
Time-, Memory- and Parameter-Efficient Visual Adaptation

Otniel-Bogdan Mercea1, 2* Alexey Gritsenko1 Cordelia Schmid1 Anurag Arnab1†

1Google 2University of Tübingen

Abstract

As foundation models become more popular, there is a
growing need to efficiently finetune them for downstream
tasks. Although numerous adaptation methods have been
proposed, they are designed to be efficient only in terms
of how many parameters are trained. They, however, typi-
cally still require backpropagating gradients throughout the
model, meaning that their training-time and -memory cost
does not reduce as significantly.

We propose an adaptation method which does not back-
propagate gradients through the backbone. We achieve this
by designing a lightweight network in parallel that oper-
ates on features from the frozen, pretrained backbone. As a
result, our method is efficient not only in terms of parame-
ters, but also in training-time and memory usage. Our ap-
proach achieves state-of-the-art accuracy-parameter trade-
offs on the popular VTAB benchmark, and we further show
how we outperform prior works with respect to training-
time and -memory usage too. We further demonstrate the
training efficiency and scalability of our method by adapt-
ing a vision transformer backbone of 4 billion parameters
for the computationally demanding task of video classifi-
cation, without any intricate model parallelism. Here, we
outperform a prior adaptor-based method which could only
scale to a 1 billion parameter backbone, or fully-finetuning
a smaller backbone, with the same GPU and less train-
ing time. To facilitate further research, we release code at
https://github.com/google-research/scenic.

1. Introduction

Foundation models [3, 6, 9, 35, 42] are becoming the de
facto tools of modern vision systems: Large models, trained
on massive datasets, have diverse abilities across a range of
applications. Such foundation models are typically general-
ists that perform well in zero- or few-shot settings across
a range of tasks [1, 3]. However, they typically achieve
their best results on individual tasks when finetuned specifi-
cally for it, particularly when there is a large domain gap

*Work done during an internship at Google.
†Correspondence to aarnab@google.com.

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

No
rm

al
ise

d 
Re

qu
ire

m
en

ts
(lo

we
r i

s b
et

te
r)

Train sec / img Inference GFLOPs Param, log10 Train Memory

Linear
probing

BitFit Prompt
Tuning

Full
finetuning

LoRA Ours (LoSA)
68

70

72

74

76

78

80

82

84

Ac
cu

ra
cy

, i
Na

tu
ra

lis
t 2

02
1

Figure 1. Parameter-efficient adaptation methods proposed in
the literature are not necessarily efficient in terms of other effi-
ciency metrics. Prompt-tuning [25], for example, learns only a
few learnable prompt tokens, but is in fact slower than fully fine-
tuning the network due to the added tokens. LoRA [21] and Bit-
Fit [52], do not substantially reduce training time as they still need
to backpropagate through the whole network. Our method, Low-
Rank Side Adaptation (LoSA), in contrast, achieves improvements
across multiple efficiency metrics and tasks. Experiments con-
ducted by adapting ViT-g with 1 billion parameters.

to the web-sourced pretraining data [1, 5, 35]. As these
models continue growing, it is crucial to be able to effi-
ciently adapt, or partially finetune, large pretrained models
for downstream tasks. And particulary so for safety-critical
tasks where the highest possible accuracy is critical.

Numerous efficient adaptation methods for large, pre-
trained models have been proposed in the literature, includ-
ing LoRA [21], adapters [20, 48] and prompt-tuning [25,
34, 36] among others. These methods are typically designed
to be parameter-efficient, or in other words, learn the small-
est number of parameters to achieve high task accuracy.
However, there are numerous other relevant efficiency met-
rics such as training time and memory usage that are crucial,
as they determine whether the adaptation method is feasible
or not for larger models or low computational resources. As
shown in Fig. 1, although many prior methods dramatically
reduce the number of learned parameters, they typically do
not improve other efficiency metrics like training-time and
memory as significantly. This fact is because even though
they only train a small number of parameters, they still re-
quire backpropagating gradients throughout the entire back-
bone of the pre-trained model. Prompt-tuning [25, 34, 36]
in particular, also adds additional tokens to the network, and
therefore increases the training- and inference-time signifi-

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5536



cantly as well, to the point that it may be even slower than
fully finetuning the network as shown in Fig. 1.

More broadly, efficiency for machine learning models is
a multifacted topic, as it can be measured in terms of nu-
merous cost metrics which ultimately depend on the use
case [8, 30]. Nevertheless, most existing work on adapt-
ing foundation models focus only on parameter-efficiency.
In this work, we propose a method, Low-Rank Side Adapta-
tion (LoSA), that is efficient not only in terms of the number
of learned parameters, but also in the time- and accelerator-
memory required during training. This is motivated by the
fact that these are key considerations for efficiently adapting
large-scale models in practice, as the training costs deter-
mine whether the adaptation method is feasible in the first
place. Our work does not focus on the inference costs of
such models though, which is bounded primarily by the size
of the pretrained model that we are adapting.

Our method does not require backpropagating gradi-
ents through the backbone, as we keep the entire back-
bone frozen, and instead learn a parallel network which
refines these frozen backbone features for the target task.
We find that the architecture of our parallel network is im-
portant to achieve good accuracy-efficiency trade-offs. In
particular, low-rank MLP projections which alternate be-
tween the channel, spatial and temporal (if present) dimen-
sions achieve state-of-the-art trade-offs between accuracy,
learned parameters, training-time and memory (Fig. 1).
And notably, unlike prior work, we thoroughly evaluate
both our method and baselines on multiple efficiency in-
dicators, not just the number of learned parameters.

Our approach achieves state-of-the-art accuracy-
parameter trade-offs on the VTAB benchmark studied
by most prior work in visual adaptation [4, 25, 27, 38],
using the same setting of adapting ViT-Base [12] with 86
million parameters. However, as we believe that the goal
of efficient adaptation is ultimately to adapt large-scale,
pretrained foundation models, we demonstrate how our
method does indeed scale to large model sizes and datasets
where efficiency is paramount. Specifically, we show how
we can efficiently adapt ViT-e [6], a vision transformer with
4 billion parameters, on the demanding video classification
task on a V100 GPU without employing any intricate model
parallelism. Moreover, we outperform prior works based
on fully-finetuning smaller backbones, and a previous
adaptation approach [45] for video which only scales to a
1 billion parameter backbone with the same computational
budget, all whilst also training significantly faster.

In summary, we propose Low-Rank Side Adaptation
(LoSA), an adaptation method which is not only parameter-
efficient, but also training-time and -memory efficient. We
can scale our method to larger backbones than previously
possible (i.e. ViViT-e with 4 billion parameters for video
classification). We benchmark our and prior methods on

multiple efficiency indicators beyond parameters, show-
ing that we achieve superior accuracy-efficiency trade-offs
across learned parameters, training-time and -memory. To
further research in this area, we will release code for our
method, and related baselines, upon acceptance.

2. Related Work
As large, pretrained models have become more prevalent,
there has been a growing literature in efficient methods to
adapt them to downstream tasks [11, 37]. The vast ma-
jority of these approaches are parameter-efficient finetun-
ing methods which train only a small fraction of parame-
ters in the pretrained model. Parameter-efficient finetun-
ing (PEFT) methods can broadly be categorised into “ad-
ditive” methods, which add a few, new parameters to pre-
trained model where the original weights are frozen, and
“selective” methods which finetune a small subset of the
original network’s weights [37]. Additive methods broadly
consist of adapters [4, 20, 31, 38, 45, 47, 48], which in-
sert new learnable layers and parameters into an existing
network, and prompt-tuning [25, 34, 36], which adds learn-
able prompt tokens to the inputs [34] or within multiple lay-
ers [25, 36] of a transformer network. Selective methods
on the other hand, finetune specific parameters of the orig-
inal network. For example, BitFit [52] trains only the bias
terms of the network, whereas other works finetune only pa-
rameters of the attention or MLP-layers [16, 51]. Another
common theme is to reparameterise learned parameters, for
example as the product of low-rank matrices [21] or as Kro-
necker products [13] to reduce the number of learned pa-
rameters. Numerous approaches also combine the above
ideas: For example, MAM Adapters [16] combine both
adapters and prompt tuning, whilst UniPelt [44] makes use
of low-rank weight paramterisation too.

Although the aforementioned approaches are designed
with parameter-efficiency in mind, they are not necessar-
ily computationally cheap to train. As these methods ei-
ther insert or train parameters within the original pretrained
model, in order to train them, we still need to backpropa-
gate gradients through the original network (Fig. 2). This
incurs substantial floating point operations (FLOPs) in the
backward pass. Moreover, to efficiently compute gradients
in the forward pass, we typically need to cache activations
during the forward pass [15, 29]. Prompt-tuning [25, 36] on
the other hand adds even further computational overhead
during both training and inference, as it inserts new tokens
and thus increases the sequence length of the transformers.
Our proposed method, in contrast, keeps the entire back-
bone frozen and learns a parallel network that operates on
activations from this backbone. As a result, we do not need
to backpropagate through the backbone, and therefore save
significant computation during training.

We note that parameter-efficient methods that backprop-

5537



Linear Linear Linear

Mat. Mul.

Softmax

Mat. Mul.

Linear

Linear Linear Linear

Mat. Mul.

Softmax

Mat. Mul.

Linear

Query Key Value

Mat. Mul.

Softmax

Mat. Mul.

Linear

Query Key Value

Mat. Mul.

Softmax

Mat. Mul.

Linear

+ Query Key Value

Mat. Mul.

Softmax

Mat. Mul.

Linear

Learned parameter Frozen parameter Differentiable function

Intermediate activation with which we must compute gradient with respect to, or cache for backward pass.

Forward and backward pass Forward pass only

P
ar

al
le

l n
et

w
or

k

(a) Full finetuning (b) LoRA (c) Ours (LoSA)

S
el

f-A
tte

nt
io

n 
B

lo
ck

Intermediate activation which can be ignored for backward pass.

S
el

f-A
tte

nt
io

n 
B

lo
ck

w
ith

 L
oR

A

Fr
oz

en
 S

el
f-A

tte
nt

io
n 

B
lo

ck

Figure 2. Computational graphs of Self-Attention (SA) for the backward pass in the backbone network when performing (a) Full finetuning
which requires caching or recomputing gradients with respect to large activation tensors (red ovals), which is memory- and compute-
intensive (b) LoRA [21] and (c) our proposed LoSA. Although LoRA (b) trains only a small number of parameters per SA block – namely
Aq and Bq , it still requires backpropagating gradients throughout the entire backbone. Thus the computational graph is quite similar to
full finetuning (⊗ denotes the multiplication of two-low rank matrices). Our method (c), in contrast, freezes the backbone completely and
does not need to backpropagate through it at all, which results in significant reductions in training time and memory.

agate gradients through the backbone, do still save memory
over full-finetuning, as only a fraction of the optimiser state
needs to be maintained. For example, Adam [33] main-
tain two momentum terms per parameter, and these do not
need to be kept for any of the frozen parameters in the back-
bone during adaptation. As our method is still parameter-
efficient, we also benefit from this property, and achieve fur-
ther memory reduction during training as we need to cache
fewer activations from the backbone for the backward pass.

We note that some prior works have also developed train-
ing time- and memory-efficient adaptation algorithms based
on training parallel networks on top of frozen backbone
features in natural language [14, 43, 49]. Y-Tuning [43]
and LeTS [14] obtained substantial time and memory re-
ductions using this technique, However, their methods were
developed for natural language tasks, and do not apply di-
rectly to the vision problems studied in this paper, as [43]
is based on adapting the textual label space, and [14] relies
on bidirectional LSTMs [22] which are not typically used
in vision. LST [49] is applicable to vision tasks. However,
their results were not competitive in terms of accuracy-to-
parameters trade-offs compared to existing PEFT methods.
We carefully develop our network architecture such that we
outperform prior approaches not only in terms of training-
time and memory but also in terms of learned parameters.

Finally, we note that evaluating the efficiency of ma-
chine learning models is a complex subject [8, 19, 30, 46].
There are numerous efficiency indicators (e.g. the number
of parameters, FLOPs, runtime, memory consumption), and

there is often poor correlation between metrics among dif-
ferent techniques (for example prompt-tuning is parameter-
efficient, but not efficient in terms of the other aforemen-
tioned metrics). As selective reporting of metrics can ob-
scure the true efficiency of an approach [7, 8, 30], we strive
to be as thorough as possible when measuring the efficiency
of our approach and baselines, and thus go beyond reporting
only parameter counts as done by prior works in this field.

3. Proposed Approach
3.1. Background

Consider a neural network with L layers, where the output
of the ith layer, xi, is a function of the previous output, xi−1,
and learned parameters, θi:

xi = fi(xi−1, θi). (1)

The input to the network is x0. The standard way to learn
the network parameters, θ = {θ1, . . . , θL} is to minimise
a scalar-valued loss, L, applied to the network’s output
via optimisers based on stochastic gradient descent. Con-
cretely, the gradient for parameter, θi is computed via the
chain rule during backpropagation as follows:

∂L
∂θi

=
∂L
∂xL

∂xL

∂xL−1
. . .

∂xi+1

∂xi︸ ︷︷ ︸
gradient w.r.t. previous activations

∂xi

∂θi
=

∂L
∂xi

∂xi

∂θi
. (2)

By applying the chain rule, we observe that the gradient
with respect to a parameter θi also depends on the gradi-

5538



ent with respect to the activations from subsequent layers
(note that this analysis can easily be extended to arbitrary
direct acyclic graphs [15, 29]). In order to compute these
gradients, we need to perform a “backward pass” which
has similar computational complexity as the “forward pass”
when computing the loss, L, and typically requires caching
the outputs of each operation, or network activations, xi,
for efficient calculation [15, 29]. Note that in practice, a
neural network layer, such as self-attention in fact contains
multiple operations within its computational graph. For ex-
ample, as shown in Fig. 2a, a self-attention layer requires
computing 8 intermediate gradient terms with respect to ac-
tivations, ∂L

∂xi
, in order to compute gradients with respect to

its query and value parameters.

Why parameter efficient is not always sufficient When
training, there is substantial computational overhead in
terms of the floating point operations (FLOPs) required
to compute the gradient terms, ∂L

∂xi
, as well as memory

overhead from the activations that typically need to be
cached during the forward pass in order to compute them.
Parameter-efficient tuning method such as adaptors [20],
prompt-tuning [25] and LoRA [21] learn only a few param-
eters, meaning that computation can be saved by not having
to compute ∂L

∂θi
for the θi ∈ θ which are frozen. However,

the majority of the computation in the backward pass is in
fact from computing gradients with respect to activations,
∂L
∂xi

, which must still be computed as (Fig. 2).
For example, prompt-tuning [25], which adds learnable

prompt tokens at the start of the network, still requires com-
puting ∂L

∂xi
with respect to each operation in the backbone,

meaning that it still consumes significant amounts of FLOPs
and memory during training. A similar analysis holds for
applying LoRA or other adaptors [20] at each layer of the
network. We can, however, substantially reduce the com-
pute cost of these adaptors by only applying them to the last
k layers of the network, since we do not need to cache acti-
vations, or perform backpropagation, before these layers.

Based on our observation that the FLOP requirements
(and therefore training time) and memory requirements of
most parameter-efficient finetuning methods is still quite
substantial as they must backpropagate through the model
being adapted, we instead propose an alternate approach
(Figs. 2 and 3) based on learning a parallel network on
frozen activations from the backbone model next.

3.2. Low-rank Side Adaptation

Motivated by our observations from the previous section,
we design a parallel network that does not require back-
propagating gradients through the backbone in order to train
it. Our proposed method can be thought of as a lightweight,
parallel network to the main backbone, B (typically a large
pretrained transformer), that refines the backbone output to
produce more accurate representations.

Classifier

Layer 1

Layer 2

Input

Layer L

Output

Low
-rank Side Adaptor

Forward prop

Backward prop

Transpose

Transpose

Trainable

Frozen

Nonlinearity
Down projection

Adaptor function 

…
…

Ba
ck

bo
ne

Up projection

Figure 3. Overview of our approach. Top: We learn a parallel
side network which iteratively refines the features obtained from a
frozen backbone, B. Bottom: Our adaptation function consists of
low-rank mixer modules, which allow for achieving high accuracy
on a wide range of downstream tasks without sacrificing efficiency.

Concretely, given a neural network backbone, B, con-
sisting of L layers, and therefore L intermediate outputs,
b1,b2, . . .bL, each consisting of n tokens with a hidden
dimensionality of d, bi ∈ Rn×d, we learn parallel adaptor
functions, g, which operate on these intermediate outputs to
refine them. We denote the activations of our parallel adap-
tor as yi where i denotes the layer index, and

yi = gi(bi + yi−1) + yi−1. (3)

As shown in Fig. 3, we freeze the backbone, B, and do not
backpropagate gradients to it. Moreover, the initial input to
our adaptor, y0 is in fact the output of the backbone, bL.
Together with the residual connection to the output of the
previous layer, this ensures that when we train our model,
our adaptor acts as an identity function with the original
backbone output being retained. The rationale is that we
view our parallel adaptor, g, as a function that refines the
features representations from the original backbone, using
the original backbone features to do so.

We design our adaptor function, g : Rd → Rd, to be both
accurate on the downstream task and efficient (in terms of
parameters and floating point operations). To this end, g is
a low-rank factorisation of a projection [21], with a down-
projection, Wd : Rd → Rr, a GeLU non-linearity [18], and
then another up-projection, Wu : Rr → Rd where r ≪ d.
As in [17, 21, 41], we also learn a scaling term, α, meaning
that our adaptor function can be expressed as

g(x) = αWuGeLU(Wdx). (4)

Note that each parallel adaptor layers contains 2rd + 1 pa-
rameters due to the low-rank decomposition of the weight

5539



matrices [21]. Using additional biases in the up- and down-
projections would still only add another r + d parameters.
Modelling token interactions As our adaptor function,
Eq. 4, only consists of projections and a point-wise non-
linearity, it only operates on the hidden dimension of the
backbone features, and does not model interactions along
the spatial and temporal (in the case of videos) axes of
the input data. Therefore, we take inspiration from MLP-
Mixer [50], and alternate between applying our adaptor
function along the channel- and token-dimensions respec-
tively. We denote these operations as:

gi(xi) =

{
gtoken(xi) if i mod 2 ̸= 0,
gchannel(xi) otherwise.

(5)

i is the backbone layer index, thus even layers correspond
to “token mixing” and odd layers to “channel mixing” [50].
Extending to video When the input is a video, we assume
that the backbone features have spatiotemporal dimensions,
that is bi ∈ Rnt·ns×d where ns and nt denote the spatial-
and temporal-dimensions. In this case, we factorise the to-
ken dimension further into separate spatial- and temporal-
axes, that is bi ∈ Rnt×ns×d, and apply our adaptor func-
tion separately along each dimension before summing them
up. Therefore, our adaptor function for each even layer is

gtoken(xi) = gspatial(xi) + gtemporal(xi). (6)

3.3. Discussion

The fact that we keep the entire original backbone, B,
frozen, and train a parallel subnetwork, means that the stor-
age requirements of our adapted models is small, as we
only need to store the parameters of our side network for
each task. And moreover, this makes deploying numer-
ous backbones adapted from the same backbone, B, sim-
ple and efficient in terms of storage. Other adaptor-based
methods [20, 21, 48] share this desirable property, although
they require backpropagating through the backbone to train
the model, and hence are not as efficient during training as
our proposed method. Moreover, in contrast to these prior
works, our method does not require changing the internal
model architecture of the backbone at all, which makes its
practical implementation straightforward.

We note that some prior works have trained lightweight
networks in parallel to frozen backbones for efficient adap-
tation in natural language processing [14, 43, 49]. Ladder
Side Tuning (LST) [49] is the most related to our approach.
However, LST was not competitive in terms of accuracy-
vs-parameter trade-offs to approaches such as LoRA [21].
We show experimentally in Sec. 4.2 and 4.4 that the archi-
tectural improvements that we make over LST substantially
improve the accuracy and efficiency of our approach, such
that it outperforms prior works on accuracy-vs-parameter

trade-offs, and substantially outperforms them in terms of
training-time and -memory. Our improvements over LST
include using our low-rank mixer, instead of a regular trans-
former as used by LST and using the output of the back-
bone as the input to the parallel network, g. The fact that
we use our proposed low-rank mixer means that our par-
allel network g can efficiently operate at the same hidden
dimension, d, as the backbone, and does not require down-
projecting backbone activations to the latent space of the
transformer as in LST [49], saving compute.

Finally, we note that concurrent work, HST [39], used a
side network for dense prediction. However, they use trans-
former layers in the side network and also employ prompt
tuning in the backbone, meaning that they have to back-
propagate the gradients through both the side network and
the backbone. Therefore, HST [39] does not provide bene-
fits in terms of training-memory and speed like our method.

4. Experimental Evaluation
After describing our experimental setup, we present exper-
iments on image classification in Sec. 4.2, video classifica-
tion in Sec. 4.3, and then conclude by evaluating each of our
modelling choices in Sec. 4.4.

4.1. Experimental Setup
Pretrained models We experimentally evaluate our
method by adapting vision transformers of various back-
bone sizes for both image and video classification. We note
that ViT-Base [12] (consisting of 86 million parameters)
pretrained on ImageNet-21K [10] is the most commonly
used backbone across prior works [4, 25, 27, 38]. However,
as a motivation of efficient adaptation is to adapt large, pre-
trained models, we also consider much larger vision trans-
formers, namely ViT-H (632 million parameters), ViT-g (1
billion), ViT-G (1.8 billion) and ViT-e (4 billion) [6, 54].
Efficiency metrics In addition to accuracy on the final
task, as our efficiency metrics, we report the training time
(measured in the number of images per second per core on
a V100 GPU), training memory consumption in Gigabytes
(GB), number of FLOPs during inference, and number of
trainable parameters. We find that the inference time is
largely determined by the size of the pretrained backbone,
and not the adaptation method (except for prompt-tuning
where it increases substantially). Therefore, we only in-
clude it in the supplement for completeness. When report-
ing the number of learnable parameters, we do not report
the parameters in the final classification layer for clarity.
The reason being that for datasets with a large number of
classes, e.g. iNaturalist2021 has 10 000 classes, the number
of learned parameters is dominated by the final layer, and
not the architecture of the various adaptation methods.
Implementation details We include exhaustive details of
our training hyperparameters in the supplement. We will

5540



Natural Specialized Structured

Pa
ra

m
↓

(1
06

)

C
ifa

r1
00

C
al

te
ch

10
1

D
T

D

Fl
ow

er
10

2

Pe
ts

SV
H

N

Su
n3

97

C
am

el
yo

n

E
ur

oS
A

T

R
es

is
c4

5

R
et

in
op

at
hy

C
le

vr
-C

ou
nt

C
le

vr
-D

is
t

D
M

L
ab

K
IT

T
I-

D
is

t

dS
pr

-L
oc

dS
pr

-O
ri

sN
O

R
B

-A
zi

m

sN
O

R
B

-E
le

A
vg

N
at

ur
al

A
vg

Sp
ec

ia
liz

ed

A
vg

St
ru

ct
ur

ed

A
ve

ra
ge

Traditional Finetuning
Full[25, 27] 85.8 68.9 87.7 64.3 97.2 86.9 87.4 38.8 79.7 95.7 84.2 73.9 56.3 58.6 41.7 65.5 57.5 46.7 25.7 29.1 75.9 83.4 47.6 68.9
Linear[25, 27] 0 64.4 85.0 63.2 97.0 86.3 36.6 51.0 78.5 87.5 68.5 74.0 34.3 30.6 33.2 55.4 12.5 20.0 9.6 19.2 69.1 77.1 26.9 57.6
Efficient adaptation methods
BitFit[28, 52] 0.10 72.8 87.0 59.2 97.5 85.3 59.9 51.4 78.7 91.6 72.9 69.8 61.5 55.6 32.4 55.9 66.6 40.0 15.7 25.1 73.3 78.3 44.1 65.2
VPT[25, 27] 0.53 78.8 90.8 65.8 98.0 88.3 78.1 49.6 81.8 96.1 83.4 68.4 68.5 60.0 46.5 72.8 73.6 47.9 32.9 37.8 78.5 82.4 55.0 72.0
RS-Bypass. [26] 0.42 64.5 88.8 73.2 99.4 90.6 63.5 57.2 85.5 95.2 82.4 75.2 70.4 61.0 40.2 66.8 79.2 52.6 26.0 49.3 76.7 84.6 55.7 72.3
Adapter [20, 27] 0.16 69.2 90.1 68.0 98.8 89.9 82.8 54.3 84.0 94.9 81.9 75.5 80.9 65.3 48.6 78.3 74.8 48.5 29.9 41.6 79.0 84.1 58.5 73.9
LoRA[21, 27] 0.29 67.1 91.4 69.4 98.8 90.4 85.3 54.0 84.9 95.3 84.4 73.6 82.9 69.2 49.8 78.5 75.7 47.1 31.0 44.0 79.5 84.6 59.8 74.5
AdaptFormer[4, 27] 0.16 70.8 91.2 70.5 99.1 90.9 86.6 54.8 83.0 95.8 84.4 76.3 81.9 64.3 49.3 80.3 76.3 45.7 31.7 41.1 80.6 84.9 58.8 74.7
NOAH [27, 55] 0.36 69.6 92.7 70.2 99.1 90.4 86.1 53.7 84.4 95.4 83.9 75.8 82.8 68.9 49.9 81.7 81.8 48.3 32.8 44.2 80.3 84.9 61.3 75.5
FacT-TK [28] 0.06 70.6 90.6 70.8 99.1 90.7 88.6 54.1 84.8 96.2 84.5 75.7 82.6 68.2 49.8 80.7 80.8 47.4 33.2 43.0 80.6 85.3 60.7 75.6
RS [26] 0.55 75.2 92.7 71.9 99.3 91.9 86.7 58.5 86.7 95.6 85.0 74.6 80.2 63.6 50.6 80.2 85.4 55.7 31.9 42.0 82.3 85.5 61.2 76.3
Convpass [27] 0.33 72.3 91.2 72.2 99.2 90.9 91.3 54.9 84.2 96.1 85.3 75.6 82.3 67.9 51.3 80.0 85.9 53.1 36.4 44.4 81.7 85.3 62.7 76.6
HST [39] 0.78 76.7 94.1 74.8 99.6 91.1 91.2 52.3 87.1 96.3 88.6 76.5 85.4 63.7 52.9 81.7 87.2 56.8 35.8 52.1 82.8 87.1 64.5 78.1
LoSA, r = 16 0.19 82.5 92.8 76.1 99.7 90.5 82.0 55.8 86.6 97.1 87.0 76.7 81.5 62.3 48.6 82.1 94.2 61.7 47.9 45.6 82.8 86.9 65.5 78.4
LoSA, r = 8 0.10 82.2 92.7 76.7 99.7 90.7 81.0 55.4 86.9 97.1 87.4 76.5 79.9 61.8 48.6 82.4 92.3 61.1 48.7 47.3 82.6 87.0 65.3 78.3
LoSA, r = 4 0.05 82.7 93.0 76.2 99.7 89.8 80.0 56.1 86.3 96.7 86.7 76.3 78.8 61.4 48.0 82.6 91.7 58.4 46.9 47.6 82.5 86.5 64.4 77.8

Table 1. Comparison to state-of-the-art parameter-efficient finetuning methods on VTAB-1K [53]. Following standard practice, the final
“Average” is the average of three preceding groupwise averages. Parameters denotes the number of learnable parameters excluding the final
classification layer, as the number of parameters in this final layer depend on the number of classes, which varies between 2 and 397. Each
variant of our model, which we obtain by varying the rank r of our Low-rank Mixer Block, achieves better accuracy-parameter trade-offs
than previous approaches, when using the same ViT-B backbone. Best results are bolded, and second-best underlined.

also release code for our method, and the various baselines
that we have implemented upon acceptance.

4.2. Experiments on Images

The most common setting for studying parameter-efficient
finetuning is on the VTAB [53] benchmark, by adapting
ViT-B pretrained on ImageNet-21K. We first compare our
method to prior works in this scenario. However, as a key
motivation for efficient adaptation is to use large-scale mod-
els, we perform experiments on more challenging, large-
scale classification datasets including iNaturalist2018 [23]
and 2021 [24] and Places365 [56] with ViT-g. Note that
we do not consider ImageNet, as we found performance to
be saturated and not representative for comparing different
methods. We nevertheless include it in the supplement.
VTAB benchmark VTAB [53] is the most com-
mon benchmark in the vision community for evaluating
parameter-efficient finetuning methods. It consists of 19
datasets spanning a range of image domains. The bench-
mark is designed to evaluate transfer-learning performance,
and each dataset contains exactly 1000 training examples.

Prior works have evaluated on this benchmark, using a
ViT-Base backbone and benchmarking efficiency through
the number of trained parameters. We compare to these
works, in the same setting in Tab. 1. We observe that we
achieve state-of-the-art trade-offs between the accuracy and
the number of trainable parameters. We can control the
number of parameters in our model, by varying r, the size

of our hidden layer within our side network (Sec. 3.2). With
r = 16, we obtain a parameter-efficient model which out-
performs prior works on this benchmark using the same
ViT-Base model pretrained on ImageNet-21K. In particular,
we outperform concurrent work, HST [39], whilst using 4
times fewer parameters. And when we decrease r to r = 4
and r = 8, we continue to achieve superior parameter-
accuracy trade-offs, with r = 4 having the lowest number of
parameters and still achieving the second-highest accuracy.

Table 1 therefore shows that our proposed LoSA method
outperforms the state-of-the-art with respect to accuracy-
parameter trade-offs. Next, we analyse our method on ad-
ditional efficiency indicators at a larger scale.

Large-scale image classification We consider more chal-
lenging, larger-scale image classification datasets in the
form of iNaturalist 2018 [23] (438K training examples,
8142 classes), iNaturalist 2021 [24] (2.7M training exam-
ples, 10000 classes) and Places365 [56] (1.8M training ex-
amples, 365 classes). The iNaturalist datasets also have a
long-tail, increasing their difficulty.

Figure 4 evaluates our method and baselines across
a wide range of efficiency indicators. We compare to
LoRA [21], BitFit [52], prompt tuning [25] and LST [49]
as representative efficient adaptation algorithms. We also
compare to full-finetuning, linear probing, finetuning the
last one or two layers, and also finetuning only the attention
or MLP layers [51]. Extensive implementation details of
these baselines are included in the supplement. We visualise

5541



Figure 4. Comparison of trade-offs of accuracy with respect to learned parameters, training memory, inference GFLOPs and training
speed. Our approach, LoSA, is consistently on the Pareto frontier (denoted by shaded yellow circles), as there is no method that is both
more accurate and more efficient than it, across multiple efficiency metrics. Results are on the iNaturalist 2018 dataset, using a ViT-g
backbone with 1 billion frozen parameters.

the Pareto frontier across each of these methods with yel-
low, shaded circles, to show the relative trade-offs in each
efficiency metric.

Consistent with our experiments on VTAB (Tab. 1), we
show superior trade-offs in terms of accuracy and param-
eters. We also outperform full-finetuning, and this sug-
gests that large backbones are overparameterised, and can
overfit when fully-finetuned. Therefore, efficiently adapt-
ing a subset of parameters may lead to higher performance.
Numerous works across domains [4, 40, 45, 49] have also
observed that efficient finetuning methods can outperform
full-finetuning in certain tasks.

Figure 4 also shows that our method uses less training
memory than other baselines except linear probing. As de-
scribed in Sec. 3, these improvements stem from the fact
that we do not need to backpropagate gradients through the
backbone. However, we also improve upon the accuracy
of linear probing by 8 points. We note similar observa-
tions when comparing the training speed to overall accuracy
for the same reason that we do not need to backpropagate
through the backbone. Notably, we are 2.35 times faster
than LoRA whilst achieving 0.4 points higher accuracy.

Overall, our method is Pareto-optimal for learned parme-
ters, training speed and training memory consumption, em-
phasising the advantages of our approach. The inference
GFLOPs is largely unchanged among the different ap-
proaches, as they are all dominated by the cost of the ViT-g
backbone which is constant across them. Notably, prompt
tuning uses substantially more GFLOPs and training time
as in order to achieve good accuracy, we needed to use 16
prompts in the first 24 layers of the network.

We show full tables with the complete data for Fig. 4 in
the supplement, as well as accuracies on iNaturalist 2021
(Fig. 1) and Places365 where we observe consistent trends.

4.3. Experiments on Video

We further demonstrate the scalabilty of our method by
performing video classification experiments on Kinetics

Method Backbone Params ↓
(106)

Memory ↓
(GB)

Train ↑
(clip/second)

Accuracy ↑

Full finetuning [2] ViViT-H 635 14.34 0.61 84.9
ViViT-g 1039 – – OOM
ViViT-G 1879 – – OOM
ViViT-e 3879 – – OOM

ST Adapter [45] ViViT-H 127 9.17 0.66 80.9
ViViT-g 174 11.47 0.50 83.9
ViViT-G 247 – – OOM
ViViT-e 310 – – OOM

Linear Probing ViViT-H 0 2.88 2.47 75.0
ViViT-g 0 3.62 1.94 80.7
ViViT-G 0 5.24 1.37 81.1
ViViT-e 0 9.05 0.92 83.1

Ours, LoSA ViViT-H 3.61 3.41 2.33 80.0
ViViT-g 4.78 4.92 1.73 84.0
ViViT-G 6.53 7.72 1.22 84.4
ViViT-e 8.03 12.54 0.83 86.2

Table 2. Video classification results on Kinetics 400, using Nvidia
V100 GPUs with 16 GB of RAM. Our proposed method can scale
to a frozen ViViT-e backbone, as it does not backpropagate gra-
dients through the backbone. And thanks to the larger backbone
size, can outperform fully-finetuning a smaller ViViT-H model.

400 [32]. We use an unfactorised ViViT model [2], which
allows us to use the same pretrained image checkpoints
from our previous experiments.

Video classification requires processing substantially
more tokens: each model in Tab. 2 is trained with 32 frames,
a frame resolution of 224, and a tubelet size of 14× 14× 2,
which corresponds to 4096 tokens. As shown in Tab. 2 it
is only possible to fully finetune a ViViT-H model with 636
million parameters. We also compare to ST-Adapter [45],
an existing work for adapting video models, based on the
authors’ public code as detailed in the suppement, and ob-
serve that it does not scale beyond ViViT-g with 1 billion
parameters. However, our approach, as it does not back-
propagate gradients through the backbone unlike the previ-
ous two approaches, can scale up to ViViT-e with 4 billion
frozen parameters, using Nvidia V100 GPUs with 16GB
of RAM. Moreover, we achieve higher accuracy than ei-
ther ST-Adapter or full finetuning (86.2 vs 84.9) whilst also
training faster and using less memory. We note, however,
that although our model is faster to train than these two
baselines, our final ViViT-e model is still slower at infer-

5542



Adaptor function, g Learned ↓
Params (M)

Train Memory ↓
(GB)

Train ↑
(img/sec)

GFLOPs ↓ Acc ↑

Transformer 27 4.77 42.5 274.9 75.0
Low-rank MLP 7.7 4.21 65.7 269.4 80.7
Low-rank Mixer (LoSA) 4.8 4.19 64.8 269.4 81.3

Table 3. Ablation of our adaptor function, g. LST [49] uses a
regular transformer which we find to perform the worst, whilst our
Low-rank Mixer achieves the best accuracy-efficiency trade-off.

Backbone activation Learned ↓
Params (M)

Train Memory↓
(GB)

Train ↑
(img/sec)

GFLOPs ↓ Acc ↑

MLP 4.8 4.19 64.8 269.4 77.7
Multihead attention 4.8 4.19 64.8 269.4 79.1
MLP and Multihead attention 9.1 4.29 51.8 271.2 81.0
Encoder block (LoSA) 4.8 4.19 64.8 269.4 81.3

Table 4. The effect of different activations extracted from the back-
bone. The output of the transformer encoder block performs the
best as it is the sum of the MLP- and self-attention-block outputs.

ence time due to its larger backbone.
Linear probing is the only baseline that allows us to scale

to the ViViT-e backbone. However, its performance is lower
as well, and consistent with our previous experiments on
images. Note that whilst it is possible in theory to use model
parallelism to split a large model across multiple acceler-
ators, we have not implemented this for any approach in
Tab. 2 as it is not common practice.

4.4. Ablation Study

Finally, we analyse the effect of our various modelling
choices. Unless otherwise stated, we perform experiments
on iNaturalist 2018 [23] using a ViT-g backbone.

Adaptor function g Table 3 considers different alterna-
tives for our adaptor function, g. Our first baseline is to use
a regular transformer, with hidden dimension r = 48, as
also done in LST [49]. However, as shown in Tab. 3, this
performs the worst, both in terms of accuracy and efficiency.
Although we could use smaller hidden dimensions to im-
prove efficiency, we assume fewer parameters would not
increase accuracy, leaving a clear gap to a Low-rank MLP
(Eq. 4). Alternating between “channel mixing” and “token
mixing” [50] with our proposed Low-rank Mixer (Eq. 5)
achieves the best accuracy. Moreover, this also improves
efficiency metrics, because for images, the number of to-
kens (256) is less than the hidden size (d = 1408) for our
backbone. Therefore, every second mixer block has fewer
parameters and GFLOPs compared to the Low-rank MLP.

Backbone activation Table 4 analyses the various acti-
vations that we can extract from our backbone to pass to
the adaptor function, g. We find that the final output of the
transformer encoder block, performs better than the alter-
natives: output of the MLP, output of the Multihead Self-
Attention (MHSA) block, or in fact, the combination of
both. When we use outputs of both MHSA- and MLP-
layers, our side network effectively has double the depth
as we apply g to each output in sequence. Using the fi-
nal encoder block likely performs the best, as via the use

Layers in side network Learned ↓
Params (M)

Train Memory ↓
(GB)

Train ↑
(img/sec)

GFLOPs ↓ Acc ↑

Linear Probing (0) 0 4.09 75.7 267.4 73.3

1 0.184 4.09 75.2 267.5 77.8
2 0.217 4.10 74.8 267.5 78.0
4 0.431 4.10 74.2 267.6 79.3
8 0.861 4.11 73.2 267.8 80.0
40 (All) 4.298 4.19 64.8 269.3 80.6

Table 5. Effect of the number of layers in our side network. As
we use a ViT-g backbone, there are 40 layers in the backbone,
and we uniformly sample backbone activations to pass to our side
network. No layers corresponds to linear probing, which performs
substantially worse than using just a single side adaptor layer.

Side network input, y0
Learned ↓
Param (M)

Train Memory ↓
(GB)

Train ↑
(img/sec)

GFLOPs ↓ Acc ↑

Backbone input 4.8 4.06 64.8 269.4 60.9
Backbone output (LoSA) 4.8 4.06 64.8 269.4 61.3

Table 6. Ablation of inputs to our side network on Places365. Us-
ing the backbone outputs provides a small improvement compared
to using the backbone inputs, as done in LST [49].

of residual connections, it is the sum of both MHSA- and
MLP-blocks [12], and thus contains information from both.
Number of layers in side network Another method of
controlling the accuracy-efficiency trade-off of our pro-
posed method is to vary the number of layers in our side
network. Instead of operating on activations from each layer
of the backbone, we select k evenly-spaced layers instead in
Tab. 5. Using no layers from our side network results in lin-
ear probing, and we observe that adding just a single side
adaptor layer to the end of the backbone improves accu-
racy significantly by 4.5 points. This suggests that our side
network is able to learn complementary information to the
backbone. Adding further layers gives small and consistent
improvements. In our previous experiments, we used all
layers from the backbone to obtain higher accuracy.
Side network inputs Finally, Tab. 6 considers the effect
of using either the output of the backbone, bL, as the in-
put to our side network, y0, or rather using the input to the
backbone itself (i.e. tokenised image patches, b0). The in-
terpretation of bL is that the side network refines the out-
puts of the backbone, given further intermediate activations
from the backbone. The interpretation of b0 is that the side
network iteratively refines backbone features of the ith layer
given activations from layers before it, and was also used
in LST [49]. We find that the former approach improves
results slightly, and thus used it for all experiments.

5. Conclusion and Future Work
We have introduced Low-rank Side Adaptation (LoSA), an
adaptation method that is efficient not only in terms of pa-
rameters, but also training-time and memory, since we do
not have to backpropagate gradients through the backbone.
We achieve state-of-the-art results on VTAB, and show that
we can scale our method, unlike previous works, to ViT-e (4
billion parameters) without model parallelism. Future work
is to extend our method to more complex vision tasks.

5543



References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a vi-
sual language model for few-shot learning. In arXiv preprint
arXiv:2204.14198, 2022. 1

[2] Anurag Arnab, Mostafa Dehghani, Georg Heigold, Chen
Sun, Mario Lučić, and Cordelia Schmid. ViViT: A Video
Vision Transformer. In ICCV, 2021. 7

[3] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Sub-
biah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakan-
tan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, et al. Language models are few-shot learners. In
NeurIPS, 2020. 1

[4] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang,
Yibing Song, Jue Wang, and Ping Luo. Adaptformer: Adapt-
ing vision transformers for scalable visual recognition. In
NeurIPS, 2022. 2, 5, 6, 7

[5] Xi Chen, Josip Djolonga, Piotr Padlewski, Basil Mustafa,
Soravit Changpinyo, Jialin Wu, Carlos Riquelme Ruiz, Se-
bastian Goodman, Xiao Wang, Yi Tay, et al. Pali-x: On scal-
ing up a multilingual vision and language model. In arXiv
preprint arXiv:2305.18565, 2023. 1

[6] Xi Chen, Xiao Wang, Soravit Changpinyo, AJ Piergiovanni,
Piotr Padlewski, Daniel Salz, Sebastian Goodman, Adam
Grycner, Basil Mustafa, Lucas Beyer, et al. Pali: A jointly-
scaled multilingual language-image model. In ICLR, 2023.
1, 2, 5

[7] George E Dahl, Frank Schneider, Zachary Nado, Naman
Agarwal, Chandramouli Shama Sastry, Philipp Hennig,
Sourabh Medapati, Runa Eschenhagen, Priya Kasimbeg,
Daniel Suo, et al. Benchmarking neural network training
algorithms. In arXiv preprint arXiv:2306.07179, 2023. 3

[8] Mostafa Dehghani, Anurag Arnab, Lucas Beyer, Ashish
Vaswani, and Yi Tay. The efficiency misnomer. In ICLR,
2022. 2, 3

[9] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr
Padlewski, Jonathan Heek, Justin Gilmer, Andreas Peter
Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdul-
mohsin, et al. Scaling vision transformers to 22 billion pa-
rameters. In ICML, 2023. 1

[10] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. ImageNet: A large-scale hierarchical image
database. In CVPR, 2009. 5

[11] Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zong-
han Yang, Yusheng Su, Shengding Hu, Yulin Chen, Chi-
Min Chan, Weize Chen, et al. Delta tuning: A comprehen-
sive study of parameter efficient methods for pre-trained lan-
guage models. In arXiv preprint arXiv:2203.06904, 2022.
2

[12] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In ICLR, 2021. 2, 5,
8

[13] Ali Edalati, Marzieh Tahaei, Ivan Kobyzev, Vahid Partovi
Nia, James J Clark, and Mehdi Rezagholizadeh. Krona: Pa-
rameter efficient tuning with kronecker adapter. In arXiv
preprint arXiv:2212.10650, 2022. 2

[14] Cheng Fu, Hanxian Huang, Xinyun Chen, Yuandong Tian,
and Jishen Zhao. Learn-to-share: A hardware-friendly trans-
fer learning framework exploiting computation and parame-
ter sharing. In ICML, 2021. 3, 5

[15] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep
learning. 2016. 2, 4

[16] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view
of parameter-efficient transfer learning. In ICLR, 2022. 2

[17] Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. Towards a unified view
of parameter-efficient transfer learning. In ICLR, 2022. 4

[18] Dan Hendrycks and Kevin Gimpel. Gaussian error linear
units (gelus). In arXiv preprint arXiv:1606.08415, 2016. 4

[19] Sara Hooker. The hardware lottery. Communications of the
ACM, 64(12), 2021. 3

[20] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna
Morrone, Quentin De Laroussilhe, Andrea Gesmundo, Mona
Attariyan, and Sylvain Gelly. Parameter-efficient transfer
learning for nlp. In ICML, 2019. 1, 2, 4, 5, 6

[21] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen.
Lora: Low-rank adaptation of large language models. In
ICLR, 2022. 1, 2, 3, 4, 5, 6

[22] Zhiheng Huang, Wei Xu, and Kai Yu. Bidirectional
lstm-crf models for sequence tagging. In arXiv preprint
arXiv:1508.01991, 2015. 3

[23] iNaturalist 2018 competition dataset. iNaturalist 2018 com-
petition dataset. https://github.com/visipedia/
inat_comp/tree/master/2018, 2018. 6, 8

[24] iNaturalist 2021 competition dataset. iNaturalist 2021 com-
petition dataset. https://github.com/visipedia/
inat_comp/tree/master/2021, 2021. 6

[25] Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie,
Serge Belongie, Bharath Hariharan, and Ser-Nam Lim. Vi-
sual prompt tuning. In ECCV, 2022. 1, 2, 4, 5, 6

[26] Zeyinzi Jiang, Chaojie Mao, Ziyuan Huang, Ao Ma, Yiliang
Lv, Yujun Shen, Deli Zhao, and Jingren Zhou. Res-tuning:
A flexible and efficient tuning paradigm via unbinding tuner
from backbone. In NeurIPS, 2023. 6

[27] Shibo Jie and Zhi-Hong Deng. Convolutional bypasses
are better vision transformer adapters. In arXiv preprint
arXiv:2207.07039, 2022. 2, 5, 6

[28] Shibo Jie and Zhi-Hong Deng. Fact: Factor-tuning for
lightweight adaptation on vision transformer. In AAAI, 2023.
6

[29] Matthew James Johnson. Bayesian Time Series Models and
Scalable Inference. PhD thesis, Massachusetts Institute of
Technology, 2014. 2, 4

[30] Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini,
and Matt J Kusner. No train no gain: Revisiting efficient
training algorithms for transformer-based language models.
In arXiv preprint arXiv:2307.06440, 2023. 2, 3

5544



[31] Rabeeh Karimi Mahabadi, James Henderson, and Sebastian
Ruder. Compacter: Efficient low-rank hypercomplex adapter
layers. In NeurIPS, 2021. 2

[32] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The ki-
netics human action video dataset. In arXiv preprint
arXiv:1705.06950, 2017. 7

[33] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 3

[34] Brian Lester, Rami Al-Rfou, and Noah Constant. The power
of scale for parameter-efficient prompt tuning. In EMNLP,
2021. 1, 2

[35] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. In ICML,
2023. 1

[36] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing
continuous prompts for generation. In ACL, 2021. 1, 2

[37] Vladislav Lialin, Vijeta Deshpande, and Anna Rumshisky.
Scaling down to scale up: A guide to parameter-efficient
fine-tuning. In arXiv preprint arXiv:2303.15647, 2023. 2

[38] Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao
Wang. Scaling & shifting your features: A new baseline for
efficient model tuning. In NeurIPS, 2022. 2, 5

[39] Weifeng Lin, Ziheng Wu, Jiayu Chen, Wentao Yang,
Mingxin Huang, Jun Huang, and Lianwen Jin. Hierarchi-
cal side-tuning for vision transformers. In arXiv preprint
arXiv:2310.05393, 2023. 5, 6

[40] Ziyi Lin, Shijie Geng, Renrui Zhang, Peng Gao, Gerard de
Melo, Xiaogang Wang, Jifeng Dai, Yu Qiao, and Hongsheng
Li. Frozen clip models are efficient video learners. In ECCV,
2022. 7

[41] Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta,
Tenghao Huang, Mohit Bansal, and Colin A Raffel. Few-
shot parameter-efficient fine-tuning is better and cheaper
than in-context learning. In NeurIPS, 2022. 4

[42] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. In NeurIPS, 2023. 1

[43] Yitao Liu, Chen An, and Xipeng Qiu. Y-tuning: An efficient
tuning paradigm for large-scale pre-trained models via label
representation learning. In arXiv preprint arXiv:2202.09817,
2022. 3, 5

[44] Yuning Mao, Lambert Mathias, Rui Hou, Amjad Alma-
hairi, Hao Ma, Jiawei Han, Scott Yih, and Madian Khabsa.
Unipelt: A unified framework for parameter-efficient lan-
guage model tuning. In ACL, 2022. 2

[45] Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hong-
sheng Li. St-adapter: Parameter-efficient image-to-video
transfer learning. In NeurIPS, 2022. 2, 7

[46] Hao Peng, Qingqing Cao, Jesse Dodge, Matthew E Peters,
Jared Fernandez, Tom Sherborne, Kyle Lo, Sam Skjonsberg,
Emma Strubell, Darrell Plessas, et al. Efficiency pentathlon:
A standardized arena for efficiency evaluation. In arXiv
preprint arXiv:2307.09701, 2023. 3

[47] Jonas Pfeiffer, Aishwarya Kamath, Andreas Rücklé,
Kyunghyun Cho, and Iryna Gurevych. Adapterfusion: Non-

destructive task composition for transfer learning. In arXiv
preprint arXiv:2005.00247, 2020. 2

[48] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi.
Learning multiple visual domains with residual adapters. In
NeurIPS, 2017. 1, 2, 5

[49] Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Lst: Lad-
der side-tuning for parameter and memory efficient transfer
learning. In NeurIPS, 2022. 3, 5, 6, 7, 8

[50] Ilya O Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, et al.
Mlp-mixer: An all-mlp architecture for vision. In NeurIPS,
2021. 5, 8

[51] Hugo Touvron, Matthieu Cord, Alaaeldin El-Nouby, Jakob
Verbeek, and Hervé Jégou. Three things everyone should
know about vision transformers. In ECCV, 2022. 2, 6

[52] Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. In arXiv
preprint arXiv:2106.10199, 2021. 1, 2, 6

[53] Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov,
Pierre Ruyssen, Carlos Riquelme, Mario Lucic, Josip Djo-
longa, Andre Susano Pinto, Maxim Neumann, Alexey Doso-
vitskiy, et al. A large-scale study of representation learning
with the visual task adaptation benchmark. In arXiv preprint
arXiv:1910.04867, 2019. 6

[54] Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lu-
cas Beyer. Scaling vision transformers. In CVPR, 2022. 5

[55] Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural
prompt search. In arXiv preprint arXiv:2206.04673, 2022.
6

[56] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva,
and Antonio Torralba. Places: A 10 million image database
for scene recognition. In PAMI, 2017. 6

5545


