 1. Summary of public iToF datasets.

Furthermore, learning-based method [3, 4] are proposed

to recover depth information from extremely low signal-

to-noise measurements with short exposure and reduced

motion-induced error. Guo et al. [11] proposed a neural

network-based encoder-decoder architecture to output ve-

locity maps, which can be used to align the raw iToF mea-

surements. Similarly, Michael et al. [28] used the optical

flow estimation network as their baseline and proposed mul-

tiple loss regularization terms to help overcome the photo-

metric gap between iToF measurements. It’s worth noting

that the majority of the mentioned methods primarily focus

on aligning pixel positions, neglecting the photometric er-

rors induced by depth-wise motion.

Dynamic Cross Modality Imaging. To capture multi-

modality information with a single camera, imaging tech-

niques that alternately capture different modalities at differ-

ent times are proposed. Specifically, in the field of real-time

hyperspectral imaging, Hu et al. [14] propose a complex op-

tical flow (COF)-based method to reconstruct hyperspectral

video information from spectral-sweep video sequences. In

the field of high dynamic range (HDR) video imaging, cap-

turing and fusion low dynamic ranges (LDR) frames with

different exposures is commonly adopted [2,6,19]. In [19],

a CNN-based method was proposed to estimate the mo-

tion flow between two frames explicitly. Chen et al. [2]

proposed a multi-stage spatial temporal pixel alignment for

HDR video reconstruction. In addition to pixel domain

alignment, feature domain alignment was proposed [6]. Pu

et al. [26] proposed a Pyramidal Alignment and Masked

merging network (PAMnet) to align the pyramid multi-scale

feature of LDR images to synthesize HDR images. These

works, based on the physical principle of different measure-

ment modes, showing elegant performance in reconstruct-

ing multi-mode video from cross-mode measurements.

iToF Simulation and Database. Data-driven approaches

typically rely on extensive, high-quality datasets paired

with accurate ground truth. Obtaining detailed 3D ground

truth data from real-world iToF photography is both chal-

lenging and expensive. Therefore, simulation has become

the primary way of acquiring iToF dataset. Mitsuba is a

physically-based rendering system developed for research

in computer graphics and physically-based modeling [16].

Based on Mitsuba, MitsubaToFRenderer [25] was proposed

for rendering ToF data specifically. Besides, common de-

velopment tools, such as Blender [7] or Unity [13], are able

to support importing ToF cameras in simulation. Tab. 1

summarized the publicly accessible large datasets of iToF
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Figure 2. Demonstration of LLT robustness to motion edges. Lo-

cal area in (b), (c), (e) and (f) is marked with red box in (a).

imaging. As shown, there is still a shortage of adequate

datasets featuring motion. We propose to supplement the

iToF dataset with around 2K motion samples.

3. iToF Flow-Based Depth Extraction Network

In alternating 4-mode iToF imaging, measurements at

different times exhibit varying phase-shifts. Groups of four

measurements, each with a 90◦ phase-shift, are convention-

ally used to extract depth, reflectance, and environmental

illumination. For dynamic scenes with fast-moving objects,

the asynchrony of these 4-mode measurements introduces

ghost and blur artifacts in the moving edges, compromising

the accuracy of the extracted depth. To solve the problem, it

is natural to propagate the three absent mode information of

a single moment from previous measurements with optical

flow [28]. However, the photometric inconsistency intro-

duced by the heterogeneous phase shift and depth-wise mo-

tion at different times prevents the direct utilization of the

conventional optical flow-based methods, leading to errors

and artifacts which is hard-to-ignore in practice.

In this paper, we propose an iToF flow model that builds

the relationship between the measurement at different times

and phase shifts, and decomposes the iToF flow depth esti-

mation network into two modules: the cross-mode transfer

and uni-mode photometric correction modules. Building

upon these two modules, we propose the iToF flow-based

depth estimation neural network that accurately estimates

depth of each moment in an end-to-end manner by prop-

agating absent phase information from previous measure-

ments to the target time and correcting depth-wise motion-

induced photometric-intensity-bias with the uni-mode flow.

Details of the iToF model and the depth extraction network

are illustrated in this section.

3.1. LLT­based Cross­mode Transformation

In order to tackle the measurement absence problem, we

propose an LLT-based cross-mode transformation for prop-

agating the measurements with the corresponding mode at

the previous moments to the target times. In the following,

we give a detailed analysis of the LLT-based cross-mode

transfer and the corresponding network structure design.
Cross-mode LLT Mapping. The challenging aspect of

information propagation lies in accurately aligning the 2D

motion flow between two modes at different times, known

as cross-mode flow estimation. Thus we propose a motion-

insensitive local linear transfer model that could formu-

late the mapping between different modes. Thanks to its

motion-insensitive property, the model remains invariant for

slightly moved frames within a short time range, such as a

single iToF acquisition period with 4-mode frames. The

LLT model relies on a universal image property: for each

sufficiently small local region around the edge, there are two

types of features corresponding to the piece-wise smooth

regions on the two sides of the edge. The features of pix-

els on the edges can be represented as a linear combina-

tion of the features of the two sides [37], which still holds

for iToF measurements regardless of the measured depth.

Based on this property, the 4-mode iToF measurements

within a local region could be represented by the points

along the line determined by the two 4-mode iToF mea-

surement vectors of two regions around the edge. Denoting

the 4-mode vectors on the two sides of the edges as m
′ =

[m′

θ1
,m′

θ2
,m′

θ3
,m′

θ4
]T and m

′′ = [m′′

θ1
,m′′

θ2
,m′′

θ3
,m′′

θ4
]T ,

the vector mp of a certain pixel p in the local region S could

be represented by

m
p = βp

m
′ + (1− βp)m′′, (1)

where m
p = [mp

θ1
,m

p
θ2
,m

p
θ3
,m

p
θ4
], βp denotes the combi-

nation factor of pixel p. Thus, the formulation among ele-

ments of the 4-mode vectors could be represented as linear

mapping based model, i.e.

m
p
θi

= kj→im
p
θj

+ bj→i, ∀p ∈ S,

kj→i =
m′

θi
−m′′

θi

m′

θj
−m′′

θj

,

bj→i = m′′

θi
− kj→im

′′

θj
, i, j ∈ {θ1, θ2, θ3, θ4}.

(2)

It is obvious that for a certain region where the two-feature

property is valid, the parameters of LLT, i.e., kj→i and bj→i,

are identical for all the pixels in the local region. In other

words, for a small local region, the mapping parameters

ki→j and bi→j at different pixels are uniform and do NOT

change in edge position. Therefore, if the edge movement in

a relatively small time period does not exceed the range of

the region, the LLT could remain unchanged, demonstrating

a valuable insensitive property in our scenario. As shown in

the Fig. 2, we calculated the LLT maps between alternating

modes at different times, and it can be seen that k and b

present an extended area around the edges, which conforms

to our assessment of the motion insensitive property of the

LLT transformation in the edge region. Benefiting from this

motion-insensitive characteristic, we could easily comple-
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Figure 3. (a) Framework of the proposed network, composed of cross-mode transfer module and uni-mode correction module. (b) Structure

of submodule LMM. (c) Cascade Schematic of submodule SPE. (d) Illustration of the structure of UPCM.

ment the absent modes from the current measurement and

the LLT maps estimated from the previous frames.
LLT-based Cross-mode Transfer Module. We propose an

LLT-based Cross-mode Transfer Module (LCTM) to com-

pute the LLT maps from the previous measurements and

transfer the absent modes at the current moment from previ-

ous measurements. Instead of computing the depth by using

the measurements computed by LLT directly, we introduce

an optical flow-based measurement propagation framework

to prevent the imperfections caused by the invalid cases

of the two-feature property in very few regions, i.e., esti-

mate the optical flow between the LLT mapped measure-

ments at time t − i, i ∈ 1, 2, 3 and the real captured mea-

surements at current time t, and then compute the absent

measurements of time t by warping the previous measure-

ments according to the optical flows. As shown in Fig. 3

(a) and (b), the measurements at the aligned target mo-

ment t is mt
θ0

. The submodule LLT-based mapping mod-

ule (LMM) computes the K = [Kθ1→θ0 ,Kθ2→θ0 ,Kθ3→θ0 ]
and B = [Bθ1→θ0 , Bθ2→θ0 , Bθ3→θ0 ] from the previous al-

ternating measurements by

LMM(mt−4
θ0

,mt−3
θ3

,mt−2
θ2

,mt−1
θ1

,mt
θ0
) = [K;B]. (3)

As shown in Fig. 3 (b), we use a pithy Convolutional Neu-

ral Network(CNN) structure to construct the LMM(·). Two

convolutional layers with a stride of 2 downsample the in-

put to a quarter of the original resolution. Eight convolu-

tional layers with 1-pixel stride extract features. The output

is upsampled by pixelshuffle. Since we do NOT use the

simple patch-based closed form LLT in Eq. (2), there is no

explicit hyper-parameters or constraints on motion sizes are

required. To supervise the LMM, we evaluate the perfor-

mance of the LMM with mean absolute error (MAE).

LLMM =
1

3

3∑

i=1

MAE(mt−i
θi

Kθi→θ0+Bθi→θ0 ,m
t−i
θ0

). (4)

After generating the absent mode m̄t−i
θ0

, i ∈ {1, 2, 3} at

three previous moments by LMM, we use a spatial flow

estimation (SFE) submodule with the hierarchical encoder-

decoder block (EDB) cascaded architecture [9, 15] to trans-

fer the corresponding modes to current time t, complet-

menting the three absent modes. The structure of the SFE

is shown in Fig. 3 (c), we used three EDB cascaded in our

approach. The proposed SFE can be formed as,

SFE(mt−4
θ0

,mt−3
θ3

,mt−2
θ2

,mt−1
θ1

,mt
θ0
,f) =Flow, (5)

where f is the modulation frequency, Flow =
[Ft−3→t, Ft−2→t, Ft−1→t] is the optical flows from time

t− i, i ∈ 1, 2, 3 to t. Our cross-mode and uni-mode frame-

work is preserved in SFE by feeding the mt−4
θ0

into the SFE.

The long-term extra information gives additional character-

istics of motion and texture for better short-term motion es-

timation, which has been proven in video processing [8].

At each EDB, the input is downsampled with differ-

ent scale ratios, (i.e., [0.25, 0.5, 1] for EDB0-2). Such a
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pyramid-like process can utilize coarse-to-fine bias estima-

tion. As shown in Fig. 3 (c), we also use the output of each

block as the input to the next blocks. The MAE loss be-

tween warped measurements and ground truth is used to su-

pervise the optical flow estimation.

LSFE =
1

3

3∑

i=1

MAE(warp(mt−i
θi

),mt
θi
), (6)

where warp(·) is the warping function with optical flow.

3.2. iToF Uni­mode Photometric Correction

Based on the LCTM, the absent modes of time t could be

transferred from the three previous measurements mt−i
θj

, i ∈

{1, 2, 3}. Then, the photometrical inconsistency of the same

modes introduced by the depth-wise motion needs to be cor-

rect for accurate depth estimation. Here, we construct the

iToF uni-mode photometric compensation model to correct

the inconsistency. Specifically, we approximate the iToF

measurement model with its first-order Taylor expansion,

formulating the relationship between the measurement dis-

turbance to the phase disturbance. Based on this, we build a

Uni-mode Photometric Correction Module (UPCM) to cor-

rect the uni-mode photometric inconsistency from a set of

previous uni-mode measurement disturbances. Some theo-

retical analysis of the iToF uni-mode photometric compen-

sation model and the UPCM is described in the following.
iToF Uni-mode Photometric Compensation Model. For

the iToF measurement with the same demodulation phase

of dynamic scenes, the measurement model is

mθ(u; t) = I(u; t) +A(u; t)cos (ϕ(u; t) + θ) , (7)

where u denotes the pixel coordinate (x, y). I(u; t) and

A(u; t) represent the environment illumination and scene

reflectance ratio respectively. ϕ(u; t) = 4πfd
c

is the phase

difference corresponding to the time of flight. d is depth.

c denotes the light speed. θ ∈ {0◦, 90◦, 180◦, 270◦} is the

phase of demodulation function.

When measuring a 3D scene, a moving 3D point P (t) =
(X,Y, Z) with a 3D displacement [∆X,∆Y,∆Z] from t to

t+∆t can be projected to iToF measurement with the pixel

location shift ∆u = (∆x,∆y) and the variation of depth

map ∆d. Further, ∆d leds to the change ∆ϕ,

∆ϕ = ϕ(u+∆u; t+∆t)− ϕ(u; t) =
4πf∆d

c
. (8)

As for the uni-mode cases, although the photometric in-

consistency caused by slight depth-wise motion exists, the

optical flow ∆u between the uni-mode measurements still

can be estimated with relatively high precison. Besides,

the environment illumination keep constant after warping

with the optical flow, i.e., I(u; t) = I(u + ∆u; t + ∆t).
For reflection-dependent parameter A(u; t), considering the

light travel distance and the projected size on sensor, the

relationship between A(u; t) and the depth d is A(u; t) =
R(u; t) S

d2 with the inverse-square law [23], where S is the

amplitude of emitted signal, R(u; t) is reflection rate. When

depth changes, we can get the approximate expression by

first-order Taylor equation,

∆A(u; t) = −2R(u; t)
S

d3
∆d, (9)

Considering the fact that d ≫ ∆d, we can simplify such

tiny variation and get A(u; t) = A(u+∆u; t+∆t). Then,

the photometric residual could be represented by

mθi(u+∆u; t+∆t)−mθj (u; t) =

A(u; t)(cos(ϕ(u; t)+∆ϕ+θi)−cos(ϕ(u; t)+θj)).
(10)

For uni-mode with same θ, to simplify the model, we ex-

pand Eq. (10) by first-order Taylor equation as

∆mθ = −∆ϕA(u; t)sin (ϕ(u; t) + θ) , (11)

then we build the relationship between the depth-wise mo-

tion caused photometric bias ∆mθ and the phase variation

∆ϕ with a linear equation. Considering that the modes

are different as time varying, we can get ∆m
(t+∆t)→t

θi→j
=

mθi(u + ∆u; t + ∆t) − mθj (u; t) with the estimated

optical flow ∆u. According to Eq. (10), based on lin-

ear motion assumption of ∆ϕ within 4 alternating frames,

we can get the mapping (ϕ(u; t), A(u; t),∆t∆ϕ) →

∆m
(t+∆t)→t

θi→j
. Based on at least three consecutive pixel-

aligned frames from LCTM, we get unknown independent

variables (ϕ(u; t), A(u; t),∆ϕ). According to Eq. (11), the

uni-mode photometric compensation variations for depth-

wise motion could be estimated.

In brief conclusion, from the above derivation, we find

that from previous alternating 4-mode measurements, the

uni-mode measurement variation for correcting the depth-

wise motion caused photometric residual of the comple-

mented modes at time t could be recovered. In the follow-

ing, we propose the UPCM network to correct the photo-

metric residual of the absent modes transferred from previ-

ous measurements so that the accurate depth at time t could

be extracted.
Uni-mode Photometric Correction Module. Here, we in-

troduce the UPCM to compensate the depth-wise motion-

induced photometric residuals. The UPCM module is de-

signed based upon 3D CNN [18]. As shown in Fig. 3 (d),

our UPCM module uses 3D CNN only for three downsam-

pling and two upsampling, which is much simpler com-

pared to other 3D CNN modules or Unet-like structures.

Based upon the above discussion, we take the previ-

ous consecutive measurements mt−4
θ0

,mt−3
θ3

,mt−2
θ2

,mt−1
θ1

,

warped measurements m̂t
θ3
, m̂t

θ2
, m̂t

θ1
and optical flows

Flow from SFE and the intermediate measurements mt
θ0

as the inputs. The UPCM can be presented by

UPCM(mt−4
θ0

,mt
θ0
,mt−i

θi
, m̂t

θi
, F low, f) = Rdp, (12)
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Figure 4. Qualitative comparison. The error map of local details is cropped out and enlarged for visualization below.

where i ∈ (1, 2, 3), Rdp = [r1, r2, r3] is the output of

the UPCM, i.e., the estimated depth-dependent photomet-

ric residual (DPR). We add residual to corresponding SFE-

aligned measurements to generate the final retrieved mea-

surements at time t. For supervision, we utilize MAE loss

to supervise the DPR estimation,

LUPCM =
1

3

3∑

i=1

MAE(m̂t
θi
+ ri,m

t
θi
). (13)

Loss Function. In our method, we train all the modules in

an end-to-end way, and the total loss function is,

Ltotal = LLMM + λSFELSFE + λUPCMLUPCM, (14)

where λSFE and λUPCM is the balancing coefficient and

empirically chosen as 1.

4. Experiment

In this section, we first introduce the proposed supple-

mental dataset. Then, we present the results of the proposed

method in comparison with the State-of-the-Art (SOTA)

methods [11, 28] and a representative optical flow estima-

tion method RAFT [31]. Besides, ablation experiments

are conducted to analyze the effectiveness of the proposed

LCTM, and UPCM modules. Lastly, we further validate the

generalizability of the proposed method to higher speeds

and noisey real-world data.

4.1. Supplement Database

For training, testing and validation, the utilized database

includes both the database proposed in the [27, 28] and

our proposed database. Our proposed supplement contains

20 LiDAR-scanned real scenes of Matterport3D [1] with

complexer background textures compared with the Cornell-
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(a) (d)(c)(b)

Figure 5. Measurements comparison of our proposed supplement

(a) and (b) with the previous database [27, 28] (c) and (d).

Box-like scene in previous databases [27, 28] as shown in

Fig. 5. At least 5 objects of YCB-V dataset [34] are im-

ported to each scene at varying distances. Each object has

100 random 6 degrees of freedom (6DoF) moving steps.

Further, modulation frequency that differ from the previ-

ous works [27, 28], 30 MHz is added. Our supplement

database provides additional features to construct the data-

driven methods. Specifically, we implement the iToF imag-

ing model with ray tracing in Blender [7] for simulation.

4.2. Comparisons with State­of­the­Art Methods

In this subsection, we show the comparison of our pro-

posed method with FFN [28] and MOM [11]. Besides, we

compare our methods with the pre-trained RGB flow net

RAFT [31]. We adopt the mean absolute error (MAE) of

depth MAEd and MAE of predicted four mode measure-

ment value MAEp to evaluate the performance. The unit of

depth error in this section is centimeters (cm). We remap all

the measurements to [0, 1024] to truncate the overexposure

pixel value before error estimation.
Dataset. For training, validation, and test datasets, 20 MHz

data in [27, 28] and the proposed 30 MHz data are utilized.

We construct the dynamic scenes by extracting measure-

ments of alternating phases at successive viewpoints corre-

sponding to successive timestamps. Specifically, 124 scenes

at 20MHz and 16 scenes at 30MHz are used for training. 15

scenes at 20MHz and 2 scenes at 30MHz are used for val-

idation. For testing, 15 scenes at 20MHz and 2 scenes at

30MHz are utilized. Data enhancement with randomized

cropping and rotation is used during the training process.
Implementation Details. We train the proposed network

with a batch size of 24 for 60 epochs. Cosine annealing [24]

is used to decay the learning rate from 2×10−4 to 2×10−6.

For fair comparison, we retrain FFN [28] and MOM [11]

with the same settings in [28] on the same database. All

runtime tests are performed on RTX 2080 Ti. We set the

batch size to 1, record the forward runtime, and average to

the mean runtime in seconds (s). Number of parameters is

recorded in millions (M). The patch spatial resolution for

training, validation, and test is 448× 448.
Overall Performance Comparison. As the baseline to all

the evaluations, the standard depth estimation (SDE) with

unaligned measurements is demonstrated. The quantita-

tive comparison results are shown in Tab. 2. Our method

achieves the best performance in both photometric and

depth reconstruction. Compared with the SOTA method

Metric SDE RAFT [31] FFN [28] MOM [11] ours

MAEp 7.31 6.96 3.79 6.72 1.51
MAEd 16.72 15.40 7.58 14.28 4.72

Mask rate - 0.82% 0.80% 0.45% 0%
Para. (M) - 5.26 1.37 9.03 7.75
Time (s) - 0.27 0.32 0.028 0.081

Table 2. Quantitative comparison results.

FNN [28], the depth reconstruction error of our method is

reduced by 37% and the runtime of our method is reduced

to a quarter. The mask rate [28] is introduced, which can in-

dicate the number of warping-failed pixels (e.g., out of the

image coordinate plane). As shown, our method presents

the smallest mask rate. Qualitative comparisons are shown

in Fig. 4, and the reconstructed depth maps and error maps

for each method are shown. From the comparison, our

method shows excellent performance in motion compensa-

tion and eliminates most of the artifacts in depth reconstruc-

tion. As for runtime comparison, our method has a distinct

advantage in terms of speed, being on the same order of

magnitude as the best methods MOM [11], which demon-

strates the efficiency of our approach. Note that although

our method has a relatively higher number of parameters,

compared to RAFT [31] and FFN [28], the efficiency of the

algorithm is not affected due to the high degree of paral-

lelism inherent in the proposed network.

4.3. Ablation Study

In this subsection, we conduct ablation experiments

to further demonstrate the effectiveness of the proposed

LCTM, and UPCM. The submodule LMM of LCTM is pro-

posed to predict the LLT maps, which facilitate the estima-

tion of the optical flow. As shown in the Tab. 2, through

comparing the method with solely SFE for optical flow es-

timation, the performance improvement introduced through

combining LMM and SFE demonstrates the efficiency of

introducing LLT-based cross-mode photometric correction.

With SFE and UPCM, the introduction of LMM could sig-

nificantly improve the performance, further demonstrating

the pivotal role of LMM in the overall framework. As

shown in Fig. 6 (a) and (b), the coefficients K and B pre-

dicted by LMM effectively map the pixel intensity. Further,

we verify the local validity of the linear transformation re-

lationship predicted by LMM. As shown in Fig. 6 (f), the

linear mapping relationship between pixel intensities within

the 16 × 16 sized region marked by the red box can all be

formed by k and b from the center pixel. The UPCM is pro-

posed to estimate the photo residual caused by depth-wise

motion. As shown in Tab. 3, UPCM demonstrates signifi-

cant performance gains in the final MAEd and MAEp. Note

that we introduce a few 3D CNNs in UPCM, which is the

primary source of computational complexity, and achieve

the performance benefits from 3D CNNs while not intro-

ducing an excessive computational load.
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Figure 6. LLT visualization. The pixel values of the 16 × 16

region, marked by the red box in (a), are plotted in (f) along with

the LLT predicted by LCTM for the center of that region.

LMM SFE UPCM MAEp MAEd Para.(M) Time (s)

✓ 1.94 6.24 6.83 0.014
✓ ✓ 1.82 5.83 7.54 0.017

✓ ✓ 1.74 5.51 7.04 0.073
✓ ✓ ✓ 1.51 4.72 7.75 0.081

Table 3. Ablation experiments of different modules, showing the

effectiveness of the proposed LCTM and UPCM.

In summary, through the sophisticated integration of

LCTM and UPCM based on the iToF flow model, the pro-

posed depth extraction network architecture can efficiently

eliminate the influences of mode change and depth-wise

motion, achieving high-precision depth estimation.

4.4. Generalization

Validation of Higher-speed Motion. We first validate how

the performance of each method changes over different mo-

tion speeds. The FFN [28], MOM [11], and our method

are trained only on the original database with a maximum

step span of 4 corresponding to the 4-mode measurements

of successive moving step in the simulated measurement se-

quence. We select three scenes corresponding to ego motion

and scene motion at 20 MHz and scene motion at 30 MHz.

The maximum step span in the selected scenes is increased

for simulating different multiplicative speeds, i.e., maxi-

mum step span 5, 6, 7 and 8 for speed ratio 1.25×, 1.5×,

1.75× and 2×. As shown in Fig. 7, as the speed increases,

the error of each method becomes larger. Our method main-

tains the best performance in the tests with different speeds,

fully demonstrating the advantages of our method in high-

speed motion scenarios.
Validation of Real-world Data. To further demonstrate

our method, we compare the depth reconstruction perfor-

mance on real-world data. We capture real-world data at

30MHz from the Sony IMX518 with spatial resolution at

QVGA. The exposure time for each measurement is 500

µs. As shown in Fig. 8, two scenes are captured, i.e.

the hand gesture and box-throwing scene. The ”Raw data”
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Figure 8. Performance comparison on real-world data.

image is synthesized by fusing two consecutive measure-

ments, which can visualize the real motion blur and noise.

The results of MOM [11], FFN [28] and ours are shown

in Fig. 8. For gesture scenes, our method successfully elim-

inates most of the motion blur and realistically restores the

gap between fingers. For box-throwing scenes at a faster

speed, our method locates the position and contour of the

box more accurately than the other methods. This proves

the generalizability of our method.

5. Conclusion
In this paper, we introduced the iToF-flow to model the

raw iToF measurement variation due to the measurement

mode change and 3D motion, which can be categorized

into uni-mode and cross-mode flow. Based on this model,

we proposed the iToF-flow-based depth extraction network,

comprising LCTM and UPCM. With extensive experiments

on both simulated and real-world data, we demonstrate the

efficacy of the proposed method.
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