
CONFORM: Contrast is All You Need For High-Fidelity Text-to-Image
Diffusion Models

Tuna Han Salih Meral1 Enis Simsar2† Federico Tombari3,4 Pinar Yanardag1

1Virginia Tech 2ETH Zürich 3TUM 4Google
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Figure 1. Our training-free method combines a contrastive objective with test-time optimization, significantly improving how models such
as Imagen and Stable Diffusion generate images with text prompts consisting of multiple concepts or subjects such as ‘a bear and a horse’.

Abstract

Images produced by text-to-image diffusion models
might not always faithfully represent the semantic intent of
the provided text prompt, where the model might overlook
or entirely fail to produce certain objects. Existing solu-
tions often require customly tailored functions for each of
these problems, leading to sub-optimal results, especially
for complex prompts. Our work introduces a novel perspec-
tive by tackling this challenge in a contrastive context. Our
approach intuitively promotes the segregation of objects in
attention maps while also maintaining that pairs of related
attributes are kept close to each other. We conduct exten-
sive experiments across a wide variety of scenarios, each
involving unique combinations of objects, attributes, and
scenes. These experiments effectively showcase the versatil-
ity, efficiency, and flexibility of our method in working with
both latent and pixel-based diffusion models, including Sta-
ble Diffusion and Imagen. Moreover, we publicly share our
source code to facilitate further research.

†Enis Simsar is affiliated with DALAB at ETH Zürich.

1. Introduction

Diffusion text-to-image models [15] have showcased re-
markable progress in generating images using textual cues
[33, 34, 37]. These models offer a wide set of capabilities,
ranging from image editing [2, 3, 9, 13, 29, 42], personal-
ized content creation [36], and inpainting [25]. However,
images produced by these models might not always faith-
fully represent the semantic intent of the given text prompt
[6, 39]. Notable semantic discrepancies in models like Sta-
ble Diffusion [34] and Imagen [37] include a) missing ob-
jects where the model might overlook or entirely fail to pro-
duce certain objects; b) attribute binding where the model
might mistakenly link attributes to the wrong subjects [6];
and c) miscounting where the model fails to accurately pro-
duce the right quantity of objects [22, 48]. Figure 2 illus-
trates these shortcomings in popular diffusion models, Sta-
ble Diffusion [34] and Imagen [37]. For example, the out-
put might neglect certain subjects, as in the ‘a bear and an
elephant’ prompt, where the bear is ignored as depicted in
Fig. 2(a). Additionally, the model might mix up attributes,
such as mixing the colors in the ‘a purple crown and a yel-
low suitcase’ prompt as seen in Fig. 2(b). Another behavior
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Figure 2. Failure cases of Stable Diffusion [34] and Imagen
[37]. Text-to-image diffusion models may not faithfully adhere to
the subjects specified in the text prompt: a) missing objects (e.g.,
bear), b) misaligned attributes (e.g., the color yellow blends into
the crown), and c) inaccurate object count (e.g., only one cat is
generated instead of two). Our method steers the diffusion process
towards more faithful images in both SD and Imagen.

that is often attributed to the imprecise language compre-
hension of the CLIP text encoder [28, 30] is the failure to
produce the correct quantity of subjects as in Fig. 2(c) where
the model either produces an excessive number of cats (SD
or failed to include a cat (Imagen) for ‘one dog and two cats’
prompt.

Recent studies proposed various solutions to these se-
mantic challenges [1, 6, 20, 22, 45]. For example, Chefer
et al. [6] optimize cross-attention maps to encourage object
presence, while Li et al. [22] use a dual loss function to seg-
regate the attention map into distinct areas of attention and
to reinforce attribute association. Kim et al. [20] enhance fi-
delity by directly adjusting intermediate attention maps ac-
cording to user-specified layouts. However, a common lim-
itation of these methods is their reliance on tailored objec-
tive functions for each issue, leading to sub-optimal perfor-
mance or challenges when dealing with complex prompts.

Attention maps, which depict the relationship between
the input text and the generated pixels, offer a valuable lens
for understanding these challenges, as emphasized by prior
research [1, 6, 13]. For example, for the ‘a bear and an ele-
phant’ prompt, a significant overlap is observed in the cross-
attention maps dedicated to each subject (refer to Fig. 2(a)).
This overlap makes it difficult to differentiate the two sub-
jects and leads the model to produce only elephants. Simi-
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Figure 3. Attention scattering in backward process. In Sta-
ble Diffusion, the attention to attributes like green and yellow dis-
solves over backward timesteps (a). Our method effectively pre-
serves these attention maps (b).

larly, when prompted to produce a purple crown and a yel-
low suitcase, the attentions designated for purple and yellow
are misaligned, causing the model to mistakenly mix colors
of both (see the Fig. 2(b)). Regarding counting, the atten-
tion maps usually concentrate solely on one region (refer to
Fig. 2(c) Imagen), resulting in the generation of an incorrect
number of objects, such as one cat instead of two. Addition-
ally, during the backward process, the attention maps corre-
sponding to various attributes tend to scatter (see Fig. 3).
Therefore, to effectively reduce the scattering and ensure
more focused and coherent attention allocation, we incor-
porated attention maps from the previous iteration. This
enhances the model’s ability to maintain consistency across
the generation process, as seen in Fig. 3.

In this work, we tackle the challenge of high-fidelity gen-
eration in text-to-image models within a contrastive frame-
work. This framework considers the attributes of a specific
object as positive pairs while contrasting them against at-
tributes and objects outside their pairing. For example, in
the prompt ‘a green dog and a white clock’ (see Fig. 1),
green and dog are treated as mutual positives, while white
and clock become their contrastive counterparts, and vice
versa. This approach separates distinct objects within the
attention map, addressing the overlapping attention, and en-
courages distinct high-response areas for each object and
attribute. As a result, objects are distinctly separated from
one another while being closely associated with their spe-
cific attributes, ensuring that the attention map represents
both concepts effectively (see Fig. 1 and 2).

The key contributions of our work are as follows:
• We propose a training-free method utilizing a contrastive

objective combined with test-time optimization to en-
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hance the fidelity of pre-trained text-to-image diffusion
models.

• Our approach is model-agnostic, applicable to popular
text-to-image diffusion models like Stable Diffusion and
Imagen.

• Our comprehensive experiments demonstrate the supe-
riority of our method over baselines and competing ap-
proaches, evidenced by its performance on various bench-
mark datasets and user studies.

2. Related work
Text-to-image diffusion models. Before diffusion-based
large-scale conditional image generation models, generative
adversarial networks [18, 40, 46, 47, 50, 51], variational au-
toencoders [17], and autoregressive models [32, 49] were
the main focus for both conditional and unconditional im-
age synthesis. However, with the advent of diffusion-based
image generation models [15, 26, 38], and their evolution
into large-scale text-to-image models [4, 33, 37], they be-
came the state-of-the-art for the text-to-image generation.
Although the quality of generated samples increased signif-
icantly, it is still a challenge to create images that are faithful
to the input prompt. Classifier-free guidance [14] is intro-
duced to enhance text reliance but there is still a need for
prompt engineering [24, 43, 44] to produce input prompts
so that the generated samples satisfy the intended proper-
ties specified in the input prompts.
Improving the fidelity of text-to-image diffusion models.
The challenge of aligning text-to-image model outputs with
input prompts has been discussed in [39]. They identified
that adjectival modifiers and co-hyponyms result in entan-
gled features in cross-attention maps. To address this, Liu
et al. [23] introduced ComposableDiffusion allowing users
to apply conjunction and negation operators in prompts to
guide concept composition. Similarly, StructureDiffusion
[10] segments the prompts into noun phrases for more pre-
cise attention distribution. Wu et al. [45] developed an
algorithm with a layout predictor for spatial layout gener-
ation, addressing the cross-attention map control. Agar-
wal et al. [1] proposed A-star to minimize concept over-
lap and change in attention maps through iterations. Kim et
al. [20] proposed DenseDiffusion, for region-specific tex-
tual feature accumulation. Chefer et al. [6] focused on en-
hancing attention to neglected tokens, and Li et al. [22] pro-
posed two separate tailored objective functions to address
the missing objects and wrong attribute binding problems
separately. Although these methods are taking steps for-
ward to resolve the mentioned issues, they fail in several
cases (see Fig. 5). The Attend and Excite method addresses
solely the issue of neglected objects, but it falls short in ef-
fectively resolving the problem when the areas of maximum
attention are close. On the other hand, Divide and Bind pro-
vides an approach to tackle the issue of incorrect attribute

binding. However, its use in situations where the tokenizer
of text embedding divides single object words into multiple
tokens is unclear.

3. Methodology

In this section, we begin by outlining the basics of diffusion
models and contrastive learning, followed by a detailed dis-
cussion of our methodology. An overview of our method is
shown in Fig. 4.

3.1. Diffusion models

We applied our novel approach to two leading text-to-image
models: Stable Diffusion (SD) and Imagen. Stable Diffu-
sion operates in the latent space of an autoencoder, where
an encoder E converts the input image x into a lower-
dimensional latent code z = E(x). The decoder D then
reconstructs this latent back into the image space, achieving
D(z) ≈ x. On the other hand, Imagen operates within pixel
space, extending its output via two consecutive image-to-
image diffusion models for super-resolution.

Upon having a trained autoencoder, Stable Diffusion em-
ploys a diffusion model [15] that is trained within the la-
tent space of the autoencoder. The training process involves
gradually adding noise to the original latent code z0 over
time, leading to the generation of zt at timestep t. This la-
tent code z0 is in pixel space in Imagen and latent space in
Stable Diffusion. A UNet [35] denoiser, denoted as ϵθ, is
trained to predict the noise added to z0. The training objec-
tive is formally expressed as:

L = Ezt,ϵ∼N(0,I),c(P),t

[
∥ϵ− ϵθ(zt, c(P), t)∥2

]
(1)

where c(P) represents the conditional information and P is
the text prompt fed to the text embedding model.

In Stable Diffusion, the sequential embedding of CLIP
[30] model c is supplied to a UNet network through a cross-
attention mechanism, serving as conditioning to generate
images that adhere to the provided text prompt P . In Im-
agen, a pre-trained T5 XL language model [31] is used
as a text-encoder instead. The cross-attention layers per-
form a linear projection of c into queries (Q) and values
(V ), and they map intermediate representations from UNet
to keys (K). Then, the attention at time t is calculated as
At = Softmax(QK⊺/

√
d). Notably the attention map at

timestep t, At, can be reshaped into Rh×w×l, where h, w
represents the resolution of the feature map, which can take
values from {16× 16, 32× 32, 64× 64}, and l corresponds
to the sequence length of the text embedding. In our work,
we primarily focus on the {16×16} attention maps, as they
have been identified by Hertz et al. [13] as the most seman-
tically meaningful attention maps.
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Figure 4. An overview of CONFORM. Given a prompt (e.g.,
‘A green glasses and a yellow clock’), we extract the subject to-
kens green, glasses, yellow, and clock and their corresponding at-
tention maps (Agreen, Aglasses, Ayellow, Aclock) from timesteps
t and t+1. We employ our contrastive objective at each time step
to repel negative pairs and attract positive pairs.

3.2. Contrastive learning

Contrastive learning has recently gained substantial popu-
larity, delivering state-of-the-art results across multiple un-
supervised representation learning tasks [7, 8, 11, 27, 41].
The core objective of contrastive learning is to develop rep-
resentations that bring similar data points closer while push-
ing dissimilar data points apart. Let x ∈ X represent an
input data point. We can define x+ as a positive pair, where
both data points, x and x+, share the same label, and x−

as a negative pair, in which the data points have different
labels. The kernel f : X → RN , takes an input x and gen-
erates an embedding vector. InfoNCE, also known as NT-
Xent, [7, 12, 27] is one of the popular contrastive learning
objectives defined as follows:

L = − log
exp(f(x) · f(x+)/τ)∑M
i=0 exp(f(x) · f(xi)/τ)

(2)

In this equation, τ is the temperature parameter, regu-
lating the penalties. The summation is performed over one
positive sample, denoted as x+, and M negative samples.
Essentially, this loss can be interpreted as the log loss of a
softmax-based classifier aiming to classify the data point x

as the positive sample x+. We utilized InfoNCE loss since
we will operate on very limited data and need an objective
function supporting fast convergence.

3.3. CONFORM

In our approach, we utilize attention maps of object and
attribute tokens as features. For a given prompt, such as
‘a red backpack and a green suitcase’ we group the ob-
jects and their corresponding attributes. For instance, the
attention maps for red and backpack are grouped together,
while green and suitcase are put into another group. Con-
sequently, pairs (red, backpack) and (green, suitcase) are
treated as positive, while pairs (red, green), (red, suitcase),
(backpack, green), and (backpack, suitcase) form nega-
tive pairs. Moreover, to maintain the consistency of atten-
tion maps through successive steps in the backward diffu-
sion process (see Fig. 3), we also incorporate the atten-
tion maps from the timestep t + 1 into the loss calcula-
tion, effectively doubling the token count used to calculate
the loss function, creating pairs based on attention maps
from the same timesteps, as well as cross-timesteps. This
entails, for the color ‘red’, pairs (redt, redt+1), and (redt,
backpackt+1) serving as positive pairs, in addition to those
formed from attention maps within the same timestep. Like-
wise, for the color ‘red’, we introduce negative pairs like
(redt, greent+1), and (redt, suitcaset+1) to the loss calcu-
lation. For the contrastive objective, we employ InfoNCE
loss, known for its fast convergence compared to previous
methods. The InfoNCE loss operates on pairs of cross-
attention maps, involving both object and attribute tokens
from timestep t and t + 1. The loss function can be ex-
pressed for a given attention map Aj as follows for a single
positive pair:

L = − log
exp(sim(Aj , Aj+)/τ)∑

n∈{j+,j−1 ,···j−N} exp(sim(Aj , An)/τ)
(3)

where sim function represents cosine similarity:

sim(u, v) =
uT · v
∥u∥∥v∥

(4)

In this equation, τ is the temperature parameter, and the
summation in the denominator contains one positive pair
and all negative pairs for Aj . We compute the average In-
foNCE loss across all positive pairs.
Optimization. In our approach, the loss function consists
of a single term, detailed in Section 3.3. We then direct the
latent representation in the desired direction as measured by
the loss function. Similar to [1, 6], latent representation is
updated at each step as follows:

z′t = zt − αt∇ztL (5)
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Figure 5. Qualitative comparison of CONFORM on Stable Diffusion with other state-of-the-art methods. Our method generates
more faithful images for the input text prompt on both simple and complex prompts.
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Figure 6. Qualitative comparison of CONFORM on Imagen. Our approach consistently produces images that more accurately reflect
the input text prompts, effectively handling both simple and complex scenarios in the Imagen model.

Please see the detailed algorithm in Supplementary Ma-
terial.

4. Experiments

Experimental setup. Due to the absence of standardized
benchmarks for the evaluation of text-to-image generation
models, we adopt a comprehensive evaluation strategy that
combines commonly used prompts for qualitative analysis
and protocols established in prior works [6, 22] for quanti-
tative assessment. The benchmark protocol we follow com-
prises structured prompts ‘a [animalA] and a [animalB]’,
‘a [animal] and a [color][object]’, ‘a [colorA][objectA] and
a [colorB][objectB]’ [6], and multi-instance prompts from
[22]. Details of the benchmark sets and the number of
prompts for each benchmark set are detailed in Supplemen-
tary Material. For each prompt, we use 64 different seeds
per prompt, utilizing 50 iterations. Using Stable Diffusion
[34] v1.5, the process takes approximately 20 seconds on
an NVIDIA L4 GPU. The scale factor α is set to 20 (Eq. 5),
and the temperature τ to 0.5 (Eq. 3). To enhance the ef-
fectiveness of our updates, we perform optimization mul-
tiple times before initiating a backward step at iterations
i ∈ {0, 10, 20}. After i = 25, we also stop any further opti-
mization to prevent unwanted artifacts in the output. Details
for the ablation study to determine these parameters are de-

tailed in Supplementary Material.

Baselines. We compare our results with several state-of-
the-art methods, including Attend & Excite (A&E) [6],
Divide & Bind (D&B) [22], ComposableDiffusion (Com-
posableD.) [23], and StructureDiffusion (StructureD.) [10].
Note that while A-Star [1] is one of our competitors, we
are not able to include a comparison since their code is not
available.

4.1. Qualitative experiments

Stable Diffusion. Figure 5 presents a side-by-side com-
parison between CONFORM and other state-of-the-art
methods using the Stable Diffusion model. Each method is
evaluated using identical input seeds for consistency. CON-
FORM successfully addresses the issue of missing objects,
as demonstrated with the ‘A bird and a horse’ text prompt.
In scenarios where the Stable Diffusion (SD) model misses
the ‘bird’ in the image, the CONFORM method success-
fully integrates it, maintaining the image’s original semantic
integrity. Conversely, competing methods either fail to add
the missing object or produce an image significantly differ-
ent from the original semantic. Our method successfully
incorporates missing objects into images featuring scenes,
such as the prompt ‘A cat and a dog on the bridge’. Our
approach effectively inserts the absent object, like a dog,
into the image. In cases where the Stable Diffusion (SD)
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Figure 7. CLIP similarity scores. Average CLIP image-text similarities between the text prompts and the images generated by each Stable
Diffusion-based method.

model outputs an image with two cats, our method can
transform one of the cats into a dog, while preserving the
original semantics of the image. In contrast, other meth-
ods either fail to respect critical scene components (e.g., the
bridge) or struggle to generate the correct object. Addition-
ally, our method can handle text prompts where objects are
described with specific colors, like in ‘A purple chair and a
gray bench’. In such cases, the Stable Diffusion (SD) model
often struggles, either failing to generate both objects simul-
taneously (for instance, omitting the bench) or incorrectly
assigning colors to objects. Conversely, our technique con-
sistently produces images with both the chair and bench,
accurately applying the designated colors (e.g., purple for
the chair and gray for the bench). In contrast, other meth-
ods tend to merge the colors, resulting in a bench colored
in both purple and gray, or they fail to generate the bench
altogether. Our method handles attribute binding in more
complex prompts involving scenes such as ‘A blue bird and
a brown backpack in the library’ or ‘A brown dog sitting
in a yard looking at a white cat’. Unlike Stable Diffusion
(SD) and other methods, which often struggle to produce
the objects or accurately color them, our method consis-
tently generates both the correct colors and objects. Lastly,
our method manages scenarios with specific item quantities.
For instance, in the text prompt ‘One pineapple and two ap-
ples’, our method accurately produces the correct number
of items, whereas Stable Diffusion (SD) and other methods
frequently generate an excessive amount of apples.

Imagen. Additionally, the effectiveness of our method
with Imagen is demonstrated in Fig. 6. Our primary com-
parison is against Attend & Excite, adapted to maximize
the presence of multiple tokens constituting the target word.
Given Imagen’s use of the T5 model and its tendency to split
words into tokens (e.g., zebra becomes ze, bra), it is not
clear how Divide & Bind approach, specifically the attribute
binding regularization, can be applied to Imagen. Notably,
CONFORM naturally handles such situations by treating
the attention maps of tokens like ze and bra as positive pairs.
Our findings reveal that our method successfully addresses
the issue of missing objects, as seen in the ‘A bird and a

Table 1. Average CLIP text-text similarities between the text
prompts and captions generated by BLIP for Stable Diffusion-
based methods.

Method Animal-Animal Animal-Object Object-Object

SD 0.76 0.78 0.77
ComposableD. 0.69 0.77 0.76
StructureD. 0.76 0.78 0.76
A&E 0.80 0.83 0.81
D&B 0.81 0.83 0.81
CONFORM 0.82 0.85 0.82

horse’ prompt. Where Imagen originally failed to generate
a bird and produced two horses instead, our method effec-
tively substitutes a horse for a bird while maintaining the
original semantics of the image. In contrast, Attend & Ex-
cite often either fails to generate the image or significantly
alters the scene. Similarly, our method successfully han-
dles prompts like ‘A cat and a dog on the bridge’, where
Imagen or Attend & Excite typically result in images of
two cats; our method replaces one of the cats with a dog.
For text prompts involving specific colors, like ‘A purple
chair and a gray bench’ and ‘A brown dog sitting in a yard
looking at a white cat’, our method accurately assigns the
colors to the appropriate objects. In contrast, Imagen and
Attend & Excite struggle with these tasks, often failing to
produce a bench or incorrectly coloring the objects. Lastly,
our method successfully generates the accurate number of
objects for ‘One pineapple and two apples’ prompt, while
other methods fail to generate the correct number of apples.

4.2. Quantitative experiments

To quantitatively assess the efficacy of our approach, we
employ multiple metrics, including image-text similarity,
text-text similarity, and the recently introduced TIFA score
[16]. We assess image-text similarity using the CLIP simi-
larity metric, comparing the generated image with the input
prompt. We calculate both the full-prompt similarity (CLIP-
full), representing the likeness between the entire prompt
and the generated image, and the minimum object similar-
ity (CLIP-min), which is the minimum of the similarities
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Table 2. Average TIFA scores for SD and Imagen.

Method Animal-Animal Animal-Obj Obj-Obj Multi-Obj

SD 0.68 0.80 0.65 0.59
A&E 0.92 0.91 0.82 0.72
D&B 0.93 0.91 0.83 0.73
CONFORM 0.95 0.94 0.88 0.74
Imagen 0.84 0.93 0.88 0.73
A&E 0.84 0.93 0.88 0.73
CONFORM 0.84 0.94 0.91 0.76

between the generated image and each of the two subject
prompts. It is noteworthy that while our model achieved
comparable or higher results compared to the reference
methods, these metrics should be interpreted with caution,
as the models used for comparison are already conditioned
on CLIP embeddings. In direct comparison with Stable
Diffusion, our method outperformed in both CLIP-full and
CLIP-min similarity scores across most of the benchmark
sets while performing similarly at others (see Fig. 7).

For text-text similarity, we leverage BLIP [21] to gen-
erate captions for the generated image. Then, we evalu-
ate the similarity between the input prompt and these cap-
tions. This assessment aims to capture subjects and at-
tributes present in the original prompt, providing insights
into the coherence and relevance of the textual descriptions.
In comparative analysis with Stable Diffusion and other
competitors, our method consistently demonstrated superior
performance in text-text similarity scores across all bench-
mark sets (see Tab. 1).

The TIFA score [16] provides an evaluation by assessing
the faithfulness of the generated image to the input prompt.
To compute the TIFA score, we automatically generate a
set of question-answer pairs using the GPT-3.5 [5] language
model. Image faithfulness is then determined by evaluating
the proportion of correct answers using the visual question
answering model UnifiedQA-v2 [19]. This metric offers a
comprehensive evaluation by considering both textual and
visual aspects of the generated content. Our method con-
sistently outperforms across all benchmark sets in the TIFA
metric in SD. In addition, CONFORM outperforms Attend
& Excite and Imagen in most of the benchmarks while per-
forming similarly at the ‘Animal-animal’ benchmark (see
Tab. 2).

User study. To evaluate the fidelity of images generated
by our model, we conducted a user study involving 25 par-
ticipants. We selected 10 random prompts and generated
four images for each using different seeds. This process
was repeated separately for both Stable Diffusion-based and
Imagen-based models. Participants were asked to choose
the image reflecting the text prompt best for each combi-
nation of prompt and seed. Results, detailed in Tab. 3,
overwhelmingly favored CONFORM. For Stable Diffusion,

Ours 
(Imagen)ImagenSD Ours (SD)

Attend 
and Excite

Divide 
and Bind

a) b)

Figure 8. Limitations. (a) Shows challenges when key objects are
missing from SD image for the ‘A bear and an elephant’ prompt.
(b) Displays object separation in Imagen, despite enhanced prompt
accuracy for the ‘A bird and an elephant’ prompt.

Table 3. User study with 25 respondents for SD and Imagen.

Method Animal-Animal Animal-Obj Obj-Obj Multi-Obj

SD 5% 3% 0% 5%
A&E 14.75% 2% 7.5% 2%
D&B 8.25% 1% 4.5% 2%
CONFORM 72% 94% 88% 91%
Imagen 3.25% 4% 2% 3.5%
CONFORM 96.75% 96% 98% 96.5%

CONFORM led in all categories, achieving 72% to 94%
of the votes across different benchmark sets. For Imagen
study, it similarly dominated, receiving 96% to 98% of the
votes. These results highlight CONFORM’s effectiveness
in closely aligning generated images with the text prompts.

5. Limitations
A limitation of our method based on SD: when the initial
map significantly excludes objects, ours may struggle to
generate successful images, although it is still able to place
the desired objects into the generated image (Fig. 8(a)).
This issue does not apply to our method; others also en-
counter difficulties when starting with challenging attention
maps. In Imagen, our refinement process might sometimes
lead to the separation of objects, yet it still enhances the
accuracy of the text prompt in the final image (Fig. 8(b)).

6. Conclusion
In our study, we introduced a novel framework centered on
a contrastive objective, designed to enhance the fidelity of
text-to-image diffusion models. Our approach is model-
agnostic and applied to popular text-to-image generators
like Stable Diffusion and Imagen. Through comprehensive
experiments on multiple benchmark datasets, we assessed
our method using text-image similarity, text-text similarity,
and TIFA scores, comparing it with several leading tech-
niques. Our findings reveal that our method consistently
produces images that are more faithful to the original text
prompts than the baseline methods in both Stable Diffusion
and Imagen models.
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